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Abstract: The Fisher information constitutes a natural measure for the sensitivity of a1

probability distribution with respect to a set of parameters. An implementation of the2

stationarity principle for synaptic learning in terms of the Fisher information results in a3

Hebbian self-limiting learning rule for synaptic plasticity. In the present work, we study the4

dependence of the solutions to this rule in terms of the moments of the input probability5

distribution and find a preference for non-Gaussian directions, making it a suitable candidate6

for independent component analysis (ICA). We confirm in a numerical experiment that a7

neuron trained under this rules is able to find the independent components in the non-linear8

bars problem.9

The specific form of the plasticity rule depends on the transfer function used, becoming10

a simple cubic polynomial of the membrane potential when the rescaled error function is11

employed as transfer function. The cubic learning rule is also an excellent approximation for12

other transfer functions, as the standard sigmoidal, and can be used to show analytically that13

the proposed plasticity rules are selective for directions in the space of presynaptic neural14

activities characterized by a negative excess kurtosis.15

Keywords: Fisher Information; Guiding Principle; Excess Kurtosis; Objective Functions;16

Synaptic Plasticity; Hebbian Learning; Independent Component Analysis17si
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1. Introduction18

Many living systems, such as neurons and neural networks as a whole, are guided by overarching19

constraints or principles. Energy [1] and metabolic costs [2] for the information processing of the brain20

act in this context as basic physiological constrains for the evolution of neural systems [3,4], making,21

e.g., efficient coding [5,6] a viable strategy.22

Metabolic costs can be considered as special cases of objective functions [7], which are to be23

minimized. Objective functions can however be used in many distinct settings. For example to guide24

data selection [8] in engineering applications [9], or to guide learning within neural networks in terms25

of synaptic plasticity rules by minimizing an appropriate combination of moments of the neural activity26

[10].27

Objective functions can also be formulated in terms of the probability distribution of the neural28

activity [11], allowing the formulation of information theoretical generative functionals for behavior29

in general [12–16], for neural activity [17,18], for the derivation of neural plasticity rules in terms of30

maximizing the relative information entropy [19], or the mutual information [20–22], and for variational31

Bayesian tasks of the brain through free energy minimization [23].32

1.1. Combining objective functions33

A fundamental question in the context of guiding principles for dynamical systems regards the
combination of several distinct, and possibly competing objective functions. For a survey of optimization
in the context of multiple objective function, see [9]. For discreteness, we start by considering a generic
neural model in which the state of the system is determined by the neural activity yi of neuron i, by the
intrinsic parameters aki = (â)ki (with k = 1, 2, . . . indexing the different internal degrees of freedom)
of the neurons and by the inter-neural synaptic connectivity matrix wij = (ŵ)ij . Within the objective
functional approach one considers evolution equations

ẏi = − ∂
∂yi
Fact(y, â, ŵ)

ȧki = − ∂
∂aki
F int(y, â, ŵ)

ẇij = − ∂
∂wij
F syn(y, â, ŵ)

(1)

for the full dynamical neural system, where there is a specific objective function Fα(y, â, ŵ) for every
class α ∈ {act, int, syn} of dynamical variables. It is important to note, that an overarching objective
function like

Fact(y, â, ŵ) + F int(y, â, ŵ) + F syn(y, â, ŵ), (2)

does generically not exist. In a biological system, each objective function Fα may represent a different34

regulatory mechanism whose coupling occurs only through the biological agent itself [18]. Indeed,35

how exactly these mechanisms interact in neural systems, when formulated in terms of learning rules36

for intrinsic and synaptic plasticity, been subject of study in recent years [19,24]. Furthermore, for a37

stationary input distribution, such an overarching functional would result in a gradient system having38

only point attractors, since limit cycles are not possible in gradient systems [25]. Therefore, a formalism39
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F syn ⇐ Fisher information

⇓
ẇj = . . . ⇒ cubic approximation

↓ ↓
simulations analytic results

Figure 1. Organigram of the approach followed. The objective function F syn for synaptic
plasticity studied here can be motivated by the Fisher information for the synaptic flux. The
resulting plasticity rule ẇj for the synaptic weights will then be investigated both through
simulations and using a cubic approximation in x (which becomes exact, when using the
error functions as a transfer function y(x) = σ(x − b), see Section 2.2), which allows to
derive analytic results for the dependence of the synaptic adaption with respect to the kurtosis
of the input statistics.

aiming to reproduce the wide variety of behaviors found in natural neural systems cannot be formulated40

as a gradient system of a single overarching objective function.41

One needs to keep in mind, however, that it is often not possible to evaluate rigorously gradients of42

non-trivial objective functions, as in (1). Generating functionals are hence implemented, in many cases,43

only approximatively. For the case of information theoretical incentives, as considered in the present44

work, objective functions are, in addition, formulated in terms of time-averaged statistical properties and45

the gradient descent can hence be achieved only through a corresponding time average.46

1.2. Hebbian learning in neural networks47

Within the neurosciences, synaptic plasticity is generally studied under the paradigm of Hebbian48

learning [26], stating generically that neurons that fire together, wire together. Depending on whether49

one considers the frequency (also denoted firing rate), or the timing, of spikes, this principle can have50

different interpretations. In terms of the firing frequency of neurons, Hebbian learning is understood51

as a strengthening of the synaptic connection between two neurons (known as potentiation) when both52

neurons have simultaneously a high activity level or a weakening (depression) of the connectivity if the53

respective periods of high and low activity do not match [10,27]. In the case of Spike Timing Dependent54

Plasticity (STDP) [28,29], where synaptic modification is expressed as a function of the precise timing55

of spikes, on the other hand, the principle of Hebbian learning is understood in terms of causality, stating56

that a directional synaptic connection should be potentiated if two neurons fire in a causal order, and57

depressed otherwise [30,31].58

In the present work we consider rate encoding neurons and therefore formulate plasticity in terms of59

an information theoretical measure of the activity distribution, or alternatively, in terms of the moments60

of this distribution. While the requirement of any such rule to respect the Hebbian principle of learning61
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will naturally constraint the manifold of learning rules, the particular details of each rule will determine62

its functionality. Oja’s rule [27], for instance, is tailored to find the first principal component of a63

multi-dimensional input distribution. The rules we present in this paper, while able to find the first64

principal component of a distribution under certain conditions, as we show in [32], will generically65

perform an independent component analysis by selecting directions of maximal non-Gaussianness.66

1.3. Instantaneous single neuron67

In order to concentrate on the generating principle for synaptic plasticity, we consider here a single
instantaneous point neuron, defined by an activity level y,

y = σ(x− b), σ(z) =
1

1 + e−z
, x =

Nw∑
j=1

wj(yj − ȳj) , (3)

representing the average firing rate of the neuron, where σ(z) is a monotonically increasing sigmoidal
transfer function, denoted in physics as the Fermi function, that converts the total weighed input x (also
referred to as the membrane potential of the neuron) into an output activity. Nw represents the number
of incoming inputs yj , which represent in this case either an external input or the activities of other
neurons in a network. b is a bias in the neuron’s sensitivity and ȳj represents the (trailing) average of the
input activity, such that only deviations from this average contribute to the integrated input. An objective
function for the neural activity is, in this case, not present and the evolution equations (1) reduce to ḃ = −εb ∂

∂b
F int(y, b,w)

ẇj = −εw ∂
∂wj
F syn(y, b,w)

with y = σ
(∑

wj (yj − ȳj)− b
)
, (4)

where we are left only with the objective function for the intrinsic F int and for the synaptic F syn68

plasticity. Here we have, with εb and εw, separated the adaption rates from the definition of the respective69

objective functions.70

1.4. Information theoretical incentives for synaptic plasticity71

In the context of stochastic information processing systems, tools from information theory, such as72

the entropy of a given code or the mutual information between input and output [8], permit to formulate73

objective functions for learning and plasticity in terms the probability distributions of the stochastic74

elements that constitute the system [6,10–12,14,18,19]. Principles such as maximizing the output75

entropy of a system to improve the representational richness of the code [19], maximal information76

transmission for signal separation and deconvolution in networks [33], or maximal predictive information77

within the sensorimotor loop as a guiding principle to generate behavior [34], have proved successful in78

the past in both generating new approaches to learning and plasticity and in furthering the understanding79

of already available rules, integrating them into a broader context by formulating them in terms of a80

guiding principle [10].81

In the present work we discuss a novel synaptic plasticity rule [32] resulting in self-limiting Hebbian82

learning and its interaction with known forms of intrinsic plasticity [19,35]. The novelty of this approach83
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relies on the objective function employed, which can be derived from the Fisher information [36] of the84

output probability distribution with respect to a synaptic flux operator, as shown in Section 2.3. In85

previous work [32,37], we had shown numerically, how a non-linear point neuron employing the Fermi86

function or the inverse tangent as its transfer function from membrane potential to output activity, was87

able to find the first principal component of an ellipsoidal input distribution but showed a preference for88

directions of large negative excess kurtosis otherwise. In the present work, however, we show how, by89

use of the rescaled error function as a transfer function y(x) = σ(x−b), the resulting learning rule, while90

qualitatively equivalent to the ones previously studied, takes the form of a simple cubic polynomial in91

the membrane potential x. This fact, as we will show, represents a important step forward, since it allows92

us to study the attractors of the learning procedure and their stability analytically. In particular, the rule93

is shown to have interesting properties in terms of the moments of the input distributions, resulting in a94

useful tool for independent component analysis, which is thought to be of high relevance for biological95

cognitive systems [27,38,39].96

It is worth mentioning at this point that, while the Fisher information is usually associated with the97

task of parameter estimation via the Cramér-Rao bound [40–42], it generically encodes the sensitivity98

of a probability distribution with respect to a given parameter, making it also a useful tool, both in99

the context of optimal population codes [43–45], or as here, for the formulation of objective functions.100

Indeed, this procedure has been successfully employed in the past in other fields, to derive, for instance,101

the Schrödinger Equation in Quantum Mechanics [46].102

We will start in the following, as illustrated in Fig. 1, with the primary objective function F syn103

for synaptic plasticity, discussing its relation with the Fisher information for the synaptic flux later104

on in Sect. 2.3. Simulation results of the synaptic adaption rules will then be presented in Sect. 3,105

in comparison with the results obtained using an analytically treatable cubic approximation in the106

membrane potential, as presented in Sect. 2.1.107

2. Objective functions for synaptic plasticity108

Our primary objective function for synaptic plasticity is [32]:

F syn = E
[(
N + x (1− 2y)

)2]
, (5)

where E[.] denotes the expected value with respect to the input probability distribution, which can be109

equated to a time-average whenever the input probability distributions are stationary. The objective110

function F syn can be expressed entirely in terms of either x or y, which are related by (3). The current111

form (5) is chosen just for clarity. In Sect. 2.3, we show how F syn can be derived from the Fisher112

information with respect to an operator denoted the synaptic flux operator.113

From (5) one can derive easily, via stochastic gradient descent, the update rule

ẇj = εwG(x)H(x)(yj − ȳj), (6)

with H(x) = −G′(x) and

G(x) = N + x(1− 2y(x)), H(x) = (2y(x)− 1) + 2x(1− y(x))y(x) . (7)
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Figure 2. (a) The plasticity functions G and H , as defined by (7), here expressed entirely in
terms of the output activity y ∈ [0, 1], for clarity. H represents the Hebbian contribution of
the rule, with G acting as a limiting factor, reverting the sign of (6) for activity values close
to 0/1. (b) Plot of the learning rule (6) together with the cubic approximation (8), expressed
this time as a function of the membrane potential x. Parameters: b = 0 and N = 2.

N is a parameter that allows to shift the positions of the roots of G. The synaptic functions G and H114

can also be entirely expressed either in terms of x or y, as shown in Fig. 2. For N = 2 the two synaptic115

functions are proportional to each other’s derivatives, G(x) = 2y(1− y)H ′(x), viz they are conjugate to116

each other [32].117

H(y) is an essentially linear function of positive slope throughout most of the activity range of the118

neuron, see Fig. 2 (a), saturating only for y → 1/0. The product H(y)(yj − ȳj) constitutes hence the119

Hebbian part of the plasticity rule (6), resulting in an increase of the synaptic weight whenever the input120

yj and the output y are correlated.121

The plasticity function G(y), however, reverts the sign of the learning rule if the activity level122

approaches the extremes, y → 1/0, serving hence as a limiting factor. The process hence adapts the123

synaptic weights over time such that the the membrane potential x remains close to the roots of G(x).124

The synaptic weight will consequently also remain finite, making the adaption rules (6) self-limiting.125

2.1. Cubic approximation126

In order to describe the stationary solutions of (6) in terms of the moments of the input probability
distributions, we consider a polynomial expansion in x. The two roots±x0 of the limiting functionG(x),
compare Fig. 2 (a), are symmetric for the case b = 0, considered in the following, and scale ∼ N for
large N [32]. The Hebbian function H(x) has, on the other hand, only a single root at x = 0 (viz at
y = 0.5), for b = 0. We are then led to the cubic approximation

ẇj = εwG(x)H(x)(yj − ȳj) ≈ − εwx(x− x0)(x+ x0)(yj − ȳj)/N2

= εwx(x20 − x2)(yj − ȳj)/N2
(8)

of (6). Note, that the scaling factor 1/N2 > 0 could also be absorbed into the adaption rate εw. In127

Fig. 2 (b) the learning rule (6) is compared to the cubic approximation (8).128
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For convenience we denote γj = (yj − ȳj), and compute with

〈ẇj〉 = εw
1

N2
E

γj
( Nw∑

i=1

wiγi

)
x20 −

(
Nw∑
i=1

wiγi

)3
 , (9)

the time-averaged expectation value of the synaptic weight changes, equating the time average with the
statistical averageE[.] over the distributions p(yj) of the input activities yj . We now assume uncorrelated
and symmetric input distributions,

E[γiγj] = 0 = E[γki ] , k = 1, 3, 5, . . .

The odd moments hence vanish. Here it is important to note that any learning rule defined purely in terms129

of the overall input x = w ·γ, will be fully rotational invariant. Therefore, the result does not depend on130

the direction one chooses for the PCs. In particular, if one chooses the principal components to lie along131

the axes of reference, one can eliminate the linear correlation terms, without loss of generality.132

The synaptic weights are quasi-stationary for small adaption rates εw → 0 and we obtain

〈ẇj〉 = εw
1

N2
wjσ

2
j

(
x20 − w2

jσ
2
jKj − 3Φ

)
(10)

from (9), where we have defined with

σ2
j = E[γ2j ], Kj =

E[γ4j ]

σ4
j

− 3, Φ =
∑
j

w2
i σ

2
j (11)

the standard deviation (SD) σj of the j-the input, the excess kurtosis Kj , and the weighed average Φ of133

the afferent standard deviations.134

2.1.1. Scaling of dominant components135

The stationary solutions w∗j of (10) satisfy

w∗j = 0 ∨ w∗2j σ
2
jKj = x20 − 3Φ , (12)

which implies, that there is a competition between small components w∗j ≈ 0 of the synaptic weight136

vector and large components.137

In [32], the authors trained a neuron with ellipsoidal distributions, consisting of normal distributions
truncated to [0, 1], with one direction having a large SD σ1 (the first principal component, or FPC) and
the rest of the directions having a small SD. In this context, the weight vector aligns to the FPC, resulting
in one large weight (w1). All other synaptic weight adapt to small values. Solving (12) for the large
component yields

|wcub1 | =
x0

σ1
√
K1 + 3

. (13)

We note that the excess kurtosis is bounded from below [47], K ≥ −2 (the probability distribution138

having the lowest possible excess kurtosis of −2 is the bimodal distribution made of two δ-peaks) and139

that consequently K + 3 > 0.140

In Sect. 3.1, a quantitative comparison between (13) and the numerical result of the learning rule is141

presented.142
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2.1.2. Sensitivity to the excess kurtosis143

We are interested now in examining the stability of the solutions obtained via the cubic approximation,
in order to explain why a particular solution could be selected in a given setting and not others. To
simplify the computations, we study the case of two competing inputs with standard deviations σi and
excess kurtosis Ki, for i = 1, 2. Three types of solutions can then, in principle, exist:

(0, 0), (w∗1 6= 0, 0), (w∗1 6= 0, w∗2 6= 0) ,

with the (0, w∗2 6= 0) being the analog of (w∗1 6= 0, 0). One can compute the eigenvalues λ1,2 in each144

case and evaluate the stability of the fixpoints. A sketch of the fixpoints and their stability is presented145

in Fig. 3.146

• The trivial fixpoint (0, 0) is always unstable, with positive eigenvalues

λ1,2(0, 0) = εw
x20
N2

(
σ2
1 , σ

2
2

)
. (14)

• For (w∗1 6= 0, 0) one finds the eigenvalues

λ1,2(w
∗
1 6= 0, 0) = εw

x20
N2

(
−2σ2

1 ,
σ2
2K1

K1 + 3

)
. (15)

The first eigenvalue λ1 is hence always negative with the sign of the second eigenvalue λ2147

depending exclusively on K1. The fixpoint (w∗1 6= 0, 0) is hence stable / unstable for negative148

/ positive K1.149

• The last term 3Φ− x20 in (12) is identical for all synapses. Two non-zero synaptic weights (w∗1 6=150

0, w∗2 6= 0) can hence only exist for identical signs of the respective excess kurtosis, K1K2 ≥ 0. It151

is easy to show that (w∗1 6= 0, w∗2 6= 0) is unstable/stable whenever both K1,2 are negative/positive,152

in accordance with (15).153

The solutions of the type (w∗1 6= 0, 0) are hence the only stable fixpoints when the excess kurtosis of the154

corresponding direction, in this case K1, is negative.155

2.1.3. Principal component analysis156

The observation [32], that the update rules (6) perform a principal component analysis (PCA) can be157

understood on two levels.158

It is, firstly, evident from (10) that 〈ẇj〉 ∼ σ2
j , and that synaptic weight tends hence to grow fast159

whenever the corresponding presynaptic input has a large variance σ2
j .160

Alternatively one can consider the respective phase-space contractions λ(α)1 +λ
(α)
2 , see Eq. (15), around161

the two competing fixpoints w(α=1) = (w∗1 6= 0, 0) and w(α=2) = (0, w∗2 6= 0). Using the expression (15)162

for the case K1 = K2 < 0, one finds that the phase space contracts faster around w(1) when σ2
1 > σ2

2 ,163

and vice versa.164
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K2

K1

Figure 3. Sketch of the fixpoints of (10), which approximates (9), for two competing
weights w1 and w2 as a function of the kurtosis K1 and K2 of the respective input directions.
Open, full and half-full circles represent unstable fixpoints, stable fixpoints and saddles
respectively. The axes are expressed in terms of w2

i , since the solutions are determined
only up to a sign change.

2.2. Alternative transfer functions165

The objective function (5) can be expressed generically [37] as

F syn = E
[(
N + A(x)

)2]
, A(x) =

xy′′

y′
, (16)

where y′ and y′′ represent the first and second derivative of the transfer function y(x) = σ(x − b) with166

respect to x. This expression, which appears as an intermediate step in the derivation of the objective167

function from the Fisher information, compare Section 2.3, reduces to (5) for the sigmoidal transfer168

function defined in (3).169

The qualitative behavior of the learning rule remains unchanged when considering alternative
functional forms for the transfer function y(x), whenever they fulfill the basic requirement of being
smooth monotonic functions with limx→∓∞ y(x) = 0/1. For example, in [37], the authors showed that
this is indeed the case for an arc-tangential transfer function. An interesting transfer function to consider
in this context is the rescaled error function erf(x− b),

y =
1

2
+

1

2
erf

(
x− b
s
√

2

)
=

1

2
+

1√
π

∫ (x−b)/(s
√
2)

−∞
e−z

2

dz =
1√
2πs

∫ x−b

−∞
e−

z2

2s2 dz , (17)
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as defined by the integral of the normal distribution of variance s. The constant s sets the slope of the
transfer function and if one wants to have the same slope as for the original transfer function (3), one
simply sets s = 4/

√
2π. The derivatives of (17) are:

y′ =
1√
2πs

e−
(x−b)2

2s2 , y′′ = −(x− b)
s2

y′ . (18)

Using (16) one obtains

F syn = E

[(
N − x(x− b)

s2

)2
]

(19)

for the objective function and consequently170

ẇj = εw (x− b/2)
(
Ns2 − x(x− b)

)
(yj − ȳj)

= εw (x− b/2)
(
x20 − x(x− b)

)
(yj − ȳj) (20)

for the synaptic plasticity rule, where we have replaced Ns2 by x20, the squared roots for b = 0. Equation
(20) reduces, interestingly and apart from an overall scaling factor, to the cubic approximation (20) for
b = 0:

ẇj = −εwx (x− x0) (x+ x0) (yj − ȳj) = εwx
(
x20 − x2

)
(yj − ȳj) . (21)

For non-vanishing b, we can rewrite (20), as:

ẇj = −εw (x− b/2)
(
x− x−

) (
x− x+

)
(yj − ȳj) . (22)

with
x± = − b

2
±
√
b2/4 + x20 ≈ −

b

2
± x0 , (23)

where the last expression holds for small b. The whole learning rule (21) is therefore, for small bias b,171

simply shifted by a factor b/2.172

Finally, in analogy to (7), we can again write (20) as a product of a Hebbian term (H) and a
self-limiting term (G):

ẇj = εwH(x)G(x)(yj − ȳj), H(x) = (x− b/2) , G(x) =
(
x20 − x(x− b)

)
. (24)

In order to compare to Figure 2 (a), functions G and H , now as defined in (24), are plotted as a function173

of the activity level y in Figure 4 (a).174

We can now easily compute the average weight change for (20) in the same way we did for (8),
obtaining

〈ẇj〉 = εwwjσ
2
j

[(
x20 −

b2

2

)
+

3b

2
wjσjSj − w2

jσ
2
jKj − 3Φ

]
, (25)

where Sj is the skewness of input distribution yj , as defined by

Sj =
E[γ3j ]

σ3
j

. (26)

In expression (25) the interaction between intrinsic and synaptic plasticity becomes evident through b.175

We note that for symmetric input distributions (Sj = 0) as the ones we have been treating, small values176

of b produce only a shift in the effective x0 (provided that b2 is smaller than x20/2).177
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(a) (b)

0 0.25 0.5 0.75 1
y

-2

-1

0

1

2

G
(y

),
 H

(y
)

G
H

10

15

20

25

|w
1|

-2.0 -1.5 -1.0 -0.5 0.0
K1

Numerical (Fermi transf.)
Numerical (Error transf.)
Cubic aproximation

Figure 4. (a) Functions G and H , as in Figure 2 (a), now for (7), here expressed entirely
in terms of the output activity y ∈ [0, 1], for clarity. (b) Final absolute value of the weight
w1 after training, with both learning rules (6) and (20), together with the prediction (13)
from the cubic approximation, as a function of the kurtosis K1 for the direction of the
principal component. For b = 0, σ1 = 0.1, σi 6=1 = σ1/2 and Nw = 100. One observes
that the prediction is practically exact in the case of the error transfer function, remaining
qualitatively similar for the case of the Fermi transfer function (6).

We note that the trivial solution wj = 0 would become stable for negative x20−b2/2. This has however178

not happened for the numerical simulations we performed, which resulted in values of b ≈ 1, for target179

activity levels 〈y〉 as low as 0.1, while x0 = 2.4 for N = 2 (which we used). Even sparser activity levels180

〈y〉 � 1 would require larger firing thresholds b� 1 and stable synaptic plasticity would be achieved be181

selecting then appropriately large N , corresponding to values of x0 such that x20− b2/2 remains positive.182

For non-symmetric distributions the skewness of the input distribution, together with the sign of bwill183

determine the sign w, which was before undetermined, since the learning rules are rotationally invariant.184

2.3. The stationarity principle of statistical learning185

In statistical learning one considers an agent trying to extract information from data input streams186

having stationary statistical properties. In a neural setting, this corresponds to a neuron adapting the187

afferent synaptic weights and learning is complete when the synaptic weights do not change any more.188

At this point, the probability distribution function p(y) of the neural activity y also becomes stationary189

and its sensitivity with respect to changes in the afferent synaptic weight vector vanishes. This is the190

stationarity principle of statistical learning.191

2.3.1. The Fisher information with respect to the synaptic flux192

The Fisher information [36]

Fθ =

∫
pθ(y)

(
∂

∂θ
ln
(
pθ(y)

))2

dy (27)

encodes the average sensitivity of a given probability distribution pθ(y) with respect to a certain193

parameter θ, becoming minimal whenever θ does not influence the statistics of y. The Fisher information194
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is hence a suitable information theoretical functional for the implementation of the stationary principle195

of statistical learning.196

We drop the index θ in the following and consider in a first step a neuron with Nw = 1 afferent
neurons. We define with

F synNw=1 =

∫ (
w1

∂

∂w1

ln (p(y(y1)))

)2

p(y1)dy1 (28)

an objective function for synaptic plasticity, measuring the sensibility of the neural activity with respect197

to the afferent synaptic weight w1. Here y(y1) is given by σ(w1(y1 − ȳ1) − b), as defined in Eq. (3).198

There are two changes with respect to the bare Fisher information (27).199

• The operator w1∂/∂w1 corresponds to a dimensionless differential operator and hence to the200

log-derivative. The whole objective function F synNw=1 is hence dimensionless.201

• The average sensitivity is computed as an average over the probability distribution p(y1) of the202

presynaptic activity y1, since we are interested in minimizing the time average of the sensitivity203

of the postsynaptic activity with respect to synaptic weight changes in the context of a stationary204

presynaptic activity distribution p(y1).205

For a distribution p(y(y1)), for which y is a monotonic function of y1, we have

p(y(y1))dy = p(y1)dy1, p(y(y1)) =
p(y1)

∂y/∂y1
, (29)

which allows us to rewrite (28) as:

F synNw=1 =

∫ (
w1

∂

∂w1

ln

(
p(y1)

∂y/∂y1

))2

p(y1)dy1 . (30)

Defining with y = (y1, . . . , yNw) the vector of afferent synaptic weights and with p(y) the corresponding
probability distribution function we may generalize (30) as

F synNw
=

∫ ( Nw∑
j=1

wj
∂

∂wj
ln

(
p(yj)

∂y/∂yj

))2

p(y)dy , (31)

where we have replaced p(y(y)) from (28) by p(yj)

∂y/∂yj
, in what constitutes the independent synapse

extension, and which represents the Fisher information with respect to the flux operator:

∂

∂θ
→

∑
j

wj
∂

∂wj
= w · ∇w , (32)

which is a dimensionless scalar. Some comments:206

• Minimizing F synNw
, in accordance with the stationarity principle for statistical learning, leads207

to a synaptic weight vector w which is perpendicular to the gradient ∇w(log(p)), restricting208

consequently the overall growth of the modulus of w.209
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• In F synNw
there is no direct cross talk between different synapses. Expression (32) is hence adequate210

for deriving Hebbian-type learning rules in which every synapse has access only to locally211

available information, together with the overall state of the postsynaptic neuron in terms of its212

firing activity y, or its membrane potential x. We call (32) the local synapse extension with respect213

to other formulations allowing for inter-synaptic cross talk.214

• It is straightforward to show [37], that (31) reduces to (5), when using the relations (3), viz F synNw
=215

F syn when we identify N → Nw. We have, however, opted to retain N generically as a free216

parameter in (5), allowing to shift appropriately the roots of G(x).217

3. Results and Discussion218

3.1. Quantitative comparison of the model and the cubic approximation219

In the present section we test the prediction of equation (13) for the dependence of the weight size on220

the standard deviation σj and kurtosis Kj of the input distribution. Given that the input distribution has221

a finite width, the integrated input x cannot fall into the minima of the objective function for every point222

in the distribution, but rather the cloud of x points generated will tend to spread around these minima.223

The discrepancies in the rule from the cubic approximation in the vicinity and away from the minima are224

then expected to affect the final result of the learning procedure.225

In order to test (13), we use as an input for the direction of the first principal component (FPC, which
is chosen to be along y1, without loss of generality), the sum

1

2

[
N

(
x− 1 + 2d

2
, σs

)
+N

(
x− 1− 2d

2
, σs

)]
of two normal distributions N(x, σs) with individual standard deviations σs, whose peaks are at a226

distance ±d from the center of the input range (0.5).227

• σs is adjusted, changing d, such that the overall standard deviation σ1 remains constant. In this228

way, one can select with d different kurtosis levels, while retaining a constant standard deviation.229

For d = 0, one gets a bound (since y1 ∈ [0, 1]) normal distribution with K1 ≈ 0 (slightly negative230

since the distributions are bound). In this way, we can evaluate the size of w1 after training for a231

varying K1 ∈ [−2, 0) for any given σ1.232

• For the other Nw − 1 directions, we use bound normal distributions with standard deviations σi =233

σ1/2 as in [32].234

We tested training the neuron using both the original learning rule (6), derived for the Fermi transfer235

function, and the cubic rule (20) for the error function.236

In Figure 4 (b), the value of w1 after training is presented together with the prediction (13) from the237

cubic approximation, as a function of K1 (the kurtosis in the y1 direction), for a constant b = 0. In this238

case we have used σ1 = 0.1, and σi 6=1 = σ1/2.239

The prediction of the cubic approximation is indeed practically exact for the error transfer function,240

as expected, since the input distributions are symmetric and, if one sets the axes parallel to the241
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σ(x-b)

t w

youtput

w

Examples for w

yinputs

Figure 5. A single neuron, whose synaptic weights evolve according to (6) is presented with
a set of input images consisting of the non-linear superposition of a random set of bars. We
find that, on subsequent iterations, the neuron becomes selective to either single bars (the
independent components of the input distribution), or to points.

principal components, as we did in this case, the correlation terms indeed vanish, therefore fulfilling the242

assumptions made during the averaging procedure. Apart from this procedure no other approximations243

were made in this case, since the rule for the error function is identical to the cubic approximation in the244

b = 0 case.245

As shown in Figure 2 (b), even though the cubic approximation is able to reproduce the roots of246

the learning rule derived for the Fermi transfer function, the cubic approximation grows faster in the247

outer region, restricting the growth of the synaptic weight more than the original rule would. One248

therefore expects the cubic approximation to underestimate the final value of w1, as indeed is observed249

in Figure 4 (b). When K = −2, the input distribution becomes the sum of two deltas and the rule is able250

to assign each delta to a root. The prediction is of course once again exact in this case. Otherwise, while251

the quantitative result differs from one rule to another, the qualitative behavior remains unchanged.252

3.2. Independent component analysis: an application to the nonlinear bars problem253

Incoming signals may result from the sum of non-Gaussian independent sources and the process of254

extracting these sources is denoted independent component analysis (ICA) [48].255

The non-Gaussianness of the independent sources may be characterized in principle by any quantity256

which is zero for the normal distribution and non-zero otherwise. Common measures include the257

kurtosis K and the skewness S, or the negentropy in general. For a comprehensive summary of the258

principles behind typical ICA procedures, as well as a description of independent components in terms259

of the cumulative moments of the probability distributions, see [49]. Our learning rule is functionally260
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dependent both on the kurtosis in general, as evident within the cubic approximation (10), and on the261

skewness for non-zero bias b (25), and hence prone to perform an ICA. We note, however, that this262

dependency does not result from maximizing a given measure of non-Gaussianness, as performed in263

the past by several groups [50,51]. The resulting preference for non-Gaussianness is in the case of the264

present work a by-product of the stationarity principle of statistical learning. In [27], the author shows265

how, under certain conditions, a neural network evolving under a nonlinear principal component analysis266

learning rule, is also capable of performing ICA.267

The classical ICA is, strictly speaking, defined only for linear superpositions of sources. One can268

generalize this concept to non-linear tasks and we test our multiplicative learning rule (6) using a269

classical example for a non-linear ICA: the non-linear bars problem [35], in which a neuron, or a network270

of neurons, is trained with a set of inputs, each representing an image consisting on the non-linear271

superposition of horizontal and vertical bars.272

In a grid of Nw inputs where Nw = L×L, each horizontal and vertical bar has a constant probability273

of being present of p = 1/L. Each input or pixel can take only two values: a low intensity and a high274

intensity value. Each bar then corresponds to a whole row or a column of high intensity pixels, where275

at the intersection of two bars the pixel has the same value (high) as in the rest of the bar, making the276

problem non-linear.277

The here examined synaptic plasticity rules (6) are able, as illustrated in Fig. 5, to discriminate278

individual bars, the independent components of the input patterns, or points [37]. One might argue279

that, given that in the original training set of [35] single bars will occur in the training set with a finite280

probability, the neuron is simply selecting this particular input. To rule out this possibility, we trained281

the neuron also with sets having at least of one horizontal and one vertical bar each time, so that no bar282

is ever presented in isolation. No appreciable change in the performance was observed.283

4. Conclusions284

We presented guiding principles for deriving plasticity rules for the synaptic weight of interconnected285

neurons which are motivated by considering an information theoretical measure, namely the Fisher286

information, for the implementation of the stationarity principle of statistical learning. We showed287

how, in the case of ellipsoidal input distributions, the resulting plasticity rules find, as usual for288

Hebbian learning, the dominant principal component in the data input stream, when present, being289

selective otherwise for non-Gaussianness in terms of the excess kurtosis and the skewness of the input290

activities. The plasticity rules are hence also prone to perform an independent component analysis, as291

we demonstrated by considering the non-linear bars problem.292

The here examined adaption rules are self-limiting. This is a natural consequence of implementing293

the stationarity principle of statistical learning, which states that the statistics of the postsynaptic neural294

firing will become stationary whenever learning is complete and when the statistics of the input activity is295

itself stationary. The self-limitation is achieved through a multiplicative factor to the usual Hebbian-type296

plasticity function, in contrast to other approaches, where runaway growth of the synaptic weights is297

avoided by performing either an overall renormalization of the synaptic weights, or by adding an explicit298

weight decay term.299
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In previous work [32], a numerical comparison between the learning rules here proposed and the300

traditionally employed Oja’s rule was performed, showing differences in the sensitivity to higher301

moments of the input distribution (Oja’s rule is tailored to be sensitive to the second moment of the302

input distribution only), as well as a stark contrast in terms of transient dynamics. While Oja’s rule303

predicts the neuron to learn and unlearn the direction of the PCA within the same timescale when a304

new interesting direction is presented, a fading memory effect is observed when the present rules are305

employed. We believe then, that depending on the application at hand, and the level of noise in the306

environment, one or the other might prove more suitable.307

The objective function (16) and the learning rules discussed here depend on the specific form308

y(x) of the transfer function, becoming a cubic polynomial in the membrane potential x when the309

transfer function is a rescaled error function. This cubic plasticity rule (20) is, at the same time, an310

excellent approximation for the update rule (6) valid for sigmoidal transfer functions, allowing to derive311

analytically the sensibility of our learning rules to the excess kurtosis, as discussed in Sect. 2.1.2. The312

polynomial update rules allows also to study, given its polynomial character, the stability of the learning313

dynamics quite general in terms of the moments of the input distribution.314

Finally, we have shown here and in [37], how neurons operating under several transfer functions, and315

with learning rules which are only qualitatively equivalent to the cubic function, are able to perform316

identical computational tasks. We have also tested whether a neuron defined by one particular transfer317

function can be trained using the learning rule derived for another choice of sigmoidal function, finding318

no major changes to the results. The procedure is then very robust to quantitative deviations from the319

derived rules, as long as the plasticity rule remains qualitatively similar to a cubic polynomial in the320

membrane potential, an important requirement for biological plausibility.321
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18. Marković, D.; Gros, C. Intrinsic adaptation in autonomous recurrent neural networks. Neural362

Computation 2012, 24, 523–540.363

19. Triesch, J. Synergies between intrinsic and synaptic plasticity mechanisms. Neural Computation364

2007, 19, 885–909.365

20. Linsker, R. Local synaptic learning rules suffice to maximize mutual information in a linear366

network. Neural Computation 1992, 4, 691–702.367

21. Chechik, G. Spike-timing-dependent plasticity and relevant mutual information maximization.368

Neural computation 2003, 15, 1481–1510.369

22. Toyoizumi, T.; Pfister, J.P.; Aihara, K.; Gerstner, W. Generalized Bienenstock–Cooper–Munro370

rule for spiking neurons that maximizes information transmission. Proceedings of the National371

Academy of Sciences of the United States of America 2005, 102, 5239–5244.372

23. Friston, K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience373

2010, 11, 127–138.374

24. Mozzachiodi, R.; Byrne, J.H. More than synaptic plasticity: role of nonsynaptic plasticity in375

learning and memory. Trends in neurosciences 2010, 33, 17–26.376

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

, S
. E

ck
m

an
n 

&
 C

. G
ro

s;
 "

T
he

 F
is

he
r 

In
fo

rm
at

io
n 

as
 a

 N
eu

ra
l G

ui
di

ng
 P

ri
nc

ip
le

 f
or

 I
nd

ep
en

de
nt

 C
om

po
ne

nt
 A

na
ly

si
s"

E
nt

ro
py

, V
ol

. 1
7,

 N
o.

 6
, p

p.
 3

83
8-

38
56

, 2
01

5.



Version June 5, 2015 submitted to Entropy 18 of 19

25. Strogatz, S.H. Nonlinear dynamics and chaos: with applications to physics, biology and377

chemistry; Perseus publishing, 2001.378

26. Hebb, D.O. The organization of behavior: A neuropsychological theory; Psychology Press, 2002.379

27. Oja, E. The nonlinear PCA learning rule in independent component analysis. Neurocomputing380

1997, 17, 25–45.381

28. Bi, G.q.; Poo, M.m. Synaptic modifications in cultured hippocampal neurons: dependence on382

spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience 1998,383

18, 10464–10472.384

29. Froemke, R.C.; Dan, Y. Spike-timing-dependent synaptic modification induced by natural spike385

trains. Nature 2002, 416, 433–438.386

30. Izhikevich, E.M.; Desai, N.S. Relating stdp to bcm. Neural computation 2003, 15, 1511–1523.387

31. Echeveste, R.; Gros, C. Two-trace model for spike-timing-dependent synaptic plasticity. Neural388

computation 2015, 27, 672–698.389

32. Echeveste, R.; Gros, C. Generating functionals for computational intelligence: The Fisher390

information as an objective function for self-limiting Hebbian learning rules. Frontiers in391

Robotics and AI 2014, 1.392

33. Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind393

deconvolution. Neural computation 1995, 7, 1129–1159.394

34. Martius, G.; Der, R.; Ay, N. Information driven self-organization of complex robotic behaviors.395

PloS one 2013, 8, e63400.396

35. Földiak, P. Forming sparse representations by local anti-Hebbian learning. Biological cybernetics397

1990, 64, 165–170.398

36. Brunel, N.; Nadal, J.P. Mutual information, Fisher information, and population coding. Neural399

Computation 1998, 10, 1731–1757.400

37. Echeveste, R.; Gros, C. An objective function for self-limiting neural plasticity rules.401

Proceedings of the European Symposium on Artificial Neural Networks, Computational402

Intelligence and Machine Learning (ESANN) (In press: to appear in April 2015).403

38. Hyvärinen, A.; Karhunen, J.; Oja, E. Independent component analysis; Vol. 46, John Wiley &404

Sons, 2004.405

39. Bell, A.J.; Sejnowski, T.J. The “independent components” of natural scenes are edge filters.406

Vision research 1997, 37, 3327–3338.407

40. Paradiso, M. A theory for the use of visual orientation information which exploits the columnar408

structure of striate cortex. Biological cybernetics 1988, 58, 35–49.409

41. Seung, H.; Sompolinsky, H. Simple models for reading neuronal population codes. Proceedings410

of the National Academy of Sciences 1993, 90, 10749–10753.411

42. Gutnisky, D.A.; Dragoi, V. Adaptive coding of visual information in neural populations. Nature412

2008, 452, 220–224.413

43. Bethge, M.; Rotermund, D.; Pawelzik, K. Optimal neural rate coding leads to bimodal firing rate414

distributions. Network: Computation in Neural Systems 2003, 14, 303–319.415

44. Lansky, P.; Greenwood, P.E. Optimal signal in sensory neurons under an extended rate coding416

concept. BioSystems 2007, 89, 10–15.417

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

, S
. E

ck
m

an
n 

&
 C

. G
ro

s;
 "

T
he

 F
is

he
r 

In
fo

rm
at

io
n 

as
 a

 N
eu

ra
l G

ui
di

ng
 P

ri
nc

ip
le

 f
or

 I
nd

ep
en

de
nt

 C
om

po
ne

nt
 A

na
ly

si
s"

E
nt

ro
py

, V
ol

. 1
7,

 N
o.

 6
, p

p.
 3

83
8-

38
56

, 2
01

5.



Version June 5, 2015 submitted to Entropy 19 of 19

45. Ecker, A.S.; Berens, P.; Tolias, A.S.; Bethge, M. The effect of noise correlations in populations418

of diversely tuned neurons. The Journal of Neuroscience 2011, 31, 14272–14283.419

46. Reginatto, M. Derivation of the equations of nonrelativistic quantum mechanics using the420

principle of minimum Fisher information. Physical Review A 1998, 58, 1775–1778.421

47. DeCarlo, L.T. On the meaning and use of kurtosis. Psychological methods 1997, 2, 292.422

48. Comon, P. Independent component analysis, a new concept? Signal processing 1994,423

36, 287–314.424

49. Hyvärinen, A.; Oja, E. Independent component analysis: algorithms and applications. Neural425

networks 2000, 13, 411–430.426

50. Girolami, M.; Fyfe, C. Negentropy and kurtosis as projection pursuit indices provide generalised427

ICA algorithms. A. C, Back A (eds.), NIPS-96 Blind Signal Separation Workshop, 1996, Vol. 8.428

51. Li, H.; Adali, T. A class of complex ICA algorithms based on the kurtosis cost function. Neural429

Networks, IEEE Transactions on 2008, 19, 408–420.430

c© June 5, 2015 by the authors; submitted to Entropy for possible open access431

publication under the terms and conditions of the Creative Commons Attribution license432

http://creativecommons.org/licenses/by/4.0/.433

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. E

ch
ev

es
te

, S
. E

ck
m

an
n 

&
 C

. G
ro

s;
 "

T
he

 F
is

he
r 

In
fo

rm
at

io
n 

as
 a

 N
eu

ra
l G

ui
di

ng
 P

ri
nc

ip
le

 f
or

 I
nd

ep
en

de
nt

 C
om

po
ne

nt
 A

na
ly

si
s"

E
nt

ro
py

, V
ol

. 1
7,

 N
o.

 6
, p

p.
 3

83
8-

38
56

, 2
01

5.


	Introduction
	Combining objective functions
	Hebbian learning in neural networks
	Instantaneous single neuron
	Information theoretical incentives for synaptic plasticity

	Objective functions for synaptic plasticity
	Cubic approximation
	Scaling of dominant components
	Sensitivity to the excess kurtosis
	Principal component analysis

	Alternative transfer functions
	The stationarity principle of statistical learning
	The Fisher information with respect to the synaptic flux


	Results and Discussion
	Quantitative comparison of the model and the cubic approximation
	Independent component analysis: an application to the nonlinear bars problem

	Conclusions

