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Abstract—The recognition of states and traits of speakers is
a significant issue to investigate, to be able to achieve more
useful interactive systems. The sincerity of a speaker is a relevant
paralinguistic phenomenon, which have not received too much
attention from the affective computing community. In this work,
we tackle the problem using novel feature sets proposed for
emotion recognition. In addition, bioinspired features (using an
auditory signal representation) and other spectral features are
also evaluated. Finally, diverse combinations of these reduced-
size feature sets are built. The provided standard, complete set
with 6373 features is used for comparison purposes. Results show
that using the combination of the proposed representations and
state-of-art features, it is possible to obtain very small feature sets
(less than 3% of the original size) that get comparable correlation
measure with respect to the baseline.

Index Terms—sincerity recognition, auditory representation,
reduced-size feature sets

and to

I. INTRODUCTION

In the last years, the affective computing community is

dealing with new challenges looking to improve the emotional

human-computer interaction. Today, one of the most relevant

modalities is the recognition of emotions in speech. Recently, a

new task was proposed in this context, namely the recognition

of the sincerity of the speaker [1]. To address this challenge,

literature shows that several vocal cues can be extracted to

detect closely related speech acts like the sarcasm and verbal

irony. Then, the tempo, intensity, pitch, local and global

prosodic information, spectral features, among others are

usually measured [2–4]. Some evidence about the differences

between sarcastic and sincere intonation can be mainly found

in the speaking rate, intensity and general hyperarticulation,

which also can vary between languages, for example English

and French [5,6]. These features have been used to build robust

spoken dialogue systems, which are able to learn and detect

the presence of sarcasm [7,8].

In this work, we build and evaluate the feasibility of tackling

the task using very small feature sets. We compute two state-

of-art minimalistic feature sets (GeMAPS and eGeMAPS)

[9] and a set of spectral characteristics proposed in [10]. In

addition, we propose a set of features based on a bioinspired

model, computed by the auditory model proposed by [11].

As this model tries to mimic the auditory system, it is

interesting to know if the model properties are useful for the

recognition of sincerity. It is important to note that this model

has been useful in feature extraction for related tasks in robust

speech and emotion recognition [12–14]. Furthermore, some

combinations of these feature sets are evaluated.

The organization of this paper is as follows. In Section

II, brief descriptions of the speech corpora and baseline

system are given. Next, state-of-art features and our methods

for feature extraction are described. Section III presents the

results obtained along with a discussion about the usability of

the proposed features. Finally, Section IV gives the general

conclusions and outlines future work.

II. MATERIALS AND METHODS

This section resumes the speech database, the baseline

systems on the task and our approach to feature extraction.

A. Speech data and baseline system

The dataset provided is the Sincerity Speech Corpus (SSC)

provided by the Columbia University and consists of two

sets (train and test partitions) containing the utterances of

22 subjects (655 instances) and 10 subjects (256 instances),

respectively. The recordings correspond to people reading

six sentences expressing apologies in four different prosodic

styles. The sentences vary in length, from one word (“Sorry”)

up to long phrases (for example “I am sorry, but I am going to

have to decline your generous offer. Thank you for considering

me.”). The complete set has approximately 72 minutes of

speech. Each instance was rated by a group of 13-19 annotators

in terms of perceived sincerity using a scale from 0 (not sincere

at all) to 4 (extreme sincere). For more details, we refer the

reader to [1].

A state-of-art feature set is obtained from the speech

recordings using the openSMILE toolkit [15], the so-called

COMPARE feature set. It calculates 6373 acoustic features

using diverse functionals over low-level descriptor (LLD)

contours. A full description can be found in [16].
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The baseline system provided for the task consists of Sup-

port Vector Regression (SVR) with linear kernels and epsilon-

insensitive loss. The system was trained with the Sequential

Minimal Optimization (SMO) algorithm available in the open-

source machine learning software WEKA. More details can be

found in [1].

B. GeMAPS and extended GeMAPS

The Geneva Minimalistic Acoustic Parameter Set

(GeMAPS) consists of a basic standard set intended to

be used in various areas of automatic voice analysis,

such as paralinguistic or clinical speech analysis. In an

interdisciplinary work, the creators presented the set as a

minimalistic group of voice parameters (contrary to others

large sets), with a selection based on their evidence to

index affective changes in voice production, the feasibility

to build algorithms for automatic calculations and their

theoretical significance. One main objective was to bring to

the affective computing community a common baseline for

future evaluation of systems, so eliminating the differences

due to internal parameters or even implementations of the

same features across the research groups.

The GeMAPS consists of 62 parameters originated from 18

LLD descriptors divided into the following categories:

• frequency: pitch and its jitter, and first 3 formants;

• energy/amplitude: shimmer, loudness and harmonics-to-

noise ratio;

• spectral: different ratios and indices showing relations

between energy bands and peaks.

The extended GeMAPS (eGeMAPS) is an alternative ver-

sion which adds 26 extra parameters to the basic set. They

are obtained from cepstral coefficients along with dynamic

information. The implementation of GeMAPS is publicly

available with the openSMILE toolkit. Full details of the sets

can be found in [9].

C. Mean of log-spectrum

In previous works we proposed the Mean of Log-Spectrum

(MLS) coefficients, a set of features calculated from spectral

data for different frequency bands. They were thought as an

extra process to extract prosody information and were first

used in the analysis and characterization of spoken emotions,

in clean and noisy conditions [10,17]. Briefly, the MLS

coefficients are defined using the signal spectrogram

S(k) =
1

N

N
∑

n=1

log |v(n, k)|, (1)

where k is a frequency band, N is the number of frames in the

utterance and v(n, k) is the discrete Fourier transform of the

signal in the frame n. For the computation, the spectrograms

were obtained with Hamming windows of 25 ms. The first

30 MLS coefficients, corresponding to lower frequencies (0−
1200 Hz), were considered based on evidence that the most

useful information for emotion recognition was found in this

frequency interval.

Fig. 1. Conceptual scheme for obtaining the auditory spectrogram

This set of 30 features is also considered along with

the standard deviation of each coefficient, giving a second

alternative set of 60 features.

D. Mean of the log-auditory spectrum

The representation of the sound signal at the cochlear level

and auditory cortical areas has been studied as an alternative

to classical analysis methods, given its intrinsic selective

tuning to relevant natural sound [18]. Here, additionally to the

described MLS coefficients, we propose to analyze the speech

utterances by means of a related set of features based on the

auditory spectrogram.

In [19], a model based on neurophysiological investigations

at various stages of the auditory system was proposed. This

model consists of two consecutive stages: first, it obtains an

early auditory spectrogram with the activity of auditory nerve

fibres, and then a model of the primary auditory cortex is

used to process the spectrogram and find the spectro-temporal

receptive fields. The model first process the speech signal with

a bank of 128 cochlear (bandpass) filters in the range [0−4000]
Hz. The centre frequency of the filter at location x on the

logarithmic frequency axis (in octaves) is defined as

fx = f02
x(Hz) (2)

where f0 is a reference frequency of 1 kHz. This frequency

distribution proved to be satisfactory for the discrimination

of acoustic clues in speech and further reconstruction of the

signals [20]. One important aspect is the fact that the first 71

coefficients correspond to the [0 − 1220] Hz interval. Given

the previous evidence for the MLS coefficients that the most

useful information for emotion recognition is precisely found

in this frequency interval [10], only this range is considered

here.

After filtering, the second stage transduces the outputs into

auditory-nerve patterns using a high-pass filter (modeling the

fluid-cilia coupling), a non-linear activation function (com-

pression in the ionic channels), and a low-pass filter (hair-

cell membrane leakage). Then, the lateral inhibitory network

is modeled by the half-wave rectification of the first-order

derivative of the frequency. The output on each frequency

band is finally obtained by integrating this signal over a short

window [21]. Figure II-D shows a block diagram model that

conceptually summarizes this procedure.

Considering the output of the first stage of the model, an

alternative set of features is built using the mean of the log
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auditory spectrogram (MLSa), as

Sa(k) =
1

N

N
∑

n=1

log |a(n, k)|, (3)

where k is a frequency band, N is the number of frames in

the utterance and a(n, k) is the k-th coefficient obtained by

applying the auditory filter bank to the signal in the frame

n. The MLSa were computed using auditory spectrograms

calculated for windows of 25 ms without overlapping.

The number of MLSa features is 71, which is also doubled

similar to MLS by adding the standard deviation of each

coefficient (142 features).

E. Support vector machines for function estimation

Support Vector Machines (SVM) are well-stablished learn-

ing models focused on minimizing the structural risk based on

the available training data, in order to get a good generalization

of these patterns. In the case of the sincerity task, the goal is

to evaluate the fitting of the test results to a real scale given

by the perceived sincerity (ground truth). The Support Vector

algorithm is then used to carry out Support Vector Regression

(SVR) by the estimation of a function f(x) that minimizes

the empirical risk

Remp[f ] =
1

l

l
∑

i=1

c
(

xi, yi, f(xi))
)

(4)

for the training data X =
[

(x1, y1), . . . , (xl, yl)
]

and the

cost function c(x, y, f(x)). When dealing with overfitting, the

minimization given is addressed as a regularization problem

[22].

For the sake of comparison between our proposed feature

sets and the baseline, we use the same SVM for regression that

the baseline, that is, a SV regression where the cost function

considered is the ǫ-insensitive loss c(x, y, f(x)) = |y−f(x)|ǫ
(robust against overfitting). Similar to the baseline, the training

is carried out using the SMO algorithm for solving quadratic

programming problems [23].

III. RESULTS AND DISCUSSIONS

This section gives the details of the experiments carried out.

We first present the tuning and evaluation of the system on a

leave-one-speaker-out cross-validation (LOSO-CV) scheme on

the training data. Once the best configurations are found, the

system is trained using all training data and thus the test set

performance is obtained.

The numerical experiments were carried out using the SVR

with linear kernels and fixed ǫ = 1.0 with the WEKA software.

The complexity parameter C of the SVR was optimised in this

stage (for brevity reasons, only the best result in each case is

reported). After the tuning phase, the results on the test set

are presented and discussed.

The Spearman’s Correlation Coefficient ρ was used as

the figure of merit. It quantifies the extend of statistical

dependence between a pair of observations, and constitutes

a robust alternative to Pearson’s correlation coefficient.

TABLE I
SPEARMAN CORRELATION COEFFICIENT (ρ) OBTAINED FOR DIFFERENT

SETS.

Feature set C # of features ρ

Baseline 10
−4 6373 0.4743

GeMAPS 10
−1 62 0.4128

eGeMAPS 10
−1 88 0.4504

MLS (mean) 10
−1 30 0.2254

MLS (mean+std) 1.0 60 0.3203

MLSa (mean) 10
−1 71 0.3124

MLSa (mean+std) 1.0 142 0.2712

MLS+MLSa (mean) 10
−1 101 0.2708

MLS+MLSa (mean+std) 10
−1 202 0.2767

Table I shows the obtained results (ρ coefficient) on the

LOSO-CV scheme using the different feature sets. For each

set, it can be seen the number of features and the complexity.

The two last rows represent the aggregation of MLS and MLSa

feature sets. As can be observed, the baseline (complete) fea-

ture set reaches the best performance. However, the eGeMAPS

set has a well suited behaviour using just 88 values (1.4% of

the number of features in the baseline set). On the other hand,

in this first series of experiments, all our proposed sets get a

lesser performance than baseline and GeMAPS.

A second group of experiments was done in order to

evaluate the behaviour of MLS and MLSa sets aggregated

with baseline, GeMAPS and eGeMAPS features. Although

we pursue the best performance using low dimension sets,

the combination of MLS and MLSa with baseline set is

useful for comparison purposes. Table II shows the best

results obtained on the training set using the same LOSO-CV

scheme. The rows are divided into three groups depending on

which are the combined sets. The second column indicates

the complexity of the best SVR model while the third column

shows the number of features in the set. Here, the results

that improve the baseline are evidenced with a bold face. The

absolute best result is also grayed, and it was reached using

eGeMAPS+MLSa features.

As can be seen, the different combinations of baseline

features with MLS/MLSa obtain just a minor improvement,

in the best case from 0.4743 to 0.4750 (baseline+mean values

of MLS and MLSa together). Instead, we can see that the

combinations of GeMAPS/eGeMAPS with our proposal of

features perform much better: for GeMAPS+mean MLSa the ρ

coefficient rises from the baseline 0.4743 up to 0.4987, while

in the case of eGeMAPS+mean MLSa it reaches 0.5232. On

the other hand, the standard deviations (for both MLS and

MLSa) are not providing any influential information given

that, in almost all the cases, the obtained correlation declines.

After this first analysis, we chose three models with different

features and complexity, for the evaluation on the test set. The

selected systems are marked with “→ s” in Table II.

Table III presents the ρ coefficients obtained for the se-

lected models using the training and test data. It can be

observed that the higher performance on the test data is

reached using the complete feature set (baseline), which

obtains ρ=0.602. Our best result using the test data is the
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TABLE II
SPEARMAN CORRELATION COEFFICIENT (ρ) FOR COMBINED FEATURE

SETS.

Feature set C # of features ρ

Baseline 10
−4 6373 0.4743

Baseline features with

MLS (mean) 10
−4 6373+30 0.4744

MLS (mean+std) 10
−4 6373+60 0.4737

MLSa (mean) 10
−4 6373+71 0.4746

MLSa (mean+std) 10
−4 6373+142 0.4718

MLS+MLSa (mean) 10
−4 6373+101 0.4750

MLS+MLSa (mean+std) 10
−4 6373+202 0.4716

GeMAPS features with
MLS (mean) 1.0 30+62 0.4459
MLS (mean+std) 1.0 60+62 0.4754
MLSa (mean) 1.0 71+62 0.4987
MLSa (mean+std) 1.0 142+62 0.4744

MLS+MLSa (mean) 1.0 101+62 0.4878

MLS+MLSa (mean+std) 10
−1 202+62 0.4420

eGeMAPS features with

MLS (mean) → s 10
−1 30+88 0.4513

MLS (mean+std) 10
−1 60+88 0.4362

MLSa (mean) → s 1.0 71+88 0.5232

MLSa (mean+std) 10
−1 142+88 0.4578

MLS+MLSa (mean) → s 10
−1 101+88 0.5093

MLS+MLSa (mean+std) 10
−1 202+88 0.4252

TABLE III
SPEARMAN CORRELATION COEFFICIENT (ρ) FOR THE BEST

COMBINATIONS OF SETS (USING THE PREVIOUSLY REPORTED C VALUES).

Feature set # of features ρ
Train Test

Baseline 6373 0.4743 0.602

eGeMAPS+MLS 30+88 0.4513 0.5278
eGeMAPS+MLSa 71+88 0.5232 0.4594
eGeMAPS+MLS+MLSa 101+88 0.5093 0.4923

combination of eGeMAPS+MLS, which reaches a good cor-

relation of ρ = 0.5278 (underlined number). Also, it can

be seen that the best combination of features previously

found, the eGeMAPS+MLSa, slightly reduces the correla-

tion from 0.5232 to 0.4594 on the test data. The remain-

ing combination of the three types of features considered,

eGeMAPS+MLS+MLSa, nearly maintains the correlation.

Despite the fact that the feature sets proposed in this

work obtained lower performances on the test data, some

interesting points can be observed on training data. First,

in the comparison GeMAPS vs. eGeMAPS the cepstral and

dynamic information provided in the eGeMAPS is beneficial

for the considered task. Second, the results obtained using

the auditory analysis make evident its asserted natural ability

to capture important, discriminative information contained in

the speech signal. Here, the auditory spectral and prosody

information (MLSa features) is providing useful information

with respect to both: the analysis given by the MLS features

and the full set of measurements given by the baseline features.

This conclusion is also supported by the improvement of ρ

when combining eGeMAPS with MLS or MSLa features: the

correlation grows from 0.4513 to 0.5232 (see Table II).

On the other side, the sizes of the feature sets are reduced

to a large degree. There is a considerable improvement in

the performance on the training data (ρ = 0.4743 to 0.5232)
using only 159 features given by 88 eGeMAPS + 71 MLSa

coefficients, which represents about 2.5% of the original

number of features. On the test data, the best performance is

obtained with 88 eGeMAPS + 30 MLS features. Here, this set

of 188 coefficients represents a great improvement in the size

reduction to just 1.88% of the original size. The ability of the

features to capture relevant information and the uniqueness of

each one of the selected parameters in the representation, could

be the factors that lead to obtain comparable performances

facing the unaddressed challenge of evaluating the sincerity in

a speech utterance.

IV. CONCLUSIONS

In this work, we proposed new reduced-size feature sets

for the evaluation of sincerity in speech, which is a paralin-

guistic event previously uncovered in the affective computing

community.

In the analysis of the speech utterances, instead of a large

set of features we propose to extract very small, reduced-size

feature sets. Specifically, we tried two state-of-the-art mini-

malistic sets (GeMAPS and extended GeMAPS) in addition

to own proposals of spectral features in a highly informative

frequency range: the mean log-spectrum of the speech signal

and the mean log-spectrum of the signal at the auditory level.

A number of experiments were carried out with combi-

nations of these sets. The results showed promising results

using some of these combinations, in particular the extended

GeMAPS plus our spectral features, which performed better

than the baseline in the training data. Despite the performance

drop for test evaluation, we showed that using less than 3% of

the size in the extracted features we can obtain similar (or even

better performances, such as the correlation on the training set)

than the baseline trained with a very large number of features.

Future works will be devoted to research further the poten-

tial and benefits of these new sets of features with other clas-

sification/regression schemes, for example, dynamic models

or deep neural networks that exploit also the local variability

along the utterances (temporal profile of the paralinguistic

phenomena). Also, a more in-depth analysis of the information

provided at the auditory level could lead to the proposal of new

features, extending the benefits that MLSa showed here on the

training set.
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