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Abstract
Purpose: This paper introduces a novel decomposed graphical model to deal
with slice-to-volume registration in the context of medical images and image
guided surgeries.

Methods: We present a new non-rigid slice-to-volume registration method
whose main contribution is the ability to decouple the plane selection and the
in-plane deformation parts of the transformation - through two distinct graphs
- towards reducing the complexity of the model while being able to obtain si-
multaneously the solution for both of them. To this end, the plane selection
process is expressed as a local graph-labeling problem endowed with planarity
satisfaction constraints, which is then directly linked with the deformable part
through the data registration likelihoods. The resulting model is modular with
respect to the image metric, can cope with arbitrary in-plane regularization
terms and inherits excellent properties in terms of computational efficiency.

Results: The proof of concept for the proposed formulation is done using car-
diac MR sequences of a beating heart (an artificially generated 2D temporal
sequence is extracted using real data with known ground truth) as well as mul-
timodal brain images involving ultrasound and computed tomography images.
We achieve state of the art results while decreasing the computational time
when we compare with another method based on similar techniques.

Conclusions: We confirm that graphical models and discrete optimization tech-
niques are suitable to solve non-rigid slice-to-volume registration problems.
Moreover, we show that decoupling the graphical model and labeling it using
two lower dimensional label spaces, we can achieve state of the art results
while substantially reducing the complexity of our method and moving the
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2 Enzo Ferrante et al.

approach close to real clinical applications once considered in the context of
modern parallel architectures.

Keywords Slice-to-Volume Registration · 2D-3D Registration · Discrete
Optimization · Graphical Models · Markov Random Fields

1 Introduction

The problem of slice-to-volume deformable image registration consists in align-
ing a sliced 2D image (e.g. Ultrasound or US) to its corresponding plane from
a 3D volume (e.g. Computer Tomography or CT). We call it deformable regis-
tration because the 2D image can be deformed during the registration process.

This problem finds applications in many medical image related contexts
such as computer aided-biopsy [19], motion correction for image reconstruction
[5], tumor ablation [22] and image-guided surgery (IGS) [23]. In the case of im-
age guided procedures, a pre-operative 3D image and several intra-operative
2D acquisitions are to be fused towards providing position and navigation
information to the surgeons. Nowadays, this fusion is mainly performed us-
ing two different tracking technologies: optical (OTS) and electromagnetic
(EMTS) tracking systems. In the first case, OTS requires a line-of-sight to
be maintained between the tracking device and the instrument to be tracked;
this fact can disturb doctors during their work and is not always convenient.
In the second case, EMTS does not have line-of-sight requirements but it is
very susceptible to distortion from nearby metal sources and presents limited
accuracy compared to optical tracking [4]. Moreover, nor OTS neither EMTS
can deal with deformations between intra and pre-operative images. In this
work, we propose to use 2D-3D slice-to-volume registration algorithms which
are purely image based to solve this challenging problem and overcome the
limitations presented by current technologies.

The problem of deformable image registration has been a pillar of com-
puter vision (optical flow) and medical imaging (image fusion), and therefore
one can cite numerous methods to perform 2D-2D and 3D-3D registration [11]
[1]. However, the problem of 2D-3D registration, and particularly the prob-
lem of slice-to-volume registration, deserves separate investigation and specific
methods development. While a single 2D slice contains less information than a
3D volume, the solution remains a 3D mapping function (a deformation field
in case of non-rigid registration or a transformation matrix in case of rigid
registration) as in the case of 3D-3D registration. This fact converts 2D to
3D slice-to-volume registration in a really challenging problem. The other case
of 2D-3D registration problems, where projective 2D images such as X-Ray
images are registered with volumetric images (CT for example) has received
more attention in the last years [18] [15] and is not covered in this paper.

A variety of methods has been proposed to deal with slice-to-volume reg-
istration. In [3], standard optimization approaches and heuristics (as Simplex
and Simulated Annealing algorithms) are applied on FluroCT to CT regis-
tration, testing with different intensity based similarity measures. [6] presents
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Slice-to-Volume Deformable Registration 3

a feature based method that performs slice-to-volume registration, using sev-
eral slices in order to improve the quality of the results. [10] tracks intra-
operative MRI slices of prostate images with a pre-operative MRI volume. This
monomodal registration (MRI intra-operative slices to MRI pre-operative vol-
ume) is designed to provide patient tracking information for prostate biopsy
performed under MR guidance. A similar problem is tackled by [25] where a
two-step algorithm (rigid registration in the first step, and deformable registra-
tion in the second one) is applied to register three orthogonal intra-operative
MR slices with a pre-operative volume. [23] proposes a method to register
endoscopic and laparoscopic US images with pre-operative CT volumes. It is
based on a new phase correlation technique called LEPART and it manages
only rigid registration in quasi real time. [21] presents a flexible framework
for intensity based slice-to-volume non-rigid registration algorithms that was
used to register histological sections images to MRI of the human brain.

The main limitations of the aforementioned methods are their specificity to
the clinical context (they are derived and can be used for specific clinical ap-
plications), the requirement of anatomical segmentations in some of them that
increases their complexity and often their sequential nature where first plane
is selected and then in-plane deformation is determined. Graphical models are
powerful formalisms that could be amended to overcome these limitations.
Casting computer vision problems as labeling ones through the use of Markov
Random Field (MRF) theory has gained attention since [9]. It has been widely
used to solve non-rigid image registration in the last years [11] [16] [17], mainly
for 2D-2D or 3D-3D. In [26], a method based on MRFs to perform 2D-3D reg-
istration is presented, but it estimates just rigid transformations and works
with projective images. Regarding slice-to-volume registration using MRF, our
previous work [7] presents a MRF framework based on a high dimensional la-
bel space to solve this problem; we will refer to it as the overparameterized
method.

In this work, our aim is to introduce a low rank graphical model that
is able to simultaneously perform plane selection and estimate the in-plane
deformation between the 2D source image and the corresponding slice from
the 3D volume. We decouple a physical control point of a regular grid in two
nodes of the MRF graph, one taking labels from the plane selection label space
and the other one from the in-plane deformations label space. In that way, the
complexity of the model reduces to the square of the cardinality of the biggest
label space (instead of being quadratic in the product of the cardinalities of the
two spaces), with a slight increase of the graphical model connectivity. This
technique has been previously applied in 2D-2D registration [24]. The main
advantage is related to the fact that, while the number of nodes augment
linearly, the number of labels is decreased in a quadratic order.

The main contributions of our paper with respect to our previous work
[7] are therefore two-fold. Firstly, we propose a new way of decoupling the
plane selection and the in-plane deformation label spaces towards a novel low
rank model of order 3 (instead of a model of order 5 as in [7]); it results into
a more tractable problem in terms of getting the optimal solution. Secondly,
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4 Enzo Ferrante et al.

Fig. 1 Structure of the decoupled graph. The green nodes (top grid) are included in VI

and orange ones (bottom grid) in VP modeling in-plane deformations and plane position
respectively. Edges connecting VI nodes are part of EI and those connecting VP nodes are
part of EP ; they are associated with regularization terms. Dotted lines represent cliques in
ED that encode the matching similarity measure. Using this information we can reconstruct
a deformed grid that is interpreted as a Free Form Deformation model. In the image we can
appreciate how we associate two nodes of the graph with one control point of the grid.

we obtain substantial decrease of the search space size (order of 10), allowing
much richer sampling of the label space, thus in theory more precise solutions.
Moreover, by decoupling the label spaces it is possible to explore both of them
with different sparseness levels.

The framework is intensity based and independent of the similarity mea-
sure, so it can be adapted to different image modalities or new measures. We
tested our approach on two different datasets: a monomodal dataset where 2D
MRI images of the heart are registered with MRI volumes, and another mul-
timodal dataset where 2D US images are fused with CT volumes [20]. Both
datasets were also used in [7].

The paper is organized as follows: in Section 2 we present the decoupled
MRF formulation together with a complete explanation about the label spaces
and the energy terms. In Section 3, the validation tests and results are pre-
sented and discussed. Finally, Section 4 concludes our paper and provides some
ideas on relevant future directions.

2 Method Description

Non-rigid slice-to-volume registration can be seen as an optimization problem.
We aim at optimizing an energy function by choosing the optimal plane (slice)
π̂[J ] from target volume J and the optimal deformation field T̂D as indicates
the following equation:

T̂D, π̂ = argmin
TD,π

D(I ◦ TD(x), π[J ](x)) +R(TD, π), (1)

where I is the source 2D image, D represents the data term and R the reg-
ularization term. Given the 2D source image I and the 3D target volume J ,
we seek the slice π̂[J ] from volume J that best matches the image I. We call
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Slice-to-Volume Deformable Registration 5

it non-rigid registration because image I can be deformed by the deformation
field T̂D. The data term D measures the similarity between the source and the
target, while the regularization term imposes smoothness constraints on the
solution.

From this general optimization problem, we can derive different formula-
tions. In [7], we proposed a high-dimensional label space based approach con-
sidering local labels of dimension five (plane + in-plane deformations). One of
the main problems related to this high dimensionality is its consequently high
computational cost. In this work, we try to avoid this problem by decoupling
the label space in two different ones and reforming the structure of the graph
to still capture rigid plane displacements and in-plane deformation.

Our formulation consists in an undirected pairwise graph GD =< V,E >
with a set of nodes V = VI ∪VP and a set of edges E = EI ∪EP ∪ED. VI and
VP have a 4-neighbor grid structure and the same cardinality. Nodes in VI are
labeled with in-plane deformation labels, while labels used in VP represent the
plane position. Edges from EI and EP correspond to a conventional pairwise
neighborhood connection system for nodes in VI and VP respectively; they are
associated with regularization terms (EI corresponds to in-plane deformation
regularizers and EP to the plane selection regularizers). Edges in ED link every
node from VI to its corresponding node from VP , creating a graph with a sort
of three dimensional structure (see Figure 1); those terms associated to ED
encode the data terms (i.e. the similarity measure).

In order to get a better understanding of the model, we can think of a
single hypothetical grid similar to the one defined in [7], where every control
point pk from this grid is associated with two nodes from our approach, i.e.
vIk ∈ VI and vPk ∈ VP . This idea is depicted in Figure 1 and it will be useful
to understand the energy terms.

Label Space

We define two different label spaces, one associated with nodes in VI (called
LI) and the other one associated with nodes in VP (called LP ).

The first label space, LI , is a bidimensional space that models in-plane
deformation using displacement vectors lI ∈ EI = (dx, dy).

The second label space, LP , indicates the plane in which the corresponding
control point is located. It consists of labels lP associated to different planes.
In order to specify the plane and the orientation of the grid on it, we store an
orthonormal basis of this plane together with the position of a reference point
in this plane. Using this information, we can reconstruct the position of the
rest of the control points in the grid. This way of storing the planes, allow us
to implement different plane space sampling methods. In this work, we chose a
simple uniformly sampling around the current plane position, varying rotation
and translation parameters in a given range. This is an important advantage
of our method: we could use prior knowledge to improve the way we explore
the plane space, just by changing the plane space sampling method.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

E
. F

er
ra

nt
e,

 V
. F

ec
am

p 
&

 N
. P

ar
ag

io
s;

 "
Sl

ic
e-

to
-v

ol
um

e 
de

fo
rm

ab
le

 r
eg

is
tr

at
io

n:
 e

ff
ic

ie
nt

 o
ne

-s
ho

t c
on

se
ns

us
 b

et
w

ee
n 

pl
an

e 
se

le
ct

io
n 

an
d 

in
-p

la
ne

 d
ef

or
m

at
io

n"
In

te
rn

at
io

na
l J

ou
rn

al
 f

or
 C

om
pu

te
r 

A
ss

is
te

d 
R

ad
io

lo
gy

 a
nd

 S
ur

ge
ry

, 2
01

5.



6 Enzo Ferrante et al.

To compute the final position of a control point we use both labels. First,
the corresponding label in LP defines a 3D point belonging to a plane space
with a given basis. Then, we use the corresponding label in LI to move the
point in the 2D plane thanks to its basis.

Objective Function

The energy that guides the optimization process is defined on the pairwise
terms. Two types of edges represent regularization terms while the last one
represents the data terms; the energy is thus defined as:

E(I, P,D) = min{γ
∑

(i,j)∈EI

eIi,j(l
I
i , l

I
j )+α

∑
(i,j)∈EP

ePi,j(l
P
i , lPj )+β

∑
(i,j)∈ED

eDi,j(l
I
i , l

P
j )},

(2)
where γ, α and β are positive weighting factors, eIi,j ∈ I are the in-plane

regularizers (associated to edges in EI), ePi,j ∈ P are the plane regularizers

(associated with edges in EP ) and eDi,j ∈ D the data terms (associated with

edges in ED). lIi , lPi are labels from both label spaces LI and LP respectively.
Data and regularization terms are detailed in the following sections.

Data Likelihood

The data term is defined for interconnected pairs of nodes (i, j) between the
two graphs (where i ∈ V I , j ∈ V P ) and their corresponding labels lI ∈
LI , l

P ∈ LP . It is encoded in the pairwise terms eD ∈ ED. As we described
before, a plane and an in-plane deformation 2D-vector are associated with ev-
ery control-point. Combining both labels, we calculate the final position of the
control point pk and extract an oriented patch Ωk over the plane πk (centered
in pk) from the volume J , so that the similarity measure δ can be calculated
between that patch and the corresponding area over the 2D source image:

eDi,j(l
I
i , l

P
j ) =

∫
Ωk

δ(I(x), πk[J ](x))dx. (3)

The patch-based similarity measure δ (defined on the sub-domain Ωk) can
encompass a wide choice of intensity-based measures. One of the simplest and
most used similarity measures is the Sum of Absolute Differences (SAD). It is
useful in the monomodal scenario, where two images of the same modality are
compared. Its formulation is:

eDSADi,j
(lIi , l

P
j ) =

∫
Ωk

| (I(x)− πk[J ](x) | dx. (4)

In multimodal scenarios, where different modalities are compared (e.g. CT
with US images), statistical similarity measures such as Mutual Information
(MI) are generally used since we cannot assume that corresponding objects
have the same intensities in the two images. MI is defined using the joint
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Slice-to-Volume Deformable Registration 7

Algorithm 1 Pseudo-code corresponding to the pyramidal approach based
slice-to-volume registration
1: procedure 2D3DRegistration(I: Source,J :Target,T0:Initial guess)
2: G← initializeGraph(T0) . Initialize the graph in the position indicated by T0

3: bestEnergy ←∞
4: for i=1 to gridLevels do
5: L← updateLabelSpace(L, i) . Update the label space for the given level
6: for j = 1 to iterationSteps do
7: newEnergy, newLabeling ← optimizeGraphicalModel(G,L)
8: if newEnergy < bestEnergy then
9: applyLabeling(G, newLabeling)

10: bestEnergy = newEnergy
11: end if
12: refineLabelSpace()
13: end for
14: end for
15: return bestEnergy, G
16: end procedure

intensity distribution p(i, j) and the marginal intensity distribution p(i) and
p(j) of the images as:

eDMI i,j
(lIi , l

P
j ) = −

∫
Ωk

log
p(I(x), πk[J ](x))

p(I(x))p(πk[J ](x))
dx. (5)

As we could see in the previous examples, our framework can be endowed
with any similarity measure defined on two bidimensional images. In this work,
we use SAD for the monomodal heart dataset and MI for the multimodal brain
dataset.

Regularization Terms

We define two different regularization terms, one regularizing the plane selec-
tion and the other one the in-plane deformation. The first regularization term
penalizes the average distance between the nodes i, j ∈ V P and the plane
corresponding to the neighboring one. If Dπ(p) indicates the point-to-plane
distance between the point p and the plane π, we define the regularization
term eP as the average of these distances for two neighboring points i, j and
their corresponding planes:

ePi,j(l
P
i , l

P
j ) =

1

2
(Dπj (pi

′) +Dπi(pj
′)). (6)

where pi
′ and pj

′ are the positions after applying label lPi , lPj to pi, pj re-
spectively. This value is 0 when both points lie the same plane.

The second regularization term controls the in-plane deformation and is
defined between nodes i and j included in VI . We use a distance preserving
approach which is symmetric, based on the ratio between the current position
of the control points pi,pj and their original position po,i,po,j :
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8 Enzo Ferrante et al.

ψi,j(l
I
i , l

I
j ) =

|| (pi + lIi )− (pj + lIj ) ||
|| (po,i)− (po,j) ||

. (7)

Once defined ψij , we need our regularizer to fulfill two conditions: first, we
want it to be symmetric with respect to the displacement of the points, i.e.
to penalize with the same cost whenever the control points are closer or more
distant; second, we need the energy to be zero when the points are preserving
distances and bigger than zero otherwise. The following regularization term
fulfills both conditions for a couple of nodes i, j ∈ V I labeled with labels lIi , l

I
j :

eIi,j(l
I
i , l

I
j ) = (1− ψi,j(lIi , l

I
j ))2 + (1− ψi,j(lIi , l

I
j )−1)2. (8)

Note that both types of pairwise terms are not sub-modular since we in-
clude the current position of the points (which can be arbitrary) in their
formulation and therefore sub-modularity constraint is not fulfilled.

Implementation Details

We adopt a pyramidal approach, using different grid resolution levels, from
coarse to fine spacing between the control points. For each grid resolution,
some iterations of the registration algorithm are performed, choosing the best
possible set for each one and updating the control point positions with this
information. During the inner iterations of one grid level, the size of the dis-
placement vectors that form the deformation label space as well as the pa-
rameter variation of the plane label space are reduced in order to improve the
search space sampling. A pseudocode of the algorithm is shown in Algorithm
1.

The pairwise graphical model is optimized using the Loopy Belief Propa-
gation algorithm (other discrete optimization algorithms can be used as well)
implemented in the OpenGM2 library [12]. In [7], we used FastPD [14] in-
stead of Loopy Belief Propagation for optimizing our pairwise model, which
is among the most efficient optimization algorithms. However, due to its con-
struction (lifting of the duality gap minimization) FastPD requires in general
(towards optimizing complexity) an equal number of labels for all nodes which
is an issue in our setting given the different dimensionality of the graph spaces
(3d and 2d). Furthermore, while it can converge to a minimum even for non-
submodular graphs, it is known that the quality of the linear programming
(LP) relaxation is far from being satisfied and therefore the solution itself
might be a very bad local minimum. Message passing methods like Loopy Be-
lief Propagation do not inherit the computational constraints of FastPD while
it is known (at least experimentally) that do good job as well even with highly
non-submodular pairwise functions.
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Slice-to-Volume Deformable Registration 9

Fig. 2 12 registration cases of the same sequence, before and after registration. The over-
lapping images (in light blue we show the source image and in red the target) showed before
registration corresponds to the source image and a slice taken from the volume at the initial
position. The overlapping after registration corresponds to the deformed source image and
the slice taken from the volume at the estimated plane position.

3 Validation & Results Discussion

We validate our method in two different scenarios and we compare the results
with our previous method [7]. The first one corresponds to a monomodal se-
quence of 2D MRI images randomly extracted from a 3D MRI temporal series
of a beating heart. The second one is a multimodal brain dataset formed by
2D US images and 3D CT extracted from [20].

In order to compare both methods in a fair way, we exhaustively tested
different parameter configurations (empirically for every dataset) on a grid of
discretized values, and we took the best combination for each method.

3.1 Heart Dataset

The MRI heart dataset consists of ten sequences of twenty bidimensional MRI
slices each one, that are registered with a MRI volume, giving a total of 200
registration cases. In order to generate them, as it was described in [7], we took
a temporal series of 20 MRI volumes of a beating heart, and we extracted ten
random trajectories of twenty slices Ii each one (one slice for every volume Mi).
Starting from a random initial rotation R0 = (Rx0 , Ry0 , Rz0) and translation
T0 = (Tx0

, Ty0 , Tz0), we extracted a 2D slice I0 from the initial volume M0.
In every sequence, the position of slice Ii was generated adding Gaussian
noise to the position of slice Ii−1 with σr = 3◦ and σt = 5 mm to every
translation (Tx, Ty, Tz) and rotation (Rx, Ry, Rz) parameters respectively.
It gives maximum distances of about 25 mm between the current and its
succeeding slice. The MRI resolution was 192 × 192 × 11 and the voxel size
was 1.25× 1.25× 8 mm3.

For every sequence, we initialize the registration adding the same noise
(with the same parameters than before) to the ground truth. During the reg-
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10 Enzo Ferrante et al.

Fig. 3 Comparison of the error estimation for plane parameters (Rx, Ry , Rz) and (Tx,
Ty , Tz) for our decoupled method (figures (a) and (b)) and the overparameterized approach
presented by [7] (figures (c) and (d)). For presentation clarity, three outliers between 0.02
and 0.05 rad as well as one at 4 mm have been removed at Figures (c) and (b) respectively.

istration process, given two consecutive slices of the same sequence, the esti-
mated transformation for slice Ii was used as initialization for the registration
of slice Ii+1.

Rx Ry Rz Tx Ty Tz

Decoupled Method
Mean 0.0036 0.0024 0.0029 0.5403 0.2713 0.2966
SD 0.0034 0.0024 0.0024 0.4914 0.2296 0.2236

Overparameterized Method [7]
Mean 0.0051 0.0051 0.0031 0.4164 0.2874 0.4847
SD 0.0122 0.0134 0.0051 0.4720 0.2976 1.1546

Table 1 Error estimation for plane parameters (Rx, Ry , Rz) and (Tx, Ty , Tz) for our
decoupled method and the previous overparameterized approach presented in [7].

Figure 2 shows the overlapping between the source image and the corre-
sponding target plane, before and after registration, for 12 cases of one se-
quence. As we can observe in a qualitative way, the overlapping increases after
registration.

Figure 3 compares our results in a quantitative way with the ones obtained
using our previous method. We measure the error between the estimated trans-
formation parameters and the ground truth. The mean error was (0.0036,
0.0024, 0.0029) rad for rotation and (0.5403, 0.2713, 0.2966) mm for trans-
lation parameters, with a standard deviation of (0.0034, 0.0024, 0.0024) rad
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Slice-to-Volume Deformable Registration 11

and (0.4914, 0.2296, 0.2236) mm respectively. The average running time was
around 60 seconds for every registration case. Using the method presented in
[7], we obtained (0.0051, 0.0051, 0.0031) rad and (0.4164, 0.2874, 0.4847) mm
for rotation and translation parameters error, and standard deviation equal
to (0.0122, 0.0134, 0.0051) rad and (0.4720, 0.2976, 1.1546) mm. Results are
presented in Table 1. Every registration case took around 220 seconds (almost
3.5 times more than our method). As we can see, the quality of the results was
preserved (and improved in some cases) while the computational time was re-
duced approximately 3.5 times (keeping equivalent grid and label space sizes,
sampling patch size and number of algorithm iterations).

Validation of in-plane deformation was performed over 20 registration cases,
deforming an initial segmentation of the left endocardium using the estimated
deformation field TDi . We measure the average DICE coefficient between the
segmentations, before and after deforming the initial one, to measure the im-
pact of the deformation in the registration process. The average DICE be-
fore deformation was 0.858 and after registration was 0.907, showing that our
method can capture in-plane deformations and select the correct plane at the
same time.

Common parameters used for both methods were 3 grid levels, 5 iterations
per level, initial control point distance of 40 mm and minimum sampling patch
size of 20 mm. In case of the decoupled model we use γ = 1, β = 0.2, α = 0.8,
41 labels in the plane label space and 91 labels in the deformations label
space. In case of the overparameterized model we use 13122 labels and α = 0.9
(for a complete understanding of these parameters refer to [7]). We run the
experiments on an Intel Xeon W3670 with 6 Cores, 64bits and 16GB of RAM.

3.2 Brain Dataset

The brain dataset consists of a pre-operative brain MRI volume (voxel size of
0.5× 0.5× 0.5 mm3 and resolution of 394× 466× 378 voxels) and 6 series of 9
US images extracted from the patient 01 of the database MNI BITE presented
in [20]. The size of the US images was 48 × 38 mm and the pixel resolution
0.3× 0.3 mm. The ventricles were manually segmented by specialists in both
modalities and used to calculate DICE coefficient and Contour Mean Distance
(CMD) to evaluate and compare the quality of the results. Initializations were
done following the same methodology that we described for the Heart Dataset
(Section 3.1).

Figure 4 summarizes the average DICE and CMD coefficients for each se-
ries. It shows that, using our decoupled method, the mean DICE increases
after the registration process an average of 0.0405, a little bit more than the
0.0380 obtained with [7] method. Regarding the CMD, the average decrement
for our method is 0.3654 mm while for the other one is 0.3943 mm. Even if our
new method performs better in average, we can observe that results are almost
equivalent in terms of DICE and CMD. However, there is a big difference in
terms of computing time: while our method is taking around 3 min per reg-
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12 Enzo Ferrante et al.

Fig. 4 The figures show a quantitative comparison of the two methods, before (BR) and
after (AR) registration for the 6 sequences of brain data. Figures (a) and (c) show results
for our decoupled method (DICE and CMD respectively) while figures (b) and (d) show
results for the overparameterized approach presented in [7] (DICE and CMD respectively).

istration case, the overparameterized method takes around 10 min running in
the same computer using the same configuration. To perform the experiments
with both methods, we used the same configuration given by 3 grid levels,
initial control point distance of 8 mm, 4 iterations per level and minimum
sampling patch size of 13 mm. In case of the decoupled model, we set γ = 1,
β = 0.05, α = 0.2, 41 labels in the plane label space and 91 labels in the
deformations label space. For the overparameterized method we set α = 0.8
and 6174 labels. We run the experiments in the same Intel Xeon W3670 with
6 Cores, 64bits and 16GB of RAM used for the heart dataset.

3.3 Discussion & Comparison With Other Methods

As we have shown, our method is able to achieve state of the art results while
decreasing the computational time when we compare to another MRF based
method (namely [7]). In the monomodal case we reduce it from around 3.5 min
to 1 min while in the multimodal one we go from 10 min to 3 min, giving a
time factor reduction of about 3 times.

The main strength of the proposed formulation is the linear complexity
of the inference process with respect to the product of the label spaces. This
allows to go even further for challenging cases (brain tumor removal) where
precision is required to substantially increase the label space. This is not the
case for the approach presented in [7] due to the complexity of the label space.

An interesting point to discuss about is the 5-fold improvement in the
standar deviation error of parameter Tz that we obtain with the new method.
In [7], the justification for the poor performance of the method when estimating
Tz was told to be that image resolution in z axis was lower than in x and y. We
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Slice-to-Volume Deformable Registration 13

Fig. 5 Results for one slice from four of the six brain sequences (each row correspond to
a different sequence). (a) Source 2D Ultrasound image. (b) Slice extracted from the MRI
corresponding to the initial position of the plane. (c) Deformed source image overlapped with
the estimated deformation field. (d) Blending between initial images (US and corresponding
MRI slice). (e) Blending between final images (Deformed US image and estimated MRI slice).
(f) Overlapping between initial segmentations. (g) Overlapping between segmentations after
registration.

think that the new algorithm is less sensitive to image resolution anisotropy
mainly because of the different way we explore the plane-selection label space
by allowing a deeper exploration when decoupling it without exponentially
increasing the amount of labels.

It is important to remark that both, the decoupled and overparameterized
methods, are highly dependent on the initialization given for the first slice of
the sequence. Since these algorithms optimize the energy based on a limited
search space (determined by the label space), if the solution is not reachable
from the intial position using the current label space, the algorithm will fail.
Another factor that is crucial for the success of the algorithm is the similarity
measure used to decide whether or not two patches coming from different
images correspond to the same anatomical structure. The study of different
similarity measures is outside the scope of this paper; however, note that in
order to use the method in other image modalities, it will be necesary to choose
an accurate similarity measure and calibrate the parameters accordingly.

Comparison with other methods in the field of slice-to-volume registration
is a complicated task, mainly because of the lack of public datasets. Here
we include some of the results reported by other state of the art methods
for their own datasets, in terms of accuracy and/or performance. In [10] for
example, authors report a mean Target Registration Error (TRE) lower than
1 mm when estimating rigid transformations in a monomodal MRI dataset of
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14 Enzo Ferrante et al.

prostate images (for a pixel size of 1.5× 1.5× 3 mm). Random initializations
were generated by modifying the ground truth position with displacements
of 10 mm and rotations of 10deg maximum. The Matlab implementation of
their algorithm took between 36 sec and 107 sec depending on the algorithm
configuration. In [23], authors tested on a multimodal dataset formed by 2D
ultrasound and CT volumes of the heart. They report errors around 1.56 ±
0.78 mm when estimating rigid transformations on CT images with 0.6 mm
isotropic resolution, using initializations with uniformly random shifts in the
range −5 to 5 mm. They achieve quasi real time performance with execution
times around 4 sec. Another interesting example to compare with is the multi-
slice to volume registration case that tackles [25] applying it to MRI-guided
transperineal prostate biopsy. Authors report that deformable registrations
were accurate to within 2 mm in images with a slice spacing of 3.6 mm. The
execution time for the complete deformable registration algorithm is about
30 sec. Even if it is not possible to do a fair comparison mainly because of
the lack of standard benchmarks, by observing these examples we can clearly
remark that our results are in the state of the art level. Moreover, visual
assessment on the obtained results seems to confirm that these are satisfactory
in the context of a clinical setting.

In terms of complexity, it is interesting to remark the difference with re-
spect to our previous method. The optimization complexity/difficulty heavily
depends on the maximum number of label combinations that the pairwise
cliques can take (this is the bottle neck for most optimization algorithms). In
this perspective, the complexity of the overparameterized model is given by
O(|L|2), where |L| is the cardinality (number of labels) of the label space. In
our new approach, we introduce two label spaces L1 and L2 that decouple the
previous one. To give an idea about the reduction in the complexity of our new
model, let us say that |L| = |L1.L2|. Because of the way in which we construct
our decoupled graph (as it is indicated in Figure 1), it is straightforward to
show that the complexity of the new model reduces now toO(max(|L1|, |L2|)2).
Therefore, because of the decoupling strategy, the complexity of the model re-
duces to the square of the cardinality of the biggest label space (instead of
being quadratic in the cardinalities of the joint space), with a slight increase
of the graphical model connectivity. Consequently, while the number of nodes
augment linearly, the number of labels is decreased in a quadratic order.

4 Conclusions

We presented a new method to perform slice-to-volume registration based on a
decoupled model that associates two local graphs to the plane selection and the
in-plane deformations while imposing consistency through direct connections
between the corresponding nodes. In order to solve this problem, we seek the
plane and the in-plane deformation that best matches our energy function. It
is important to remark that we just look for the in-plane deformations given
the nature of the problems we are trying to solve (mainly image fusion for
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Slice-to-Volume Deformable Registration 15

IGS), where it is not useful to find out-of-the-plane deformations at least for
visualization purposes, even if they can exist.

As we have shown in the previous section, our method achieves state of
the art results while decreasing substantially the time of computation when
it is compared to our previous MRF based method that uses a unique high
dimensional label space [7]. It confirms our initial hypothesis, meaning that
decoupling the graphical model and labeling it using two lower dimensional
label spaces, we can achieve the same results while reducing the complexity of
our method.

We have also shown that the method is robust with respect to the type
of images we are registering. Since slice-to-volume registration has multiple
applications, other problems are under investigation (it should be noted that
such a task is complex due to the complete absences of public ground truth).
To this end, two clinical scenarios are currently under investigation, the first
refers to liver tumor resection guidance, while the second to US guidance
during prostate biopsy through fusion of intra-operative ultrasound and pre-
operative CT/MR.

In order to improve the quality of the results, specially in multimodal cases,
feature engineering must be considered. Future work includes adapting and us-
ing features specifically designed for multimodal registration such as the LC2

presented in [8] and the MIND descriptor presented in [2]. Furthermore, en-
ergy regularizers inspired on precise biophysical modeling and tissue properties
could lead to accuracy improvements as well. The underlying idea is to adapt
the ”smoothness” constraint of the deformation model by explicitly taking into
account organ specific motion/deformation constraints like for example in the
context of liver biopsies or brain tumor ablation.

Finally, we are investigating new methods to improve the parameters esti-
mation procedure. Energy parameters estimation based on machine learning
techniques [13] have to be considered as a future work if we want to exploit at
the maximum level the potential of the proposed method.
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