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Abstract. Accurate and reliable detection of heat in dairy cows is es-
sential for a controlled reproduction and therefore, for maintaining milk
production. Classical approaches like visual identification are no longer
viable on large dairy herds. Several automated techniques of detection
have been proposed, but expected results are only achieved by expen-
sive or invasive methods, because practical methods are not reliable. We
present a method that aims to be both practical and accurate. It is
based on simple attributes extracted from 3D acceleration data and well
known classifiers: multilayer perceptrons, support vector machines and
decision trees. Results show promising detection ratios, above 90% in
several configurations of the detection system. Best results are achieved
with multilayer perceptrons. This information could be readily incorpo-
rated to the automated system in a dairy farm and help to improve its
efficiency.

Keywords: estrus recognition, dairy cattle, binary classification, mul-
tilayer perceptron, support vector machine, decision tree, accelerometer

1 Introduction

Dairy cows must calve on intervals of 12-14 months to maximize average daily
milk production on their lifetime. A deficient detection of heat (estrus) is one
of the main factors that negatively affects calving intervals and reproductive
management. Timely insemination is crucial for reproduction and heat detection
is the key to the successful use of artificial insemination [1]. The most common
cause of a poor detection of heat is failure to watch cows for long enough periods.
Cows should be watched at least three times a day, for a period of 20-30 minutes.
Thus, as monitoring technology progress, several systems for automated heat
detection has been proposed [2]. However, current methods show satisfactory
results only for expensive measurements, while simpler methods present high
error rates and none of them is completely automatic.

Cows go into heat with an average cycle of 21 days (normal cycle may vary
from 18 to 24 days). The average duration of standing heat is 18 hours, and
periods between 12 and 24 hours are considered normal. Hot and cold environ-
mental temperatures tend to reduce the length of estrous periods, and increase
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the difficulty in detecting heat [1]. Successful artificial insemination relies on
correct heat identification because it is only possible in a short-time window
after heat [3]. Missing a cycle will delay the next calving unnecessarily, causing
economical and sustainability complications.

When a cow is in heat exhibits behavioral patterns which are distinctly dif-
ferent from the rest of the estrous cycle. For example, some signs of heat are:
increased nervousness and/or restlessness which result in greater physical activ-
ity, cows that mount each other, and group formation of sexually active cows [1].
Except for [3], no works on automatic recognition of heat behaviors has been
found in the literature. In similar problems, identification of behaviors or ac-
tivities from sensors has been tried on humans [4, 5] and animals [6–10]. For
example, authors in [4] attempted to identify everyday human activities with
wearable sensors. In [7] is presented an automatic system that decodes ingestive
sounds of cattle and gives information of grazing behavior. In [10] a method
for behavior recognition of cows using a 3D accelerometer and support vector
machine is proposed. Behaviors analyzed —such as standing, feeding, walking—
were distinguishable by direct observation of a non expert. However, visual de-
tection of heat behavior is possible but require an expert. Some activities last for
minutes and other just for a few seconds ill conditioning the detection problem.
Classification shows weak results because some behaviors were often confused.

In the past two decades several methods have been proposed for automatic
heat detection [2]. Some of them have excellent accuracy but they involve mea-
surements that are expensive, impractical or invasive. For example, body or
milk temperature were considered, but they are not useful for practical applica-
tions, since both are highly influenced by external factors [11]. Milk progesterone
achieved good rates of detection but at the expense of high costs and extra labor.
Voluntary activity of cows were considered as an important indicator of heat, but
additional observations and the use of a cow calendar are suggested as necessary
conditions for sufficiently high detection. In recent years, technological improve-
ments have enabled the development of devices that combine activity sensing
with other measurements, such as lying/standing conditions. For example, in [3]
a change detection algorithm was proposed by combining information from step
count and lying time.

Acceleration signals have been found as a feasible source for automated iden-
tification of behavior patterns in animals and humans [9, 8, 12], however, no at-
tempts to automatically detect heat from acceleration data have been reported.
In this work is presented a strategy that has shown promising results and that
has several advantages: data is collected in a simple and not invasive way, by
attaching the device to the collar of the animal; recording device and data pro-
cessor are not expensive; data processing is fast, results can be obtained seconds
after that data is downloaded from the device; expert can concentrate only on
those cows that show altered behaviors, a useful attribute in large herds. Acceler-
ation records are filtered and segmented. After that, simple statistical attributes
are extracted from each segment. Extracted features from a segment are shown
to a classifier, which decides if the record belongs to a normal cow or a cow in
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heat. Tested classifiers are multilayer perceptrons, support vector machines and
decision trees.

The rest of this article is organized as follows: Section 2 introduces the an-
alyzed signals and gives a detailed description of the detection method, includ-
ing feature extraction and classification. Section 3 describes data collection and
datasets generation. Results are presented and discussed in Section 4 and finally
the conclusions are given in Section 5.

2 Detection method

Analyzed signals consist of three-dimensional acceleration varying through time.
A fragment of a typical acceleration record is shown in Fig. 1. The three upper
plots correspond to the acceleration on north (an), east (ae), and up (au) direc-
tions. The bottom plot represents the magnitude of the total acceleration vector
|a| =

√
a2n + a2e + a2u. Accelerations on vertical axes are given in m/s2. Time

on horizontal axes is given in s. Visual differences are not evident when signals
recorded on normal cows and cows in heat are compared. Thus, a threshold, or
some other rule, can not be defined.

A pattern recognition approach where the proposed system learns from la-
beled examples is applied. In a simplified scheme, the recognition system can
be seen as a pipeline with two main stages: feature extraction (Section 2.1) and
classification (Section 2.2). The feature extraction stage involves the conversion
of the raw signal into a vector of attributes. In the classification stage, these fea-
ture vectors are given as an input to the classifier, which estimates the class that
each vector belongs to. In the following subsections both stages will be explained
in detail.

2.1 Basic feature extraction

The problem of interest is the detection of discriminative changes in the dy-
namic patterns contained in the records. A record could be extremely long and
the translation into only one feature vector would not be the best choice. Further-
more, records of different duration are the typical situation. A common strategy
in the field of signal processing involves the division of the original records into
time fixed-length segments and then the translation of each segment into a fea-
ture vector. The flow of this processing strategy can be seen in Fig. 2. Each fea-
ture vector xi represents a segment labeled as i and is integrated by attributes
extracted from an, ae, au and |a|. Therefore, from each record a collection of
feature vectors is generated. Five attributes are extracted from the acceleration
signal in each direction, which finally are organized to form a feature vector xi

of twenty elements.
The shadowed area in Fig. 2 corresponds to the feature extraction detailed

for an in Fig. 3. The same is applicable to au, ae and |a|. First, a high pass
filter is applied to the an segment, thus, baseline components of the signal are
separated from those related to movements. The cutoff frequency will be defined
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Fig. 1. Fragment of a typical record. From top to bottom, an, ae and au plots corre-
spond to the acceleration on north, east and up directions. The magnitude of the total
acceleration vector |a| =

√
a2
n + a2

e + a2
u is shown in the last plot.
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Fig. 2. Extraction of feature vector from a segment of the original signal.

later. Then, from the filtered signal five features are extracted: energy, maximum,
minimum, amplitude (max − min) and standard deviation. These characteristics
are stored as five float numbers that are arranged in a feature vector. Feature
extraction processing is developed using Matlab.

In a following stage, feature selection is achieved using methods implemented
in [13]. Correlation-based Feature Subset Selection (CFS) is selected for evalu-
ation in combination with an exhaustive search. CFS evaluates the worth of a
subset of attributes by considering the individual predictive ability of each fea-
ture along with the degree of redundancy between them. Subsets of features that
are highly correlated with the target class, while having low intercorrelation, are
preferred. Restricted by the available data, only a preliminary feature selection
is done.

2.2 Classification

A proper design of a classifier involves the separation of data into training and
testing sets. Each feature vector in the training set contains one target value
(the class label) and several attributes (the extracted features). Based on the
training data, the goal of the classifier is to predicts the target values of the test
feature vectors given only the attributes [14].

After successfully representations are constructed from segmented accelera-
tion data, the problem of automatic heat recognition follows naturally. It may be
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Fig. 3. Features extraction from a segment of raw signal.

simply considered as a binary classification problem where each feature vector-
label pair consist of 20 attributes and a label that indicates heat or normal.
In this work, three conventional static classifiers are tested: feed forward neural
networks, support vector machines, and decision trees.

The assumption of this approach is that each segment contain enough infor-
mation to represent one of the two target classes. That is, the discriminatory
information is conserved after segmentation. Moreover, segments are considered
independent. Thus, feature vectors can be presented to classifiers in any order.
All classifiers are implemented using [13], except for the support vector machines,
that are implemented with [15].

Multilayer Perceptron (MLP) is a conventional feed-forward artificial neural
network design that can deal with non-linearly separable data. Consists of several
layers of nodes in a directed graph, with each layer fully connected to the next
one. Each neuron uses a hyperbolic tangent as the activation function. For further
details see [16].

In this work, the number of inputs is set to 20 and the number of outputs
to 2. One hidden layer is used. Attributes are normalized and labels binarized.
Learning rate is fixed to 0.3, momentum to 0.2 and epochs to 1000. The re-
maining options are leaved in their default values. In preliminary experiments,
significant changes were not observed using different number of neurons in the
hidden layer. Thus, 5 neurons are used as it provided the best results.

Support vector machines (SVM) is a useful machine learning technique
for binary classification problems. Conceptually, input feature vectors are non-
linearly mapped to a very high-dimension feature space. The mapping to a higher
dimension is done by a kernel function K. In this feature space a linear decision
surface is built. That surface is a hyperplane and is located to achieve the max-
imal margin of separation between the two classes (see [17] or [18] for detailed
explanations). In this work, a radial basis function K(xi,xj) = e−γ|xi−xj|2 is
chosen with a soft margin penalty for misclassifications. Penalty coefficient C
and parameter γ are optimized over the independent dataset (sets will be de-
scribed in Section 3). Remaining parameters of the classifier are kept on their
default values.
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Decision Trees (DT) are characterized by the fact that an unknown feature
vector is classified into a class using one or several decision functions in a se-
quential manner. In general, a decision tree consists of a root node, a number
of interior nodes, and a number of terminal nodes. The root node and interior
nodes, collectively referred as non-terminal nodes, are linked into decision stages;
the terminal nodes represent final classifications. Associated with the root node
is the entire set of classes into which a feature vector may be classified. Each
node consists of a set of classes to be discriminated, the set of features to be used,
and the decision rule for performing the classification. For further details see [19,
20]. In this work, a decision tree is built using the C4.5 algorithm. Changes in
pruning confidence did not reflected significant differences. Thus, default settings
are used.

3 Data collection and datasets

Three-dimensional acceleration were recorded using an inertial measurement unit
(IMU) placed inside a box securely attached to the collar of the animal (Fig. 4).
The IMU combines triaxial gyroscope, accelerometer, and compass sensors in
conjunction with advanced processing to give reliable measurements. Normal
signals were recorded during grazing on a cow that was not in heat. Records
corresponding to heat were recorded on a cow that exhibited signs of heat. The
data collected when the animal was tied or influenced by the experiment itself
were excluded from the analysis. Sampling rate was fixed to 1 Hz for all records.
The mean record duration was 5 minutes.

x

y

z
Recording device

Fig. 4. Schematic ilustration of recording device attached to the top of the collar.
Direction of positive x, y and z acceleration axes are shown.

Gravity and north directions were registered as versors at the same sampling
rate in conjunction with accelerations. East versor was obtained by cross product
between gravity and north versors. Up direction was obtained simply as the
opposite to gravity. After that, acceleration on x, y and z axes were projected
over north, east and up directions.
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In each record, signals were segmented in blocks of 20, 40, 60, 80 and 100
seconds. The segments, or blocks, were generated by a fixed-length time window,
without overlap. The window was moved across the original signals from the end
to the beginning, and any remaining samples were discarded. As it was detailed
in Section 2.1, feature vectors were created by filtering and extracting features
from one segment at a time. The first five datasets listed in Table 1 correspond
to the extraction of features without filtering. The remaining ten datasets were
obtained by applying a high pass filter with a cutoff frequencies of 0.15 and
0.25 Hz. Those frequencies were selected in preliminary experiments as they
seem to give a good balance between energy conservation and low frequencies
attenuation.

The resulting number of feature vectors extracted from raw signals are listed
in Table 1. Each feature vector belongs to heat or normal class and is represented
by the 20 attributes detailed in Section 2.1.

Table 1. Description of datasets generated from raw signals. In the columns: size of
segments, number of feature vectors, and cutoff frequency of the filter.

Dataset Segments size High pass Number of
name (seconds) frequency (Hz) feature vectors

D1 20 0.00 49
D2 40 0.00 24
D3 60 0.00 15
D4 80 0.00 11
D5 100 0.00 9

D6 20 0.15 49
D7 40 0.15 24
D8 60 0.15 15
D9 80 0.15 11
D10 100 0.15 9

D11 20 0.25 49
D12 40 0.25 24
D13 60 0.25 15
D14 80 0.25 11
D15 100 0.25 9

To perform feature and model selection, a subset of 12 feature vectors was
extracted from D1. Selected feature vectors were removed from D1 to non in-
validate the cross validation of the next section. Therefore, two new sets were
defined, D1s (for selection) and D1c (for classification), where D1s ∪D1c = D1

and D1s ∩ D1c = ∅. Analogous division was performed over D6 and D11 sets.
Parameter selection for SVM was carried over the union set D1s ∪D6s ∪D11s.
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4 Results and discussion

Because the number of feature vectors in each dataset were small, leave-one-
out cross-validation was applied. In leave-one-out cross-validation the number of
folds was fixed to the number of feature vectors in the dataset. In each iteration,
one feature vector was used for testing and the remaining feature vectors were
used for training the classifier. The test results were collected and averaged over
all folds [21]. Performance of classifiers was measured by counting the proportion
of correctly predicted feature vectors in the unseen test dataset. That is, the
classifier accuracy.

As it was introduced at the end of Section 2.1, a feature selection was carried
on. The selected attributes were: total maximum (maxt) inD1s, up energy (eneu)
in D6s and east amplitude (ampe) in D11s. During classification we compared
the performance of using all attributes and only the 3 selected. Datasets that
contain all features will be named as DAf , and datasets that contain only the 3
selected as D3f .

4.1 Detection results

Classification accuracy for the proposed classifiers is shown in Fig. 5. Top plot
corresponds to MLP, the middle to SVM and the bottom one to DT. Labels
on horizontal axis represent the conditions under each dataset was created. For
example, a dataset created by segments of 40 seconds and a filtering frequency
of 0.15 Hz is shown as the seventh pair of columns, from left to right. White
bars are the result of using all the features and grey bars correspond to accuracy
classification using only the selected attributes (maxt, eneu and ampe).

Results for MLP (Fig. 5(a)) using all features are analyzed first. Accuracy
achieved over datasets created without filtering (D1-D5) improves as the length
of segments gets reduced. The best result is obtained over the dataset D2, that
corresponds to segments of 40 seconds length. Classification accuracy on datasets
created by filtering at 0.15 Hz (D6-D10) improves as the length of segments is
increased. Thus, short segments are preferred for non-filtered signals, and large
segments for filtered signals. The reason behind these results is related to the
attributes that contribute more to the final decision. Recalling feature selection,
total maximum (a local attribute) was selected for non-filtered signals (D1s),
and up energy (a global measure) was selected for filtered signals at 0.15 Hz
(D6s). Local attributes are attenuated during filtering process and that explain
the apparently opposed results. Finally, accuracy achieved on datasets created
by 0.25 Hz filtering frequency (D11 to D15) are not influenced by the length of
the segments. Because all discriminatory information, that improve results over
datasets D1 to D10, is no longer available after the 0.25 Hz filtering, in D11 to
D15. Better results are expected for MLP using selected attributes (maxt, eneu
and ampe), because least and relevant features tend to generalize better than
using all features. An improvement can be seen for the datasets that correspond
to 0.15 Hz filtering and short segments (≤ 60 s).
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Fig. 5. Classification accuracy for (a) MLP, (b) SVM and (c) DT. Labels on horizontal
axis correspond to the conditions under each dataset was created (size of segments
and filtering frequency). White bars were obtained using all the features and gray bars
using selected attributes (maxt, eneu and ampe).
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Obtained results using all features and SVM (Fig. 5(b)) were better for short
segments, under any filtering condition. This tendency could be influenced by the
difficulty to generalize when just a few feature vectors are in the training dataset
(the number of feature vectors decreases as length of segments increases). In gen-
eral, classification using only the selected features show poorer or similar results.
The SVM classifier is more immune to irrelevant features, thus, eliminating them
do not change the results. Instead, if an important feature is dropped out the
performance of the classifier will be reduced. Best result for SVM corresponds
to 20 seconds segments, 0.15 Hz filter cutoff and all features.

Classification accuracy for DT (Fig. 5(c)) show results that are reasonably
good in almost all datasets, above 77% and reaching a 93% in the best situa-
tion. Over datasets created without filtering, a peak is observed on 60 seconds
segments and all features. Using only selected features the results improve in
the five datasets, and a unique feature is used to build the trees (maxt). The
improvements seen on trees built after feature selection are explained by the re-
duction of the number of possible architectures, a fact that simplify the search.
Trees created for datasets corresponding to 0.15 and 0.25 Hz give results that
are similar or poorer than previously analyzed.

The analysis of the architecture of trees shows that, for datasets in DAf

corresponding to 20 seconds segments, trees look like the one in Fig. 6(a). It is
a tree of 7 nodes, 3 non-terminal and 4 terminal (2 for heat and 2 for normal).
Threshold values for decisions are given in non-terminal nodes. The remaining
trees created (over DAf and D3f) consist of the simplest tree, 1 root node and 2
terminal nodes (1 for each class). An example of such trees is shown in Fig. 6(b).
In these simplest trees, the selected feature was total maximum (16 of 27 times).
Without feature selection (over DAf) the selected feature was north energy (5
of 15 times). DT architecture is interesting as it gives some clues about the
classification problem. The classification with only one feature shows that the
classes can be distinguish in a simple way. However, it is not always the same
feature in the root node. Unexpectedly, north features get that position 10 of
15 times (over DAf). Results of classification with trees reveal that minimum
and standard deviation are not important attributes to discriminate between
classes. An unexpected situation was the absence of features that came from
vertical direction, since events with vertical acceleration like mounts are only
seen during heat. Total and north direction result as the more relevant ones.

4.2 Best configuration

The influence of segment size was not always the same when all results are
compared. Nevertheless, segments of 40 s and without filtering have lead to
good results using any classifier. The results over this dataset are summarized
in Table 2, for all classifiers, over DAf and D3f . MLP and SVM achieved better
results without feature selection, being MLP the best. Instead, DT results were
improved after feature selection, followed by MLP. Finally, better results under
almost any conditions were achieved with MLP, followed by the performance of
DT. SVM showed high variance results, lowering its confidence.
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enen ≤ 35.86

Normal

yes

maxt ≤ 2.31

enee ≤ 66.36

Heat

yes

Normal

no

yes

Heat

no

no

(a)

maxt ≤ 13.34

Normal

yes

Heat

no

(b)

Fig. 6. Two examples of trained decision trees. Left tree correspond to D6 and right
tree to D3, using all attributes.

Table 2. Comparative accuracy between classifiers with and without feature selection
in D2 (segments of 40 s, without filtering).

MLP (%) SVM (%) DT (%)

All attributes 100 91.6 87.5
Selected attributes 87.5 79.1 91.6

5 Conclusions

A novel approach for heat detection was presented. This is based on commonly
used classifiers and simple attributes extracted from acceleration data. The strat-
egy involves two stages, feature extraction —where feature vectors are obtained
from filtered and segmented data— and classification —where feature vectors are
identified as heat or normal. Results have shown promising levels of detection,
turning the proposal into a feasible method for practical applications. To our
knowledge this is the first time that accelerations are used in an automatic sys-
tem of heat recognition. Moreover, previous reported results using non-invasive
methods have shown lower accuracy. Our method achieved levels of accuracy
that are between 93% and 100%, and it has several advantages: data is gathered
in a practical and not invasive way, hardware has low cost, data can be processed
in seconds, and an expert can focus only on those cows that are marked as in
heat.

Future work will involve the analysis of longer records and the optimization
of adjustable parameters of the system.
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