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Abstract: The Obstructive Sleep Apnea-Hypopnea Syndrome is characterized by repetitive episodes of upper airway
obstruction that occur while sleeping, usually associated with a reduction in blood oxygen saturation (SaO2). In this
article, application of sparse representations of SaO2 signals over a subcomplete dictionary for classification tasks
is discussed. A sparse representation describes an SaO2 signal in terms of a linear combination of a few columns
of a previously learned dictionary. The SaO2 signals are used in order to predict the occurrence of apnea-hypopnea
events. A dictionary is learned by using a statistical method. Then a greedy pursuit algorithm is used in order to find
the solution of a linear inverse problem with sparse constraint. The sparse vectors are used as input of a multilayer
perceptron neural network. Finally an apnea-hypopnea index is estimated to grade the severity of OSAHS. Different
alternatives for exploiting the activations of most discriminative atoms are evaluated.
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1 INTRODUCTION

The Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) occurs when there are repeated episodes
of complete or partial blockage of the upper airway during sleep. The current diagnostic tool for detecting
OSAHS is an overnight polysomnography (PSG) in a sleep laboratory. To grade the OSAHS severity, an
index called Apnea Hypopnea Index (AHI) is defined. The AHI index is obtained by counting the total
number of Apnea-Hypopnea (AH) events per hour while sleeping. A patient with an AHI lower than 5 is
considered normal, between 5 and 15 mild, between 15 and 30 moderate and more than 30 severe [2].

In the last fifteen years, many different approaches to traditional signal processing problems were taken.
Some of these new formulations gave rise to techniques based on non-linear systems and higher-order statis-
tics, including Independent Component Analysis (ICA) [3] and methods to obtain a Sparse Representation
(SR) [9] of a signal.

In a previous work [11] a method was used in order to detect AH events by using only the SaO2 signal.
Now a different approach for detecting AH events by using sub-dictionaries is taken.

In this work we start by comparing the performances of two methods for selecting the atoms of a dic-
tionary. The dictionaries are used as generators of an SR of the SaO2 signal. A subset of columns of a
dictionary is selected and used to solve a linear inverse problem with sparse constraint. Finally the sparse
vectors are used in order to train a Multilayer Perceptron (MLP) neural network, which detects the respira-
tory events.

The next section describes the methods used to learn a dictionary and to estimate the coefficients of an
SR for a given signal.

2 METHODS

2.1 SPARSE REPRESENTATIONS

By a dictionary we shall mean a matrix Φ ∈ RN×M whose columns φj are called atoms. A representation
of a signal s ∈ RN in terms of a fixed dictionary Φ can be stated as follow:si
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s =

M∑
i=1

φjaj = Φa, (1)

where a = (aj) ∈ RM . Although inappropriately, the term “basis” instead of “dictionary” is sometimes
used. Since the atoms are not required to be linearly independent and quite often more atoms that the space
dimension are used, the latter situation is usually preferred.

When there are more columns in the dictionary than the size of s, i.e. when M > N (in which case the
dictionary is called overcomplete), or when the columns do not form a basis, then there may be non-unique
representations of a given signal. In this situation a suitable criterion is required to select only one of those
representations. In this context, sparsity often refers to the criterion of choosing a representation with just a
few non-zero coefficients.

2.2 DICTIONARY LEARNING

A slightly more general framework is assumed, where equation (1) is modified to include an additive
Gaussian noise ε as follows:

s = Φa + ε. (2)
Following usual ICA terminology, equation (2) is referred to as the generative model, meaning that one
generates the signal s from a set of hidden sources aj , arranged as the state vector a, using the dictionary
Φ. The sources aj are initially assumed to be statistically independent with a joint prior density πprior(a) =∏M

j=1 π(aj). The atoms of Φ can be estimated by maximizing the log-likelihood function of the data, given
the dictionary [6], L(s,Φ)

.
= E[log π(s|Φ)], i.e. as follows:

Φ̂ = argmax
Φ

L(s,Φ). (3)

The log-likelihood function can be found by marginalizing the product of the conditional distribution of the
data given the dictionary and the prior distribution of the coefficients: π(s|Φ) =

∫
RM π(s|Φ,a)πprior(a) da.

The maximum in equation (3) can also be approximated by using a gradient ascent method with the updating
rule ∆Φ = ηΛε((s− ΦaMAP )aTMAP − ΦH−1), where aMAP denotes the mode of the posterior distribution
of the coefficients, i.e. aMAP = argmax

a∈RM

πpost(a|Φ, s), H is the Hessian of the log-posterior evaluated at

aMAP , η is a positive coefficient (called learning rate parameter) and Λε is the inverse of the covariance
matrix o the noise [1, 7].

In order to obtain Φ and the vector coefficient a, the implementation proposed by Lewicki and Olshausen
[6] was used at the dictionary training stage.

3 EXPERIMENTS

The Sleep Heart Health Study (SHHS) database1 is used for this work. This database contains exhaustive
information about detailed studies which are appropriately designed to investigate the relationships between
sleep breathing disorders and cardiovascular diseases. The full dataset contains nearly 1000 complete PSGs,
each one of them containing several biomedical signals such as electrocardiogram (ECG), nasal airflow,
respiratory effort and SaO2, among others. Annotations of sleep stages, arousals and respiratory events
(apnea and hypopnea) are also included. Only the SaO2 signals and the AH events will be of our interest.

First of all, a wavelet processing technique is used for denoising the SaO2 signal, which was sampled at
1Hz. The denoised SaO2 signal is then obtained by making zero the approximation coefficients, at level 8,
of the discrete Dyadic Wavelet Transform (DWT) with a mother function Daubechies 2 [5]. In the sequel,
the SaO2 signal shall always refer to the denoised one.

For this article, a subset of 84 studies are selected in order to analyze the performance of two screening
alternatives for sleep disorders. The dataset is divided into training and test sets consisting of 20 and 64
studies, respectively. The training set contains 4 groups of 5 PSGs each corresponding to AHI values below

1Database: http://physionet.org/physiobank/database/shhpsgdb/si
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5, between 5 and 10, between 10 and 15 and above 15. The test set comprises 64 PSGs with different
degrees of illness. For both training and test sets, each SaO2 signal is segmented into vectors of length 128,
with an overlapping of 32 elements. The segments are then arranged as column vectors sj ∈ R128. These
segments are also labeled as belonging to class 1 or class 2, depending on whether they contain AH events
or not, respectively.

Next, we construct two class-training matrices Sc1
train and Sc2

train by stacking side-by-side all vectors s
labeled as class 1 and class 2 in the training set, respectively. The matrix Strain is then defined as Strain =
[Sc1

train S
c2
train], while the matrix Stest is built by stacking side-by-side all vectors s in the test set.

In the next step two complete dictionaries Φc1 and Φc2 are learned by using matrices Sc1
train and Sc2

train,
respectively. An overcomplete dictionary Φ1 is then built as Φ1 = [Φc1 Φc2]. Also, a complete dictionary
Φ2 is learned without taking into account class information, i.e. by using the whole matrix Strain. In all cases
the learning process is performed by means of the Noise Overcomplete ICA (NOCICA) [7] method.

Now given s ∈ RM , a constant k ∈ N and a dictionary Φ, we formulate the following linear inverse
problem with sparse constraint:

JΦ,s(v)
.
= ||s− Φv||22

v(Φ, s, k)
.
= argmin

v∈RM ,||v||0≤k
JΦ,s(v). (4)

We denote by c1
.
= v(Φ1, sj , k) and c2

.
= v(Φ2, sj , k) the solutions of (4) for s = sj , where sj is the jth

column of Strain. In the same way, we denote by d1
.
= v(Φ1, sj , k) and d2

.
= v(Φ2, sj , k) the solutions

of (4) for s = sj , where sj is the jth column of Stest. Finally, for the classification step, two different
alternatives are evaluated in order to obtain an optimal performance of a MLP.

A Most Discriminative Activation Selection (MDAS) method selects the coefficients, related to the
columns of a dictionary, that are “most involved” (activated) in the SaO2 signal recovery. The jth column
of a dictionary has an activation frequency νjci given the class i, where νjci makes reference to the number of
times that the jth column is used for class i signal recovery. Then, the candidates to be considered as input
of the MLP are those coefficients (c1 and c2) with higher absolute difference D = |νjc1 − ν

j
c2|, between the

activation frequencies for each of the classes. A subset of columns with higher values of D for each one
of the classes is selected by the Most Discriminative Column Selection (MDCS) method. Those columns
are used in order to construct new sub-dictionaries Φ1

1 and Φ1
2. Then we denote by e1

.
= v(Φ1

1, sj , k) and
e2

.
= v(Φ1

2, sj , k) the solutions of (4) for s = sj , where sj is the jth column of Strain. Finally the whole
vectors e1 and e2 are taken into account as input for training the MLP. Figure 1 shows a block diagram of the
system proposed for detecting AH events by applying the MDCS method. Two classification performance

Figure 1: General diagram proposed for detecting AH events by applying MDCS method.

measures are used to compare both methods. The sensitivity (SE) is defined as the proportion of segments
with AH events for which an event is present, while specificity (SP) is defined as the proportion of segments
without AH events for which an event is not present. Also, a Receiver Operating Characteristics (ROC) [4]
analysis is made and the Area Under the Curve (AUC) measure is reported.

4 RESULTS

In the results presented below we used a sparsity level k = 16. Also, for improving the performance
of the classifiers, we took the same number of segments in each one of both classes. For both methods
the optimization problem (4) was solved via the OMP algorithm ([8], [10]) due to its high efficiency and
effectiveness. The MLP outputs were labeled as “1” or “0” depending on whether an AH event was detectedsi
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or not, respectively. Finally the estimated AHI (AHIest) was obtained by the total number of “1” divided by
the time duration of each study (in hours).

Table 1 shows the sensitivity and specificity measures taking into account the AH events classifications
as well as the corresponding AHIest-AHI correlation percentages. As seen in Table 1, significantly high
correlation percentages for detecting AH events were obtained. No differences between the correlation
percentages for MDAS-OAD and MDASI-OAD methods were observed. The correlation percentage and
the AUC value obtained by MDCS-CD were significantly higher than those of the MDAS-CD.

Table 1: Number of inputs and neurons in hidden layer used for training the MLP and performance measures obtained.

Method # I # NHD SE SP Corr. coef. AUC
MDAS-OAD 24 14 74,52% 76,73% 90,04% 0,9799
MDCS-OAD 24 14 62,04% 64,73% 90,03% 0,9781
MDAS-CD 30 14 68,86% 67,69% 74,57% 0,8958
MDCS-CD 30 14 63,07% 66,03% 89,84% 0,9736

5 CONCLUSIONS

The previous analysis shows that the sparse representation of an SaO2 signal is a suitable technique
for detecting moderate or severe OSAHS. The algorithm NOCICA was found to be a very useful tool for
learning dictionaries.

Although similar classification results were obtained by applying MDAS and MDCS methods, it is im-
portant to point out that the MDCS method always gives equal or better results in terms of correlation
percentages and AUC values. Also, the MDCS method is faster than MDAS in terms of CPU time for
testing purposes.

For future work we propose to analyze the impact of the sparsity level k on the diagnostic performance
measures. Also, the number of inputs P and the threshold of the MLP output will be further studied. The
performance of different types of classifiers will be analyzed.
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[3] HYVÄRINEN A. Survey on independent component analysis. Neural Computing Surveys, Vol. 2, (1999), pp. 94-128.
[4] KUMAR, R. AND INDRAYAN, A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatrics,

Vol. 48, (2011), pp. 277-287.
[5] LESTUSSI F.E., DI PERSIA L.E. AND MILONE D.H. Comparison of on-line wavelet analysis and reconstruction: with

application to ECG. 5th International Conference on Bioinformatics and Biomedical Engineering, (iCBBE), (2011), pp. 1:4.
[6] LEWICKI M.S. AND SEJNOWSKI T.J. A probabilistic framework for the adaptation and comparison of image codes. Optical

Society of America, Vol. 16, (1999), pp. 1587-1601.
[7] LEWICKI M.S. AND SEJNOWSKI T.J. Learning overcomplete representations. Advances in Neural Information Processing 10
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