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Abstract

miRNAfe is a comprehensive tool to extract features from RNA sequences. It
is freely available as a web service, allowing a single access point to almost all
state-of-the-art feature extraction methods used today in a variety of works from
different authors. It has a very simple user interface, where the user only needs
to load a file containing the input sequences and select the features to extract.
As a result, the user obtains a text file with the features extracted, which can
be used to analyze the sequences or as input to a miRNA prediction software.

The tool can calculate up to 80 features where many of them are multi-
dimensional arrays. In order to simplify the web interface, the features have
been divided into six pre-defined groups, each one providing information about:
primary sequence, secondary structure, thermodynamic stability, statistical sta-
bility, conservation between genomes of different species and substrings analysis
of the sequences. Additionally, pre-trained classifiers are provided for prediction
in different species. All algorithms to extract the features have been validated,
comparing the results with the ones obtained from software of the original au-
thors.

The source code is freely available for academic use under GPL license at
http://sourceforge.net/projects/sourcesinc/files/mirnafe/0.90/. A
user-friendly access is provided as web interface at http://fich.unl.edu.ar/
sinc/web-demo/mirnafe/. A more configurable web interface can be accessed
at http://fich.unl.edu.ar/sinc/web-demo/mirnafe-full/.
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1. Introduction

MicroRNAs (miRNA) are a group of short (∼ 22 nucleotides) non-coding
RNA which can play important roles in gene regulation by targeting mRNAs for
cleavage or translational repression (Lamers et al., 2014). Precursors of miRNA
(pre-miRNA) are characterized by their hairpins structure. However, a large5

amount of similar sequences can be folded into this kind of structure in many
genomes.

In order to predict miRNAs, a large number of tools have been developed in
the last years (Kleftogiannis et al., 2013). The first step is to extract features
from sequences and then use classifiers to predict which sequences are likely to10

contain a miRNA. The feature extraction step is very important for the whole
process, in order to achieve high rates of true positives predictions (Zhang et al.,
2010). Numerous features can be extracted from the primary sequence and its
corresponding secondary structure. A typical example of this kind of features
is the triplets representation (Xue et al., 2005), which considers the structural15

composition of three adjacent nucleotides and the middle base to build a vector
with 32 elements. Other examples are the number of internal loops and their
length (Yousef et al., 2006), the z-score of the minimum free energy (Hertel
and Stadler, 2006) and the dinucleotide proportion (Rukshan and Vasile, 2009).
The amount of features that can be extracted is very large and there are many20

different tools that partially achieve this task. They are coded in different
programming languages and have different access modes (web, command line,
etc.). Besides, several tools are proprietary software and the source code is not
even available1. These are important issues that hinder their use.

We have developed the miRNAfe tool that implements almost all existing25

state-of-the-art feature extraction processes used for miRNA prediction nowa-
days (Li et al., 2010). It can extract the features used by the most cited
miRNA classifiers, such as Triplet-SVM (Xue et al., 2005), RNAmicro (Hertel
and Stadler, 2006), BayesMiRNAfind (Yousef et al., 2006), MiRFinder (Huang
et al., 2007), MiPred (Jiang et al., 2007), miRRim (Goro et al., 2007), microPred30

(Rukshan and Vasile, 2009), miRanalyzer (Hackenberg et al., 2009), MiRenSVM
(Jiandong et al., 2010) and miPredGA (Xuan et al., 2011). We have developed
an easy to use web interface that allows a single and simplified access point to
all the functions of the toolbox, and a set of pre-trained classifiers that can be
used to test the prediction power of the feature sets. We provide here a com-35

prehensive open-source solution, with free access to all features for academic
use.

2. Provided features

The tool implements up to 80 features, where many of them return arrays.
All of these features have been proposed in literature over the past 10 years.40

1http://www.insybio.com/pages/ncrnaseq
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The features are divided into six pre-defined groups according to the kind of
information that must be extracted from the sequence. A brief explanation of
each group is provided in the next lines. For a more detailed explanation of all
the features provided and their sources, see the supplementary material.

2.1. Sequence45

These are the simplest features and represent information from the primary
sequence. MiRNAfe can extract a total of 5 features in this group: sequence
length (`), proportion of each base in the sequence, proportion of dinucleotides,
content of guanine and cytosine and guanine-cytosine ratio. The last two fea-
tures are defined as:50

G+ Ccontent =
G+ C

G+ C +A+ U
, (1)

GCratio =
G

C
, (2)

where G, C, A and U represent the quantity of each base found in the sequence
(Hertel and Stadler, 2006). All these features form a vector of 23 elements,
composed by: the 4 base proportions, the 16 dinucleotide proportions, sequence
length, G+ Ccontent and GCratio. Although these features are quite simple,
they have shown a high discriminative power (Rukshan and Vasile, 2009), and55

thus are used in most of the state-of-the-art prediction software.

2.2. Secondary structure

These features represent information from the secondary structure and they
are the most numerous group. The most used feature of this group is the
triplets proportion (Xue et al., 2005). A triplet is an element formed with the60

structure state (paired or not paired) of three adjacent nucleotides and the base
at the middle. An example of a triplet element is “.((A”, where the parenthesis
represents a paired nucleotide, a dot a not paired one, and the letter is the base of
the nucleotide in the middle. As there are 2 possible states for a nucleotide and
4 different bases, 32 triplets can be formed (4×23). The number of occurrences65

of each triplet element in the sequence is counted and normalized to produce a
32-dimensional feature vector. A similar approach to the triplets was used by
Huang et al. (2007), which proposed another representation for the secondary
structure. First of all, five symbols are defined to indicate the status of each base
pair in the stem: “=”, “:”, “−”, “.” and “∧”. Each of them corresponds to the70

status of match, mismatch, deletion, insertion in the interior loop, and insertion
in the bulged loop, respectively. Then, by taking two adjacent symbols, 14
possible combinations can be formed, each one having a special meaning. For
example: “= −”, “= .”, and “=:” represent the boundary of the stem/loop, and
“: ∧” represents that the loop is asymmetric. The frequency of each combination75

is used as a feature vector. This representation is also used to calculate four
more features: pMatch, pMismatch, pDI and pBulge. These features are
calculated over putative mature miRNA, selected as the 22 nucleotide region
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where base-pairing is maximum. They represents the base pairing frequency, the
non-pairing frequency, the deletion and insertion frequencies and the symmetry80

of the bulged loops, respectively.
Another kind of features is related to the stems, which are structural motifs

containing more than three contiguous base pairs (Ng and Mishra, 2007). These
features are the number of stems, the proportion of each possible base pair per
stem, average base pair number per stem and length of the longest stem. The85

rest of features are the stem region (the stem part of the stem-loop) length,
terminal loop length, bulges number, loops number, longest loop length, asym-
metric and symmetric loops number, nucleotides in symmetric and asymmetric
loops, longest symmetric region, average length of symmetric loops, average
length of asymmetric loops, number of bulges and loops of length 1, 2, ..., 7 and90

greater, base pair number, adjusted base pair propension, base pair proportion
and G+Ccontent in the terminal loop (Lopes et al., 2014). Finally, miRNAfe can
calculate reads count from RNAseq data. This feature needs the user to provide
an extra file with reads, which miRNAfe aligns with the analyzed sequences and
counts the corresponding matches. For a full description of each feature see the95

supplementary material.

2.3. Thermodynamics stability

The features in this group are related to the thermodynamics stability of a
sequence. The mostly used feature is the minimum free energy (MFE): the
estimated energy that one sequence frees when folded into the most stable sec-100

ondary structure (Zuker and Stiegler, 1981). The ensemble free energy (EFE)
has a similar meaning and it is obtained with the algorithm from McCaskill
(1990). Other features of this group are calculated as combinations of those val-
ues. For example, the MFE index 1 (MFEI1) is the ratio between the minimum
free energy and the G+ Ccontent defined in 1. Similarly, miRNAfe can calcu-105

late MFE − EFE difference, adjusted MFE, MFEI2, MFEI3 and MFEI4
(Rukshan and Vasile, 2009). There are also some features that use informa-
tion theoretic approaches to estimate the confidence of the predicted secondary
structure, such as the adjusted Shannon entropy of the pairing probabilities (Ng
and Mishra, 2007), defined as110

dQ =
1

`

∑
i<j

pij log2 pij , (3)

where pij is the probability that the nucleotide i forms a pair with the nucleotide
j and l is the sequence length. The base pair probabilities are calculated with
the algorithm from McCaskill (1990). Another example is the adjusted base
pair distance, defined as

dD =
1

`

∑
i<j

pij(1− pij). (4)

Additionally, in this group miRNAfe can calculate the ensemble frequency,115

set diversity, stem 3’ and 5’ potential, and loop potential (Terai et al., 2007).
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There are 15 features in this group, which are described in more detail in the
supplementary material.

2.4. Statistical stability

It is well-known that precursors containing a miRNA are more stable than120

random sequences. The features in this group are calculated as the standard
score of any feature related to stability. To calculate this score, a random
population of sequences has to be generated swapping the bases of the analyzed
sequence. This way, the artificially generated sequences conserve the nucleotide
proportions or even the dinucleotide proportion if some swaps are restricted (the125

tool has an option to choose which swap method to use). For each generated
sequence, the stability can be measured with the z-score (Bonnet et al., 2004),
defined as

z =
x− µ
σ

, (5)

where x is the original value of the feature, µ is the mean and σ is the standard
deviation of the randomly generated population of sequences. This score rep-130

resents how many standard deviations a value is above the population mean.
Thus, a negative z-score indicates a sequence that is statistically more stable
that the population mean. Another statistic used to measure the stability of the
sequence in comparison with random sequences is the p-value. It is calculated
as the proportion of random sequences that are more stable that the analyzed135

sequence. Thus, a low p-value indicates that the analyzed sequence is one of
the most stable of all sequences generated with that nucleotide/dinucleotide
proportion. The stabilities measures that can be normalized with z-score are:
MFE (named zMFE), EFE (zEFE), adjusted MFE (zG), Shannon’s en-
tropy (zQ), base pair propensity (zP ) (Ng and Mishra, 2007) and base pair140

distance (zD) (Jiandong et al., 2010). The p-value can be used to normalize the
MFE (pMFE) (Bonnet et al., 2004) and the EFE (pEFE) (Jiandong et al.,
2010). Although z-score and p-value are alternative statistics for these features,
they are often used together in prediction since they can take very different
values (Jiandong et al., 2010).145

In summary, miRNAfe can calculate 8 features in this group. In the full
version, the user can specify the shuffling method (preserving nucleotide or
dinucleotide composition) and the number of random sequences generated. For
the user-friendly web-interface, these parameters are set by default to 1000
random sequences and preservation of dinucleotide composition.150

2.5. Phylogenetic conservation

When a portion of the genome is conserved between related species, it is
highly likely to have an important role in the genome. The features of this
group measure the level of conservation between sequences of phylogenetically
related species. All the features are calculated over alignments of two or more155

sequences that the user must provide. Some features do not only take into ac-
count the conservation level, but also the thermodynamic stability. The features
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in this group are: the mutation frequency (Huang et al., 2007), which is the pro-
portion of bases that differ from one sequence to another and it is applicable
only to a pair of sequences; the column entropy of the 5’ arm, 3’ arm, loop160

region and minimum entropy, which is the Shannon entropy calculated over a
region of 21 nucleotides (Hertel and Stadler, 2006); the number of differences
in the secondary structure divided by the number of differences between se-
quences (Huang et al., 2007); the average MFE; the MFE difference between
two aligned sequences, divided by the number of differences between the se-165

quences(Huang et al., 2007); average dG; average MFEI1; free energy of the
consensus secondary structure; conservation of the 3’ arm and conservation of
the 5’ arm; and finally, the conservation score. This is the most complex feature
to obtain (Goro et al., 2007), because is calculated using two Markov processes,
one that moves in the time dimension (over the branches of the evolution tree),170

and the other in space dimension (over the sequence). A total of 14 features can
be extracted in this group, which are described in detail in the supplementary
material.

2.6. 22-nt substring analysis

These features are calculated over all 22 nt substrings within a given se-175

quence. They are based on the fact that if one sequence is a pre-miRNA, one of
the analyzed substring has to be the mature miRNA and the features calculated
must capture its particularities. As a result, an array with length n = `− 22 is
obtained, where the i-th element represents the value of the calculated feature
over the substring that starts at the base i. MiRNAfe can extract the following 5180

features in this group: the base-pairing probability in the substring (Lim et al.,
2003), which is the sum of the base-pairing probability over the substring; the
sum of not paired bases on the substring; the sum of the base-pairing probabil-
ity on the secondary structure, without the probabilities of the nucleotides on
the substring; the bulge symmetry, as the difference between the amount of not185

paired bases on each arm of the substring; and the distance from the substring
to the terminal loop.

3. Implementation

MiRNAfe is composed by a set of Matlab functions which prepare the input
sequences and implement the feature extraction processes. The source code is190

platform independent and provides functions that allow batch processing, sav-
ing of results and show reports with the extracted features. These functions can
be installed in the user machine and used as any other Matlab toolbox. Thus
the user is able to extract all the features present in miRNAfe and also make
predictions. The toolbox has a main function that takes as parameters the path195

of the input fasta file and a configuration file written in yaml2, which is a human
readable format that allows editing in a simple way on any text editor. This

2http://www.yaml.org/
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file contains folding options, alignment parameters to make phylogenetic related
tests, a list of features to extract, post-process options such as normalization or
sequence filtering by minimum free energy. The toolbox is very versatile and200

can be extended easily, only saving the function in the source folder and adding
one line to the configuration file. Also, miRNAfe when used as a toolbox can
train a classifier and optimize its parameters. In this case, the user only needs to
provide positive and negative examples of miRNA sequences of a target specie
or family. In the configuration file, options related to the SVM training and205

the parameters optimization stage can also be specified. The toolbox uses ex-
ternal well-known software to implement some standard processes, like folding
or aligning sequences. The Vienna RNA3 package is used to fold the sequences
and for alignments of sequences. Since the software RNAfold is used in almost
all feature extraction process, miRNAfe shares its same restrictions about se-210

quence lengths. Thus, a limit of 5000 nucleotides was imposed to avoid memory
problems. For the phylogenetic related features, the software ClustalW4 is used
to align sequences, Bowtie5 is used to align reads to sequences and PHAST6 is
used to calculate the conservation score.

4. Web interface215

To provide a more user-friendly access, we have developed a simplified and
easy to use web interface using the tool provided by Stegmayer et al. (2015). It
can be accessed at http://fich.unl.edu.ar/sinc/web-demo/mirnafe/. As
it can be seen in Figure 1, the user must load a fasta file with the sequences
to be analyzed. After that, he/she can select which group of features wants to220

extract by checking the corresponding checkbox. Then, a pre-trained classifier
on the sequences under analysis can be used for prediction. A support vector-
machine (SVM) is provided for classification since it is the most frequently used
method for pre-miRNA prediction (Kleftogiannis et al., 2013).Sequences from
two genomes were used as training data, Homo sapiens and Arabidopsis thaliana.225

To create positive sets, all known pre-miRNAs from those species in miRBase
release 217 (Kozomara and Griffiths-Jones, 2014) were used. Negative sets were
built by extracting random sequences from the genomes and mRNAs of these
species. The sequence length distribution in the negative dataset was the same
as in the corresponding positive one. The extracted sequences were filtered to230

preserve only sequences with minimum free energy below -0.05 (normalized to
the sequence length) and proportion of paired bases in the stem above 0.15,
similarly to Gudyś et al. (2013). Since the features of the substring group are
arrays of variable length, they cannot be used for prediction directly in a stan-
dard SVM. Similarly, since the features related to conservation are calculated235

3http://www.tbi.univie.ac.at/RNA/
4http://www.clustal.org/omega/
5http://bowtie-bio.sourceforge.net/index.shtml
6http://compgen.bscb.cornell.edu/phast/index.php
7http://www.mirbase.org/
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Figure 1: Web interface of miRNAfe after analyzing some sample sequences

over several sequences altogether, they cannot be used directly for prediction
with the pre-trained SVM.

Finally, when the feature extraction process is finished, the web interface
provides links to download the output files in comma separated values (csv)
format. This file format can be opened by any spreadsheet program and it240

is supported by almost all software used in bioinformatics. The features file
contains, in each row, the name of the sequence analyzed, and in the first row
the names of the corresponding features extracted. If the user has chosen to
make a prediction, an extra file can be downloaded as well, which lists all input
sequences ordered from most to less probable miRNA, with a flag indicating if245

it was classified as miRNA (positive flag) or not (negative flag). Finally, a log
file is also provided, which describes all the process stages, warnings and errors,
if any.

5. Validation of the feature extraction processes

In order to validate all feature extraction scripts, several sequences were an-250

alyzed with miRNAfe and with the software of the original authors, and the
outputs have been compared. The sequences used in this validation step were
the well-known pre-miRNAs: ppa-mir-101, hsa-mir-34a, hsa-mir-7-1, hsa-let-7a-
1, hsa-let-7a-3 and hsa-let-7b3. These sequences were selected randomly with
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the sole purpose of validating the feature extraction functions. The software255

used to validate the features extraction were MiRFinder (Huang et al., 2007),
miPred (Jiang et al., 2007) and microPred (Rukshan and Vasile, 2009). MiR-
NAfe validates the extracted features by comparison with the reference software,
when available. In most cases, however, the original scripts were not available
and reference results were obtained directly from data with already extracted260

features, and compared with the results of miRNAfe. In all tests performed, the
results were always consistent to those of the original papers.

The validation process was automated with a script that is distributed to-
gether with the source code of the tool. This script prints on screen the results
of each test, the reference value and the software that was used to obtained it.265

This can also be used to make tests and re-validate the results of each function
after making improvements or alternative implementations of the algorithms.
For the statistical features, where results are not deterministic, a confidence
interval for the expected values was set according to the variance in each case.
The validation error was calculated as e = 100‖C − E‖2/‖E‖2, where C is the270

result calculated by miRNAfe, E is the expected value (the one calculated with
the software of the original author) and || · ||2 is the norm 2. A list with the
software used for comparisons and their corresponding references are provided
in the supplementary material.
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