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Abstract11

The representation of sound signals at the cochlea and auditory cortical level

has been studied as an alternative to classical analysis methods. In this

work, we put forward a recently proposed feature extraction method called

approximate auditory cortical representation, based on an approximation to

the statistics of discharge patterns at the primary auditory cortex. The ap-

proach here proposed estimates a non-negative sparse coding with a combined

dictionary of atoms. These atoms represent the spectro-temporal receptive

fields of the auditory cortical neurons, and are calculated from the auditory

spectrograms of clean signal and noise. The denoising is carried out on noisy

signals by the reconstruction of the signal discarding the atoms correspond-

ing to the noise. Experiments are presented using synthetic (chirps) and real

data (speech), in the presence of additive noise. For the evaluation of the

new method and its variants, we used two objective measures: the perceptual

evaluation of speech quality and the segmental signal-to-noise ratio. Results
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show that the proposed method improves the quality of the signals, mainly

under severe degradation.

Key words: approximate auditory cortical representation, sound denoising,12

non-negative sparse coding13

1. Introduction14

In previous years, several techniques of signal analysis have been applied15

to audio and speech denoising with relatively good results in controlled con-16

ditions [1]. However, it is widely known that the performance of these signal17

analysis techniques in adverse environments is far from that of a normal hu-18

man listener [2]. On the other hand, there is an increasing number of new19

signal processing paradigms that promise to deal with more complex situ-20

ations. This is the case with sparse coding and compressed sensing [3, 4].21

Their ability to efficiently solve challenging signal representation problems22

could be exploited in order to develop new audio and speech processing tech-23

niques.24

For many years, researchers in the field of signal processing have greatly25

benefited from the use of methods inspired by human sensory mechanisms.26

Some examples of this for audio and speech encoding were mel frequency27

cepstral coefficients (MFCC) and perceptual linear prediction (PLP) coeffi-28

cients [5]. Auditory representations of sound at the cochlea have been widely29

studied. Different mathematical and computational models have been devel-30

oped that allow the approximate estimation of the so-called early auditory31

spectrogram [6, 7]. These investigations have enabled an accurate modeling32

of the discharge patterns of the auditory nerve [8, 9].33
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Although less known, the underlying mechanisms at the level of the au-34

ditory cortex have also been studied and modeled [10]. In experimental con-35

ditions –given a sound signal– a pattern of activations can be found at the36

primary auditory cortex that encodes a series of meaningful cues contained in37

the signal. This cortical representation seems to use two principles: the need38

for very few active elements in the representation and the statistical inde-39

pendence between these elements [11]. This behavior of the cortical neurons40

could be emulated using the fundamentals of sparse coding (SC) [12], the in-41

dependent component analysis (ICA) [13] and the notion of spectro-temporal42

receptive fields (STRF). The STRF are defined as the optimal linear filter43

that convert a time-varying stimulus into the firing rate of an auditory cor-44

tical neuron, so that it responds with the largest possible activation [14].45

These concepts have led to the development of a number of contemporary46

auditory models that incorporate different auditory phenomena, for example47

neural timing information [15], modeling of spectral and temporal content in48

the cochlear response [9]. A very complete and recent review on biologically-49

inspired models for speech processing is given in [16].50

A number of works have explored the use of auditory models for build-51

ing robust speech/speaker recognition system. In [17], a model of auditory52

perception (PEMO [18]) is used to obtain the features in a digit recognition53

system, after processed with well-stablished algorithms for speech enhance-54

ment (for example, the Ephraim and Malah estimator [19]). In [20], authors55

proposed the use of the model of Li [21] as a front-end in a hidden Markov56

model-based speech recognizer. Here, the speech is first pre-processed with57

state-of-the-art enhancement algorithms ([19, 22] and others). More recently,58
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different modifications of the MFCC representation were introduced (noise59

suppresion, temporal masking and others) and compared to standard MFCC60

and PLP coefficients for speech recognition [23]. As can be seen, these ef-61

forts were mainly devoted –differently from our speech enhancement point62

of view– to build new feature extraction schemes for the recognizers while63

mantaining standard techniques for the enhancement itself.64

In a previous work [24], the approximate auditory cortical representation65

(AACR) which is a set of activations computed using matching pursuit (MP)66

on a discrete dictionary of bidimensional atoms, was presented. These atoms67

represent the STRF of the auditory cortical neurons. The AACR intends68

to model the global statistical characteristics of the discharge patterns in69

the auditory cortex, in a phenomenological rather than a physiological way.70

This technique provides an approximated representation of the speech signal71

at the auditory cortical level. It has proved to be benefical with respect72

to standard spectro-temporal techniques given the fact that at this higher73

level in the auditory path, some aspects of the acoustic signal that arrives at74

the eardrum have been reduced or eliminated [16]. Among these superfluous75

aspects are the temporal variability of the signal and the relative phase of76

acoustic waveforms [25]. This approach was then applied to a phoneme77

classification task in both clean and noisy conditions, showing the advantages78

of the intrinsic robustness of the sparse coding achieved.79

In this work, this approach is adapted to a non-negative matrix factor-80

ization (NMF) framework. A non-negative auditory cortical representation81

is used in order to propose a novel sound denoising algorithm. NMF is a82

recently developed family of techniques for finding parts-based, linear rep-83
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resentations of non-negative data [26, 27, 28, 29]. These models deal with84

the temporal continuity of the signals (which is also found in our auditory85

spectrograms), such as slow variation of pitch in speech and music through86

consecutive frames, and were applied to monaural source separation. Re-87

garding the speech processing applications, semi-supervised/supervised ap-88

proaches were reported [30, 31, 32, 33]. In these systems, first statistical89

models for clean speech/noise are estimated. Then, the input signal is ana-90

lyzed to obtain the denoised version, which is then applied to the recognition91

block.92

In [34] two sparse dictionaries are obtained directly from spectrograms of93

clean speech and noise. Then, a representation of the noisy speech is obtained94

by a linear combination of a small number of both type of exemplars, in order95

to feed a robust speech recognizer.96

In the biologically-inspired context, the NMF use data described by using97

just additive components, e.g. a weighted sum of only positive STRF atoms.98

This new model still retains its biological analogy, in spite of the fact that99

positive STRF implies only non-inhibitory behaviour. Thus, positive coeffi-100

cients could be interpreted as firing rates of excitatory cortical neurons. The101

new proposal of a non-negative auditory cortical denoising algorithm also102

differs from previous work in the sense that now two STRF dictionary are103

estimated from clean and noisy signals separately. Then, the dictionaries are104

combined in a mixed dictionary containing the most representative atoms105

for each case, obtaining a better representation of the important features of106

sound and noise for the denoising stage.107

The organization of the paper is as follows. Section 2 presents the meth-108
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ods that give the signal representation in the approximate auditory cortical109

domain. Section 3 outlines the proposed technique to perform the signal de-110

noising in this domain. Section 4 presents the experimental framework and111

data used in the following experimentation. Section 5 shows the obtained112

results and the discussions. Finally, Section 6 summarizes the contributions113

of the paper and outlines future research.114

2. Sound signal representation115

2.1. Early auditory model116

Mesgarani and Shamma [10] proposed a model of sound processing carried117

out in the auditory system based on psychoacoustic facts found in physio-118

logical experiments in mammals. The main idea behind the model is first119

to obtain a representation of the sound in the auditory system. Then, they120

further decompose this representation to its spectral and temporal content121

in the cochlear response.122

While the complete model of Shamma consists of two stages, in this work123

only the first stage was used. This stage produces the auditory spectrogram124

(AS), an internal cochlear representation of the pattern of vibrations along125

the basilar membrane.126

In the following, subscript ’ch’ stands for cochlear, ’an’ for auditory nerve127

and ’hc’ for hair cell. The first part of the model is implemented by a bank128

of 128 cochlear filters xch that process the temporal signal s(t) and yield the129

outputs130

xk

ch(t, f) = s(t)⊗ hk

ch(t, f), (1)
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where hk

ch is the impulse response of the k-th cochlear filter [10]. This is a131

bank of overlapping constant-Q (QERB = 5.88) bandpass filters with center132

frequencies (CF) that are uniformly distributed along a logarithmic frequency133

axis, over 5.3 octaves (24 filters/octave, 0-4 kHz). The CF of the filter at134

location l on the logarithmic frequency axis (in octaves) is defined as135

fl = f0 2l (Hz), (2)

where f0 is a reference frequency of 1 kHz [10]. The quantity and frequency136

distribution of the filters proved to be satisfactory for the discrimination137

of important acoustic clues and for an appropriate reconstruction of speech138

signals [9].139

These 128 filter outputs are transduced into auditory-nerve patterns xan140

using141

xk
an(t, f) = ghc

(

∂tx
k

ch(t, f)
)

⊗ µhc(t), (3)

where ∂t represents the velocity fluid-cilia coupling (highpass filter effect),142

ghc the nonlinear compression in the ionic channels (sigmoid function of143

the channel activations) and µhc the hair-cell membrane leakage modeling144

the phase-locking decreasing on the auditory nerve (lowpass filter effect)145

[10]. Finally, the lateral inhibitory network is approximated by a first-order146

derivative with respect to the tonotopic (frequency) axis [10], which is then147

half-wave rectified as148

xk

lin(t, f) = max
(

∂fx
k
an(t, f), 0

)

. (4)

The AS is then obtained by integrating this signal over a short window,149

modeling a further loss of phase locking. Figure 1 show an scheme of the150

auditory model as used in this work.151
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Figure 1: Early auditory model.

2.2. Sparse coding of auditory spectrogram152

We now suppose that the representation of any bidimensional slide signal153

x ∈ R
m×n obtained from the early auditory model in (4) is given by a linear154

combination of atoms representing the STRFs, in the form155

x = Φa, (5)

where Φ ∈ R
m×n×M is the dictionary of M bidimensional atoms and a ∈156

R
M is the target representation. The 2-D basis functions of the dictionary157

are vectorized as Φ = [~Φ1 . . . ~ΦM ] with ~Φi ∈ R
[mn]×1 . Then, (5) can be158

alternatively written as ~x =
∑

1≤i≤M

~Φiai. The desired sparsity is included159

when the solution is restricted to160

min
a

‖a‖0, (6)

where ‖ · ‖0 is the l
0 norm, which counts the number of non zeroes entries of161

the vector. This is a NP-complete problem so several approximations were162

proposed [35].163
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In order to find the required representation, two problems have to be164

jointly solved: the estimation of a sparse representation and the inference165

of a specialized dictionary. The coefficients found with methods based on166

basis pursuit (BP) or MP give both atoms and activations with positive and167

negative values [36, 37]. However, in some applications it could be useful to168

work only with positive values, thus providing the method with the ability to169

explain the data from the controlled addition of (only positive) atoms. This170

is the objective of non-negative matrix factorization methods.171

2.3. NN-K-SVD algorithm172

As it was mentioned in Section 1, there are several approaches to obtain173

a nonnegative atomic sparse decomposition of data. Among them, in this174

work the method proposed in [38] is selected given its simplicity, excellent175

performance in other applications (for example, image classification [39]) and176

the possibility to explicitly set the number of sparse components to use in177

the approximation.178

Aharon et al introduced the K-SVD as a generalization of the k-means179

clustering algorithm to solve the sparse representation problem given a set180

of signals x to be represented [38]. Moreover, they included a non-negative181

version of the BP algorithm, named NN-BP, for producing non-negative dic-182

tionaries. The method solves the problem183

min
a

‖x−ΦLa‖22 s.t. a ≥ 0, (7)

where a sub-matrix ΦL that includes only a selection of the L largest coeffi-184

cients is used. In the dictionary updating, this matrix is forced to be positive185
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by calculating186

min
~φk,a

k

‖Ek − ~φka
k‖22 s.t. ~φk, ~x

k ≥ 0, (8)

for each one of the k selected coefficients. The error matrix Ek is the residual187

between the signal and its approximation with the k-th atom ~φk and its188

respective activation ak being updated.189

The dictionary itself and the activation coefficients are calculated from190

the SVD of Ek = UΣVT . This decomposition is then truncated to null the191

negative entries. Finally, the atoms and activations are obtained as the rank-192

one approximation with the first left and right singular vector as φk = u1193

and ak = v1. The complete algorithm, called NN-K-SVD for short [38], is194

illustrated in the Appendix.195

3. Denoising methods196

3.1. Non negative cortical denoising197

The main idea of the proposed method is that sound and noise signals can198

be projected to an approximate auditory cortical space, where the meaning-199

ful features of each one could easily be separated. The signals being analyzed200

could be decomposed into more than one (possibly overcomplete) dictionary201

containing a rough approach to all the features of interest. More precisely,202

the method here proposed is based on the decomposition of the signal into203

two parallel STRF dictionaries, one of them estimated from clean signals and204

the other one from noise. The estimation of both dictionaries is carried out205

after obtaining the respective two-dimensional early auditory spectrograms206

for each type of signals, as was explained before. Given that this type of rep-207

resentation is non-negative, a natural way to obtain both the dictionary and208
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the cortical activations is to use an algorithm that obtains a representation209

with non-negative constraints. This is especially true in the case of denois-210

ing applications, where forcing non-negativity on both the dictionary and211

the coefficients may help to find the building blocks of the different type of212

signals [38]. Among the several NMF models reported in literature (some of213

then summarized in Section 1), we chose for our purposes the above outlined214

NN-K-SVD.215

Before carrying out the denoising, the dictionaries corresponding to clean216

signals and noise should be estimated. They are produced applying twice the217

NN-K-SVD algorithm described in Section 2.3, one for each type of signal.218

The dictionaries are then rearranged according to the activation for the train-219

ing samples, in descending order. From these two sets, a combined dictionary220

containing atoms of signal and noise is used in our approach. This new dic-221

tionary is composed by the “most representative” atoms of each previous222

dictionary, by selecting those with greater activation.223

Fig. 2 shows a diagram of the method here proposed, which consists of224

two stages. In the forward stage (Fig. 1.a), the auditory spectrogram is225

firstly obtained. Then, using the combined dictionary, the auditory cortical226

activations that best represent the noisy signal (including both clean and227

noisy activations) are calculated by means of the non-negative version of the228

BP algorithm. In the backward stage (Fig. 1.b), the auditory spectrogram229

is reconstructed by taking the inverse transform from only the coefficients230

corresponding to the signal dictionary (synthesis). In this way, the denoising231

of the signal is carried out in the approximate non-negative auditory cortical232

domain. Finally, the denoised signal in the temporal domain is obtained by233
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Figure 2: Diagram of the NNCD method for denoising in the cortical domain. (a) Forward

stage: cortical representation. (b) Backward stage: denoised reconstruction.
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the approximate inverse ear model. The proposed method is named NNCD,234

which stands for non-negative cortical denoising.235

The reconstruction of the auditory spectrogram from the cortical response236

is direct because it only consists of a linear transformation. However, a237

perfect reconstruction of the original signal from the auditory spectrogram238

is impossible because of the nonlinear operations in the earlier described in239

Section 2.1. Shamma proposed a method to approximately invert the model240

and showed through objective and subjective quality tests that the resulting241

quality of this approximate reconstruction is not degraded [9].242

The idea of using a cortical model for sound denoising was also proposed243

by Shamma in a recent work [10]. The main differences with our approach244

are that his cortical representation uses the concept of spectrotemporal mod-245

ulation instead of STRF and non-negative sparse coding, and also the way246

he incorporates information about signal and noise.247

3.2. Speech denoising configurations248

We propose applying the NNCD in three different scenarios for denoising249

speech signals degraded by uncorrelated additive noise:250

(a) “NNCD speech”: corresponds to the NNCD reconstruction from se-251

lected atoms of the speech dictionary, discarding the noise selected252

atoms.253

(b) “Wiener/ NNCD noise”: applies a Wiener filter to the noisy signal y(t),254

where the noise estimation n′(t) is given by the NNCD reconstruction255

from only selected atoms of the noise dictionary.256
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(c) “NNCD+Wiener”: applies a Wiener filter to both previously NNCD257

estimations of noise n′(t) and speech s′(t).258

In cases (b) and (c), the Wiener filter is estimated by means of the Short-259

Time Fourier Transform (STFT), as |S(ω,τ)|2

|S(ω,τ)|2+|N(ω,τ)|2
. Here, S(ω, τ) and260

N(ω, τ) are the STFT representations of s(t) and n(t) respectively. Note261

that in case (c), the Wiener filter is estimated from the speech signal s′(t)262

instead of s(t) [40, 41]. Fig. 3.2 shows the block diagrams of these configu-263

rations.264

For comparison purposes, different filtering algorithms were also imple-265

mented and tested:266

• iWiener: the iterative Wiener method [42]. After preliminary experi-267

mentation, the number of iterations was fixed at 4.268

• apWiener: the speech enhancement based on the use of the A Priori269

Signal to Noise ratio in a minimum mean square error estimation, as270

given in [43].271

• Wavelet: sound denoising using the thresholding of wavelet coefficients.272

The parameters of this process were: 5 levels of a Daubechies 8 function,273

soft thresholding using the unbiased SURE estimator and rescaling274

using a single estimation of level noise based on first-level coefficients275

[44].276

• mBand: Multi-band spectral subtraction, a method that takes into ac-277

count the fact that colored noise affects the speech spectrum differently278

at various frequencies [45]. The parameters of the algorithm were fixed279

at 6 frequency bands with a linear spacing between bands.280
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Figure 3: Schematics of the three configurations proposed to apply the NNCD to speech

enhancement: (a): NNCD speech only, (b) Wiener filter with noise estimation given by

the NNCD, and (c) Wiener filter calculated with the estimation of signal and noise given

by the NNCD.
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• BNMF: a recently proposed Bayesian formulation of nonnegative ma-281

trix factorization [33]. First, a mean square error estimator for the282

speech signal is derived, then it learns the NMF noise model online283

from the noisy signal (unsupervised speech denoising).284

Given the nature and characteristics of the artificial/real signals, the285

Wavelet denoising was used in the experiments with artificial signals, where286

mBand and BNMF were used in the experiments with speech data.287

4. Experimental framework288

A series of experiments were carried out to demonstrate the capabilities of289

the proposed technique. The first of this were carried out on artificial “clean”290

sound signals constructed by a mixture of chirps and pure tones. Then a291

second series of experiments were developed to work with real data consist-292

ing of speech signals of complete sentences from a single speaker. Noises293

with different frequency distributions and non stationary behaviours were294

additively aggregated to the signals at several signal to noise ratios (SNRs).295

The proposed technique was then applied to obtain the denoised signals and296

the performance was evaluated by two objective methods: the perceptual297

evaluation of speech quality (PESQ) score [46] and the classical segmental298

signal-to-noise ratio (SNRseg) [47].299

4.1. Artificial and real signals and noises300

A total of 1000 artificial signals were obtained by concatenating 7 differ-301

ent subsignal segments of 64 ms each at a sampling frequency of 8 kHz. Each302

segment consisted of the random combination of up or down chirps and pure303
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tones. In order to restrict all the possible combinations of these features so304

that a relatively simple dictionary was able to represent them, the spectro-305

gram was divided in two frequency zones, below and above 1200 Hz. Inside306

each zone only one of the features could occur. Also, the frequency slopes of307

the chirps are fixed in each zone. Experiments with this type of signals were308

designed just to illustrate the operation of the method, also for sanity check309

and to show the feasibility of the method.310

The clean speech data was extracted from a widely-used database in the311

speech recognition field, the TIMIT corpus [48]. The data used in this work312

corresponds to the set of 10 speech sentences of the speaker FCJF0 in dialectic313

region number 1. Sentences have a mean length of 5 seconds.314

Two kinds of noise with different frequency content were used. On the315

one hand, the white noise, which exhibits a relatively high frequency content316

with a non-uniform distribution in the early auditory spectrogram (due to its317

logaritmic frequency scale), and on the other hand voice babble and street318

noises with mainly low frequency content in that representation. The white319

noise was generated by a HF radio channel and the babble noise was recorded320

in a crowded indoor ambient, both taken from the NOISEX-92 database [49].321

The street noise corresponds to an outdoor recording and was taken from the322

Aurora database [50]. In all the experiments, the noise was first conveniently323

resampled to the same rate and resolution of the clean signals. The noisy324

signals were obtained by additively mixing the signals at different SNRs.325

4.2. Combined clean-noisy dictionary estimation326

First, the auditory spectrograms of clean signals were obtained. Then, the327

training data for the estimation of the dictionaries was extracted by means328
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of a sliding time-frequency windowing using frames of 64 ms in length with329

an overlapping of 8 ms.330

The dictionaries were generated using complete dictionaries. For the arti-331

ficial data, 512 atoms of size 64× 8 were calculated. Here, the 64 coefficients332

correspond to a downsampled version of the original 128 coefficients repre-333

senting the range 0-4 kHz, while the 8 columns correspond each to a window334

of 8 ms. For speech data, based on preliminary experiments, the number of335

columns was reduced to 4, given that with 8 windows the dictionary learn-336

ing process becomes computationally very intensive. Thus, in this case, the337

dictionaries have 256 atoms of size 64× 4.338

For the artificial data, 1/10 of the total number of signals was used as339

training data (100 random selected chirp signals). For the estimation of noise340

dictionaries, the same ratio of 1/10 was used as the balance of training/test341

data. For the speech sentences, a 10-fold leave-one-out method was applied,342

where each partition consisted on 9 sentences for train and 1 sentence for343

test.344

From each dictionary, the most active atoms were collected. Then, they345

were combined to form new dictionaries with atoms containing both clean346

and noisy features. The reported results consist of the mean value obtained347

for the 10 partitions.348

4.3. Denoised signals quality estimation349

For the speech denoising experiments, two well-known objective speech350

quality measures were evaluated: the PESQ score and the segmental signal-351

to-noise ratio (SNRseg).352
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The PESQ score is an objective quality measure introduced by the In-353

ternational Telecommunication Union (ITU) as a standard for evaluation of354

speech quality after transmition over communication channels [46]. It uses355

an auditory representation based on bark scale to compare the original and356

distorted speech signals. It has been shown to be very well correlated with357

perceptual tests using mean opinion score (MOS) [51] and robust automatic358

speech recognition results [52]. The measure has an ideal value of 4.5 for359

clean signals with no distortion, and a minimum of -0.5 for the worst case of360

distortion.361

The segmental signal-to-noise ratio is another quality measure here eval-362

uated. It was obtained as the frame-based average SNR value calculated363

from the original and the processed signals. Here, short segments of 15-20364

ms are used (instead of the whole signals). This time domain measure was365

computed as in [47], using the MATLAB code provided in [53].366

5. Results and discussions367

5.1. Non-negative STRF dictionaries368

Fig. 4 shows a selection of STRFs from a combined dictionary. Here, the369

most active (best trained) atoms are presented, 64 atoms for chirp signals370

and 8 atoms for white noise signals.371

It can be clearly seen the features captured by the STRFs in each dic-372

tionary are the more prominent ones contained in the training signals. For373

the first group, some atoms (see, for example, number 2, 3 and 4 in the first374

row) capture portions of pure tones or chirp signals, while others show the375

combination of them. For the second group, the atoms show mainly the high376
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Figure 4: Example of spectro-temporal receptive fields (STRF) estimated from the early

auditory representation of artificial signals and white noise signals, showing the most active

atoms of each dictionary (left). A single atom with axis labels and colorbar is also showed

(right). The top 8 rows show the 64 most important STRF for clean signals, whereas the

last row show the respective STRF for the noise signals. The dimensions of each atom

follow the setup outlined in Section 4.2.

energy characteristics of the noise signals. Thus, in the context of sparse cod-377

ing given in Section 2.2, each segment of the input signal can be represented378

by a linear combination of selected atoms from these dictionary.379

5.2. Artificial signals denoising380

Our scheme for denoising was applied using the representation discussed381

above. The reconstruction of the denoised auditory spectrogram was ob-382

tained by selecting only the clean atoms from the 32 greatest activations383

selected by the NN-BP algorithm. Fig. 5 shows the short-time Fourier384

transform (STFT) for a clean (top), noisy with white noise at SNR=0 dB385
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Figure 5: Example of the denoising of an artificial signal with a combination of 7 windowed

segments of random chirps and pure tones. The spectrograms (STFT) of the clean signal

(top), a noisy version obtained by the addition of white noise at SNR=0 dB (middle) and

the denoised signal (bottom) are shown. The temporal signal at the top of the figure is

given as reference.

(middle) and denoised signal (bottom), with the temporal signal above the386

clean spectrogram. In the spectrogram shown at the bottom, the effects of387

the denoising carried out in the cortical representation by the NNCD can be388

seen, where the most important features are reconstructed.389

Table 1 shows the PESQ scores obtained of denoising the artificial signals.390

For all cases, there was an increase in the PESQ score when the NNCD was391

applied to the noisy signals and our method also outperformed the results392

obtained with the baseline. The improvement was more marked when the393

noise energy was higher (SNR=0 dB) and smaller when the signals become394
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cleaner at larger SNR (lower energy of the noise).395

The PESQ score for the original (clean) signal after transformation using396

the auditory model and reconstruction back to the time domain is 2.11.397

This score measures the distortion from the best quality (PESQ MOS of398

4.5) that is introduced by the use of the early auditory model, which is399

only approximately invertible. Even if the noise is completely removed by400

the NNCD, there is an intrinsic error introduced by the auditory analysis401

method. For reference, the PESQ obtained using the NNCD method in the402

same conditions as in Table 1 but on clean signal (SNR=∞) was 2.105. The403

result is almost identical to the one of the auditory model, showing that404

no additional degradation was introduced. This is because the number of405

selected coefficients in the NN-K-SVD method is enough to the preserve the406

quality of the reconstructed signal. In this way, the method not only provides407

a good enhancement in the noisy case but also preserve the signal when there408

is no noise. The PESQ values greater than the model distorsion (for example,409

2.16 for white noise at SNR=12 dB) are pointing out that small amount of410

noise are beneficial for the quality of the signal obtained. This effect might411

be due to the stochastic resonace, which concern to non-linear systems (like412

our proposal) [54].413

In order to demonstrate the benefits of using the auditory representation414

of the signal, an experiment replacing this model with the short-time Fourier415

transform was carried out. Here, two dictionaries trained with clean chirp416

signals and white noise were obtained. Then, the NNCD method was ap-417

plied in the same conditions as in Table 1 for noisy signals at SNR=0 dB. The418

PESQ obtained was 1.27, which is better than the wavelet denoising (0.87)419

22

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

C
. E

. M
ar

tín
ez

, J
. G

od
da

rd
, L

. D
i P

er
si

a,
 D

. H
. M

ilo
ne

 &
 H

. L
. R

uf
in

er
; "

D
en

oi
si

ng
 s

ou
nd

 s
ig

na
ls

 in
 a

 b
io

in
sp

ir
ed

 n
on

-n
eg

at
iv

e 
sp

ec
tr

o-
te

m
po

ra
l d

om
ai

n"
D

ig
ita

l S
ig

na
l P

ro
ce

ss
in

g,
 V

ol
. 3

8,
 p

p.
 2

2-
31

, j
an

, 2
01

5.



Table 1: Raw PESQ scores obtained for artificial signals. The NNCD scheme applied

was the scenario (a) given in Section 3.2. In bold face, the best result obtained for each

experimental condition.

Noise SNR (dB) Signal

Noisy Wavelet NNCD

12 1.93 1.79 2.16

White 6 1.40 1.43 2.11

0 0.69 0.87 1.99

12 1.82 1.72 2.05

Voice babble 6 1.23 1.14 2.01

0 0.56 0.53 1.91

Model distorsion: 2.11

but lower than the result obtained using the NNCD method (1.99). This re-420

sult would be supporting the intrinsic robustness of the sparse representation421

when using the auditory model.422

5.3. Speech denoising423

In Fig. 6, a subset of 64 atoms from the dictionary trained with speech424

data is shown. It can be seen that different particularities of the signals425

are learned, for example, onset events (see atoms number 1 and 3 in the first426

row), offset (atom number 5 in the first row), combination of formants (atoms427

number 2 and 7 in the first row), energy spreading in a wide frequency range428

possibly given by fricative phonemes (atom number 1 in the last line), etc.429

Fig. 7 shows an example of the denoising of real data signals correspond-430

ing to speech data. The clean signal corresponds to the sentence /She had431
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Figure 6: Examples of spectro-temporal receptive fields (STRF) calculated from the early

auditory representation of speech signals (left). A single atom with axis labels and colorbar

is also showed (right). The dimensions of each atom follow the setup outlined in Section

4.2.

your dark suit in greasy wash water all year/ (shown in the top spectrogram).432

The signal is then contaminated with white noise at SNR=0 dB. The effects433

of the noise can be seen in the middle spectrogram, where almost every im-434

portant speech feature has been masked by the noise. The denoising scheme,435

however, is able to recover the most prominent formants and to reduce the436

energy noise as shown in the bottom spectrogram.437

For the measures of PESQ and SNRseg, a 10-fold cross validation proce-438

dure was applied by training a dictionary with 9 signals and testing with the439

remaining one. In each case, white and street noise were added with SNR of440

12, 6 and 0 dB. The results are summarized in Table 2 and 3. They show441

the mean and standard deviation of PESQ and SNRseg scores obtained for442

the cross validation scheme, being tested on the three different scenarios in443
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Figure 7: Example of the auditory cortical denoising result of a speech signal contaminated

with white noise at SNR=0 dB. The spectrograms (STFT) of the clean signal (top), the

noisy signal (middle) and the denoised reconstructed signal (bottom) are shown. The

acoustic signal at the top of the figure is given as reference.
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the application of NNCD and compared with different baseline methods (see444

Section 3.2). For each experimental condition, the method that obtained the445

best denoising quality is emphasized in boldface.446

It can be seen that state-of-the-art method performs better only at very447

high SNR (12 dB), while the NNCD method achieves good results in re-448

alistic conditions when the energy noise increases at lower SNR. Here, our449

method obtains the larger differences in the PESQ and SNRseg scores be-450

tween the noisy and denoised signals. For example, in the case of white noise451

at SNR=0 dB the method improves the PESQ from 1.63 up to 2.12 and452

SNRseg from -2.77 to 4.56. With respect to the other denoising methods,453

the NNCD approach performs better for both measures, PESQ and SNRseg,454

under real and very high non-stationary noise, like the street noise used in455

these experiments. As an example, it can be seen an improvement in PESQ456

at SNR=0dB from 1.79 up to 2.24 and in SNRSeg from -3.54 up to 3.94. This457

type of noise presents a more complex structure, which could be captured by458

2our approach.459

6. Conclusions460

A new denoising method of audio signals was presented, inspired by the461

biological processing carried out at the primary auditory cortical level. The462

method obtains a sparse coding of the spectrogram at cochlea level using463

a non-negative approach. The atoms of the dictionary are calculated from464

clean signals and noise. Then, the denoising signal is obtained by inverting465

the model using only the atoms corresponding to the signal, discarding the466

noise activations.467
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Table 2: Mean raw PESQ scores obtained for speech sentences from the TIMIT corpus.

The ’W’ and ’S’ on the left column stand for White and Street noise. The three scenarios

for the NNCD based speech enhancement given in Section 3.2 are denoted as (a), (b) and

(c). In bold face, the best quality for each case. For reference, the score for the clean signal

after transformation to the cortical domain and reconstruction back to the time domain

is 2.15.

SNR Signal NNCD

(dB) Noisy iWiener apWiener mBand BNMF (a) (b) (c)

12 2.25 (0.14) 2.59 (0.15) 2.53 (0.15) 2.66 (0.21) 2.41 (0.10) 2.46 (0.08) 2.31 (0.14) 2.52 (0.08)

W 6 1.92 (0.13) 2.19 (0.08) 2.17 (0.09) 2.18 (0.12) 2.18 (0.10) 2.26 (0.08) 1.97 (0.12) 2.36 (0.05)

0 1.63 (0.18) 1.86 (0.15) 1.84 (0.16) 1.84 (0.18) 1.80 (0.09) 1.99 (0.13) 1.67 (0.17) 2.12 (0.10)

12 2.57 (0.13) 2.61 (0.13) 2.73 (0.13) 2.86 (0.11) 2.30 (0.14) 2.67 (0.11) 2.65 (0.12) 2.71 (0.11)

S 6 2.21 (0.10) 2.18 (0.12) 2.39 (0.09) 2.49 (0.11) 2.06 (0.16) 2.45 (0.07) 2.30 (0.09) 2.51 (0.05)

0 1.79 (0.13) 1.76 (0.15) 2.00 (0.10) 2.11 (0.09) 1.82 (0.13) 2.14 (0.08) 1.89 (0.11) 2.24 (0.06)

Table 3: Mean SNRseg obtained for speech sentences from the TIMIT corpus. The ’W’

and ’S’ on the left column stand for White and Street noise. The three scenarios for the

NNCD speech enhancement given in Section 3.2 are denoted as (a), (b) and (c). In bold

face, the best result for each condition. For reference, the score for the clean signal after

transformation to the cortical domain and reconstruction back to the time domain is 5.41.

SNR Signal NNCD

(dB) Noisy iWiener apWiener mBand BNMF (a) (b) (c)

12 6.98 (3.42) 8.43 (1.82) 10.04 (2.95) 6.91 (1.99) 1.59 (0.30) 5.60 (1.14) 7.63 (3.47) 5.79 (0.90)

W 6 1.84 (2.54) 4.50 (1.54) 5.14 (2.12) 5.14 (2.56) 1.62 (0.31) 5.21 (0.62) 2.68 (2.52) 5.24 (0.70)

0 -2.77 (2.00) 2.10 (0.85) 0.04 (1.92) 2.25 (0.23) 1.57 (0.16) 3.84 (0.84) -2.01 (2.04) 4.56 (0.79)

12 7.10 (2.31) 6.33 (1.33) 8.67 (2.23) 7.09 (1.31) 1.54 (0.22) 5.75 (0.79) 8.24 (2.40) 5.68 (0.48)

S 6 1.93 (2.24) 3.79 (1.05) 4.13 (2.40) 4.52 (1.59) 1.69 (0.36) 5.26 (0.50) 3.51 (2.15) 4.95 (0.36)

0 -3.54 (2.27) 1.71 (0.61) -1.19 (2.55) 2.37 (1.07) 1.57 (0.30) 3.94 (0.54) -1.94 (2.23) 3.89 (0.33)
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The performance of the method using synthetic and real signals with468

additive noise was obtained through two objective quality measures. Results469

showed that our proposed method and its variants can improve the quality470

of sound signals, specially under severe conditions.471

Future research will be devoted to further improve the performance and472

also investigate the application of this technique in the preprocessing stage473

of robust classification systems.474
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Appendix483

The pseudocode for the NN-K-SVD method is showed in Figure 8 [38].484
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Initialization: Set the NN random normalized dictionary Φ(0) ∈ R
m×n×M .

Set J = 1 and repeat until convergence.

Sparse coding stage: use the NN version of the Basis Pursuit decomposi-

tion algorithm to calculate ai for i = 1, . . . ,M .

min
a

‖x−Φa‖22 s.t. ‖a‖0 ≤ L ∧ a ≥ 0.

Diccionary update stage: for k = 1, . . . , L

• Define the samples that use ~φk : ωk = {i|1 ≤ i ≤ M, ai(k) 6= 0}.

• Compute Ek = x− (Φa− ~φka(k)).

• Choose only the columns corresponding to ωk, and obtain E
ωk

k .

• Set A = E
ωk

k ,

~φk =







0, u1(i) < 0

u1(i), otherwise

a(k) =







0, v1(i) < 0

v1(i), otherwise

where u1 and v1 are the first singular vector of A.

Repeat J times:

~φ =
A a

a′a
. Project:~φ(i) =







0, ~φ(i) < 0

~φ(i), otherwise

a =
~φ′ A

~φ′~φ
. Project:a(i) =







0, a(i) < 0

a(i), otherwise

Normalize ~φk.

Set J = J + 1.

Figure 8: The NN-K-SVD algorithm.
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