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ABSTRACT

In this paper we propose a novel method based on discrete op-
timization of high order graphs, to perform deformable slice-
to-volume registration of 2D images and 3D volumes. To this
end, a 2D grid superimposed to the image is considered with
control points deforming in 3D and their deformations corre-
sponding to the label space. Geometrical consistency (unique
plane selection) and deformation smoothness (in-plane defor-
mations) as well as image similarity (visual matching) are en-
coded in different third order cliques. The proposed formu-
lation is optimized through its mapping to a factor graph us-
ing conventional graph optimization methods. A dataset com-
posed of 2D slices and 3D MRI volumes of the heart was used
to evaluate its accuracy leading to very promising results.

Index Terms— Slice-to-volume registration, high order
graphs

1. INTRODUCTION

Slice-to-volume (2D to 3D) registration has shown to be use-
ful in different medical applications such as radio frequency
liver ablation, image guided surgeries (IGS) and image guided
biopsies. A variety of methods based on different techniques
has been proposed in the past to deal with this challeng-
ing problem, including phase correlation [1], variational
approaches [2], simulated annealing [3] and point correspon-
dences [4]. Other approaches as graph based techniques, have
been widely used to solve the problem of non-rigid image reg-
istration in the last years [5], but most of these works focus
on 2D-2D or 3D-3D registration. The closest work to our
proposal is [6]. In this work, authors proposed a novel for-
mulation based on discrete optimization of Markov Random
Fields (MRF) that infers the optimal labeling of a pairwise
(MREF) over a 5-dimensional label space. Despite the theoret-
ical promises of this approach, the over-parameterized label
space becomes a concern in inference since the computa-
tional burden is significant. Furthermore, the plane selection
is explicitly modeled through local terms which, even if prop-
agated, cannot guarantee uniqueness of the solution. In this
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paper we propose a novel method for 2D-to-3D registration
through the 3D deformation of a 2D plane. To this end we
adopt a third-order potential graphical model. Triplets of
control points (forming a line) are considered to encode the
planarity as well as the in-plane smoothness deformation con-
straints. Data terms are encoded in triangle triplets providing
an exact estimation of the similarity criterion between the
2D image and the corresponding 3D volume. Last, but not
least, global consistency is imposed through the membership
of the same control points into multiple third order geometric
cliques. The resulting formulation is scalable and modular
with respect to the similarity transformation as well as the
planar deformation.

2. NON-RIGID SLICE-TO-VOLUME
REGISTRATION THROUGH HIGH ORDER GRAPHS

Given a 2D source image I and a 3D target volume .J, we seek
the slice from the volume .J (namely 7 [.J]) that best matches
the image /. Image I can suffer in-plane deformations mod-
eled by a 2D deformation field Tp that is inferred during
the optimization process. Even if it is possible to also con-
sider out-of-plane deformations, in this work we just model
in-plane deformations, because of the applications we are tar-
geting (mainly IGS where the main interest consists in show-
ing the deformed 2D image together with the corresponding
slice 7t [J]).

Our discrete formulation of the 2D-3D non-rigid registra-
tion problem consists of an undirected graph G =< V, E > (a
regular lattice) superimposed to the 2D image domain with a
set of nodes V' and a set of third-order cliques £ = Ep UER.
The nodes are interpreted as control points of a bidimensional
quasi-planar grid that models at the same time the in-plane
deformations and the current position of the 2D image into
the 3D volume. In order to represent those deformations, the
grid is interpreted as a Free Form Deformation model (FFD)
where each control point has only local influence on the de-
formation. Vertices in V' are labeled with three dimensional
vectors l; € L (where L corresponds to a 3-dimensional label
space formed by 3D displacement vectors), indicating the po-
sition of the control point in the space. Regarding the cliques
in E, we define two different types. Cliques in E are triplets
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of vertices with a triangular shape (Figure 1.a) and they are
associated with data terms. Those in Eg, are horizontal and
vertical collinear third-order cliques (Figure 1.b) associated
with regularization terms. The control points (vertices) are
displaced by assigning them different labels until an optimal
position is found. In order to reach such an optimal position,
let us now define the corresponding high order objective func-
tion.

The energy (objective function) to be minimized consists
of data terms D, ;. associated with triangular triplets of graph
vertices (i, j, k) € Ep and regularization terms R; ;. associ-
ated with collinear horizontal and vertical triplets (i, j, k) €
FE'r. The first ones encode the matching cost, whereas the
later ones act as regularizers of the planar and regular grid
structure. The minimization energy problem in the context of
high order graphs is thus defined as:

min Dijk('i:'jr'k)'*‘ﬁ
(i,5,k)EED

Rijk(li ’ Ij ' Ik)’
(i,4,k) EER
1
where |; is a label associated to a displacement vector
(ds,dy,d) and assigned to the node 7, and (3 is a parameter
weighting the contribution of the geometric and similarity
terms.

Data Term. It is defined over a set of triangular cliques
as indicates Figure l.a. Its formulation is independent of
the similarity measure ¢ and it is calculated for each clique
d = (4,4, k) € Ep using the source 2D image [ and the cor-
responding plane m4[J] extracted from the target volume .J,
defined by the three control points of the clique. For a given
similarity measure 4, the data term associated with the clique
d is thus defined as:
4
Dije(li,1j, k) = 6(1(x),ma[J](x))dX,  (2)

d

where X € (2, and £, corresponds to the triangular area de-
fined by the control points of clique d over the plane my[J],
after applying the corresponding labels |;, |j, Ik to the ver-
tices. For example, in monomodal scenarios, a simple but ef-
ficient similarity measure is the Sum of Absolute Differences
of the intensities in the patch. Since our approach is indepen-
dent of the similarity measure, it could be adapted to different
scenarios just by choosing an appropriate 6.

Regularization Term. It imposes the planar and regular
structure of the grid. We define a clique for every set of
three collinear and contiguous grid nodes (in horizontal and
vertical directions as depicts Figure 1.b) and associate reg-
ularization terms R;;; with them. We also introduce extra
collinear cliques formed by nodes that are collinear but not
contiguous. The aim is to propagate further the regularization
so that the planar structure is conserved. The regularization
term is formed by two parts: the first one, cares about the

(a) (b)

Fig. 1. (a) The green patch 2 is one of the triangular cliques
(7,7,k) € Ep and it is used to calculate the data term. (b)
Vertical (i1,j1,k1) € Egr and horizontal (i2,j2,k2) € Eg
collinear third-order cliques used to regularize the grid.
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Fig. 2. Equivalence between cligues c¢; in a regular high or-
der graph (Figure (a)) and factors f; in a factor graph (Figure
(b)). In red, we can observe some triangular cliques (factors)
associated to data terms, while in green are represented the
collinear cliques (factors) associated to regularization terms.

plane structure of the grid, while the second one regularizes
the in-plane deformations.

Planar Consistency can be easily enforced through a dis-
crete approximation of the second-order derivatives of the
grid. [7] points out that triplets of collinear points allows us
to encode a smoothness prior based on the discrete approx-
imation of the second-order derivatives using only the ver-
tices position. This term checks collinearity among the three
points, based on the discrete approximation of the second-
order derivatives. Thus, it penalizes the chosen labels when
collinearity is not preserved. Given three contiguous con-
trol points (i, P;j, Px) and their corresponding displacement
labels (li,lj,lx) the collinearity condition is fulfilled when
(i +1i) + (Px + k) — 2 (pj +1j) =0.

Based on this idea, we define the following energy term
using the euclidean norm of the resulting vector, normalized
with the distance between the control points d:

(P + 1) + (P + 1) — 2% (py +1)]12
d2
3)

R (lis Ny, )=
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In-plane Deformation Smoothness can be achieved through
a distance preserving approach. The in-plane grid deforma-
tion is controlled preserving the original distances between
the control points of the grid. Since this metric is based on the
euclidean distance between the points, it assumes that they are
coplanar. Let us define 1;; as the ratio of the euclidean dis-
tance between the displaced points p; + | and p; + I; and
the original distance between their initial positions Po,;i and
Po,j as indicates the following equation:

i = || (pi +1i) = (pi +1i) 1l
Y Il (Po,i) = (Poj) I~

Once defined 1);;, we need our regularizer to fulfill two con-
ditions: first, we need it to be symmetric with respect to the
displacement of the points, i.e. to penalize with the same cost
when the control points are closer or more distant. This is
achieved if the following condition is fulfilled ¥;; = (1 —
1ij)? + (1 — ¢;;")? = 0. Second, we need the energy to be
zero when the points are preserving distances and bigger than
zero otherwise. The following expression fulfills both con-
ditions for a couple of control points pj, pj : So, for a given
clique (%, j, k) we define the second part of the regularizer as:

C))

\I/ij + \I/J'k
2

The equation that regularizes our grid is a combination of
both parts:

R,-]-k(li s Ij s Ik) =(1- a)Rf}k(li s Ij s Ik) + ang(li s Ii s Ik)

(6)
where « is a weighting factor. The proposed objective func-
tion can be either optimized through its mapping to a factor
graph, its mapping to a pairwise graph and the use of conven-
tional optimization methods, or using higher order optimiza-
tion methods like dual decomposition. In order to proceed
with a proof of concept for the method, we have adopted the
factor graph approach and implemented it using OpenGM2
library [8].

We derive the factor graph GO =< VO FO EC > from
the aforementioned higher order graph G (see Figure 2). A
factor graph is a bipartite graph that factorizes a given global
energy function, expressing which variables are arguments of
which local functions. V9is the set of variable nodes formed
by the nodes of G. FOis a the set of all the factors fe F°,
where every f is associated to one clique from the high order
graph. The set E® ¢ V?x FOdefines the relation between
the nodes and the factors. We use the previous 3-dimensional
label space L for labeling the graph nodes. Every factor f has
a function ¢y : V® — R associated that can correspond to a
data term or regularization term from equations 2 or 6 respec-
tively. The energy function of our discrete labeling problem
in the context of factor graphs is then given by:

REL (1,1, 1) = )

g(l‘) = (pf(viavj,vk)v (7)
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Fig. 3. Error estimation of the plane parameters for the
method presented in this paper ((a) and (b)) and the pairwise
MREF based approach presented in [6] ((c) and (d)) for the
same dataset with equivalent setup.

where = corresponds to a given labeling for the complete
graph and v;, v;, vy are the variables in the neighborhood (or
scope) of the factor f. We optimize this model using Loopy
Belief Propagation algorithm implemented in OpenGM2,
which can deal with third-order factors.

3. IMPLEMENTATION & VALIDATION

Despite the reasonable dimension of the label space (3D), the
use of factor graphs limits the number of labels that can be
used during inference. In order to overcome this limitation we
adopt a pyramidal approach where grid size is decremented in
every pyramid level. For each grid resolution, some iterations
of the registration algorithm are performed. We choose the
optimal set for each one and update the control point positions
while varying the size of the displacement vectors that form
the label space to improve the search space sampling.

It should be noted that the planarity constraint is imposed
in a soft manner. Furthermore, due to the incremental ap-
proach, errors can be accumulated and lead to inconsistent
planar transformations. Therefore, regularization terms do
not guarantee that the final solution is a plane. In order for
the grid to be a plane, we project every control point to the
regression plane estimated from the current position of these
points. This projection corresponds to a 2D FFD that gives a
good approximation of the deformation field 7'p.

Evaluation and comparison of the method was performed
over the 2D/3D monomodal MRI heart dataset presented in
[6]. It consists of 10 different temporal series of 20 bidimen-
sional slices each one, that must be registered with a volu-



E. Ferrante, V. Fecamp & N. Paragios; "Implicit planar and in-plane deformable mapping in medical images through high order graphs*

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (fich.unl.edu.ar/sinc)
12th |EEE International Symposium on Biomedical Imaging (1SBI 2015) , 2015.

metric MRI, giving a total of 200 registration cases. For a
complete description of the dataset refer to [6]. Plan estima-
tion was evaluated measuring the error between the ground
truth and the estimated planes (planes were represented by a
6-DOF rigid transformation, with 3 translation and 3 rotation
parameters (Ry, Ry, R;, Ty, Ty, T)).

The average error among all the registration cases is
less than 0.0057 rad (0.3265") for rotation and less than
0.5386mm for translation parameters (see Figure 3). Given
that image resolution in z axis is lower than in = and vy, a
bigger error is observed in the estimated translation for z
coordinate. Experiments were performed using 3 grid lev-
els, with 5 iterations each one, initial grid size of 40mm,
maximum displacements of 25mm, 19 labels, @ = 0.5 and
B = 0.7. The average running time was around 80 seconds
(on an Intel Xeon W3670 with 6 Cores and 16GB of RAM),
where 57% of it corresponds to energy computation and 33%
to optimization. Figure 3 compares the results of our method
with the results obtained using the algorithm proposed in [6].
Both mean and standard deviation errors of the estimated pa-
rameters are reduced by our method, meaning that the results
are more accurate and less disperse than in the previous case.
It shows that improving the quality of the energy terms by
increasing the order of the cliques, results in an improvement
of the final solution. It is important to remark that, for the
same number of grid levels and iterations, our new approach
reported slightly better computational time, running on the
same computer (average of 80 sec per registration case for
our method and 100 sec for the previous method). This dif-
ference is mainly due to the over-parameterized label space
(5-dimensional) adopted by the previous method, that expo-
nentially increments the number of labels needed to sample
an equivalent solution space.

Validation of in-plane deformation was performed over
20 registration cases. The dataset provides manual segmen-
tations S of the left endocardium from a set of 20 slices.
We register each slice with a starting from a random position
around the ground truth (using gaussian noise with o, = 4.5
and o; = 5mm for translation and rotation parameters re-
spectively). The estimated deformation field 7’p, was applied
to the corresponding initial segmentation s; € S and it was
compared with the ground truth using DICE coefficient. The
average DICE before deformation was 0.85 while after defor-
mation we obtained 0.91, showing that in case of deformable
organs like heart, deformation is important to guarantee reli-
able results.

4. CONCLUSIONS

In this paper we proposed a novel slice-to-volume deformable
registration method based on discrete optimization of higher
order graphs. The method is independent of the similarity
measure; consequently, it hast the potential to be adapted to
different scenarios with variety of image modalities. Feature

selection for different modalities is a complex topic that is
out of the scope of this paper. We compared our results with
another method based on graph optimization, that uses lower
dimensional cliques but higher dimensional label space. We
showed that using higher order cliques we can model more
powerful and accurate energies that lead to more reliable re-
sults.

Future work must be conducted mainly in three directions.
First, the validation of the proposed formulation in real clin-
ical scenarios (liver tumor resection guidance and MRI/US
guidance for prostate biopsy) is under investigation. It should
be noted that such a task is complex due to the complete
absences of ground truth. Second, alternative optimization
methods (in particular the ones acting directly on the objec-
tive function label space like dual decomposition) might lead
to better results and are under investigation. Last, decoupling
rigid and deformable parameters would allow us to have a bet-
ter control over the algorithm behavior, while also decreasing
the computational complexity and reducing the hardness of
the associated graphical model.
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