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Abstract— For the processing and analysis of the electrocar-
diogram (ECG), an increasing number of applications require
real-time detection of the most prominent complex in the signal,
the QRS. In this work we describe a new robust and on-line QRS
detection algorithm. This new approach incorporate some clas-
sic concepts but has the distinction of being focused on finding
the points of maximal similarity between the signal and an atom
previously selected from a wavelet packet based dictionary. The
proposed algorithm provides the advantage of robust and ef-
ficient QRS detection with relatively low computational effort,
enabling real-time implementation on 8-bit microcontrollers for
general use.

Keywords— QRS detection, wavelet packet, matched filter,
discrete dictionaries.

I INTRODUCTION

The electrocardiographic signal gives information about
the myocardical electrical activity [1] and it is one of the most
widely used noninvasive records for both, the detection of
cardiovascular abnormalities, such as accessing information
about the autonomic nervous system; respiratory system and
even new disciplines such as neuroscience and psychophys-
iology. The QRS complex is the most prominent portion in
this signal and it marks the ventricular depolarization. In the
vast majority of ECGs’ pattern detection algorithms, all cal-
culations are referred to the R point, hence the importance of
QRSs’ robust and efficient detection.

Nowadays the computational load of an detection algo-
rithm is been neglected, unless it is to be implemented in
embedded systems working in real time and-or are powered
by batteries. In the latter case it is imperative to optimize
the amount of calculations to be performed by the process-
ing unit, because once calculations are completed, it can be
placed in hibernation mode, or shutdown the internal oscilla-
tor until the next cycle.

Thinking in these applications, this paper is aimed in de-
tecting the QRS robustly and with the least computational
load possible, combining classical concepts with the recent
developed techniques in signal processing.

II MATERIALS AND METHODS.

A Wavelet Packet decomposition.

The wavelet analysis is a growing class of signal pro-
cessing and transformations techniques that use wavelet and
related functions,for measuring and efficiently handle non-
stationary signals. These techniques can optimize the anal-
ysis of such signals, providing adequate resolution in both
time and frequency. This feature has made the wavelet analy-
sis the most widely employed in the processing [2], analysis
[3], compression and synthesis of ECG signal [4].

The wavelet packet decomposition that is made by the
Wavelet Packet Transform (WPT), arises from the use of a
suggested reasoning by Wickerhauser [5] that generalizes the
multiresolution analysis based on wavelet theory. According
to this approach, it is also possible to decompose the high
frequency components (details) in the same way as the low
frequency components (approximation).

In a more general way, it is possible to see every wavelet
packet {ψ p

k

(
t−2kn

)
} as a function in L2(R) well localized in

both, time and frequency. Then, each of these atoms can be
described through their temporal and frequency characteris-
tics. The set of all atoms so defined, is a parametric dictionary
of functions with different properties depending on the h and
g filters used. This wide variety of morphologies and behav-
iors allows the correct selection of the wavelet package that
best fits the characteristics of the signal of interest.

B QRS Detection Basics

The diversity of arrangements that can be used to design
a QRS detector is very wide. Those algorithms that share
the characteristics of low computational cost and high per-
formance are called classic or common [6]. Such algorithms
share the block structure that is shown in Figure 1.

Fall outside this scheme all algorithms based on neural
networks; syntactic approach; adaptive predictors; adaptive
filters [7]; genetic algorithms; etc.. Such detectors have been
excluded from analysis in this study due, mainly, to their high
computational cost (at least in sequential machines) [8].

In the classical scheme of Figure 1 the Linear Filtering
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Fig. 1: Typical structure of a classical QRS detector [6].

block has a preprocessing filter which normally extracts all
noise that affect the ECG, such as the movement of baseline
noise; muscle contraction and power line induction. The lin-
ear filter is usually a bandpass type system that allows pass-
ing only the content of the signal that matches the bandwidth
of the QRS. The ECG signal resulting from linear filtering,
is then processed by non-linear filters that aim to emphasize
the QRS amplitude [1]. The block which takes the output of
non-linear filtering is the peak detection logic. It detects the
crossing of the output signal above a threshold that is empiri-
cally defined. The threshold is adjusted according to the QRS
amplitude signal resulting from the nonlinear filter [9]. Be-
cause all detectors must be completed with the application,
at least, of a refractory period, the peak detection logic must
include a block of decision rules.

C Matched Filters in QRS detection

Those algorithms performing QRS detection scheme
based on matched filters, in general, replaces the linear fil-
ter block with the matched filter. This is implemented by the
classic formula of discrete inner product:

y [n] =
N−1

∑
i=0

x [n+ i]w [i] (1)

where w [i] is the QRS template to be detected [10].
As 1 is an inner product between the signal portion ana-

lyzed (N samples) and the template, the matched filter gen-
erates a signal that is proportional, instant by instant, to the
similarity between the signal under study and its template [8].

D Used Data

The MIT/BIH data base [11] is s used to adjust the parame-
ters and estimate the performance of the proposed algorithm.
This is because it is one of the most commonly used in this
area, is supplied with manual annotations made by medical
experts and covers a wide range of arrhythmias.

Attempting to reflect the normal working conditions of a
battery-powered and embedded system, all records and en-
tries in the database were resampled, leading to a sampling

Fig. 2: WAPID scheme.

rate of 250 samples per second before processing. This sam-
pling rate is accepted by the vast majority of works devoted
to the detection of ECG patterns [12].

From manual annotations with which is marked each of
the records in this database, two performance parameters
were estimated, the sensitivity Se = T P/(T P+FN) and pos-
itive predictability P+ = T P/(T P + FP), where T P is the
total number of true positives, FN the number of false neg-
atives and FP the number of false positives. This work con-
sidered a true positive if the difference in time between an
annotated beat and an detected beat is no more than 150 ms,
in accordance with the requirements of ANSI/AAMI-EC57:
1998 standard’s accuracy for QRS detection.

We use the first 22 registers of the database, each record
having two different signal derivations, one in the frontal
plane and the other in the sagittal plane. Thus, adding the
beats for each lead of each record as separated beats (because
their morphologies vary considerably) 92 232 beats were an-
alyzed in total. 9,200 beats from 6 records of one derivation
randomly chosen were separated to be used in the preliminary
tests and the parameter settings of the proposed algorithm.

III THE WAVELET PACKET AND MATCHED
FILTER INSPIRED DETECTOR (WAPID)

For the choice of the approach used in the design of the
QRS detection algorithm two criteria were considered: com-
plexity and theoretical performance. The algorithm was de-
signed to result relatively simple, so as it could run in real
time on 8-bit microcontrollers and not occupy all its time and
memory resources. Therefore, in the developed detector the
number of multiplications and additions is minimized, avoid-
ing complex calculations, as can be roots or logarithms. Only
multiplications and additions in fixed-point arithmetic on the
present value of the signal and its past values were applied.
To do this, the blocks of preprocessing and linear filtering of
Figure 1 is replaced with a block of matched filter. So, the
resulting scheme of the QRS detector developed by us, is as
shown in Figure 2.

Unlike traditional matched filters that take as template the
morphology of a QRS (that is expected to vary in morphol-
ogy because of the nonstationarity nature of de signal), this
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Fig. 3: Different scale 3 atoms of Daubechies mother wavelet with 5 zero
null moments with there spectrums. Sampling frequency of 250 Hz.

Db4 Relative Energy Sy4 Relative Energy

NodeNode

Fig. 4: FWPT relative energy of the 8 terminal nodes of a QRS (where 7
corresponds to node (3,0), 8 to (3,1), etc.). In the left panel the result is
obtained by Daubechies 4 mother wavelet and in the right panel with

Symmlets 4.

matched filtering scheme is performed using an atom selected
from a wavelet packet dictionary.

We decided to try the best filters made up of different
atoms obtained from dictionaries generated with the mother
wavelets identified in the literature as the most similar in time
to QRS [13]. So we worked with Daubechies and Symmlets
mother wavelets with 4 and 8 null moments, with the addi-
tional aim of comparing results between non-symmetric and
quasi-symmetric wavelets.

After defining the mother wavelets with which we were
going to work, we need to decide which atoms of the dictio-
naries were the most similar to the QRS. For that, we use two
different criteria, the first one is based on the similarity of its
spectrum (see Figure 3) with the spectrum of the QRS, which
is centered at 15 Hz and has a bandwidth of 20 Hz [14].

The other criterion for selecting the atoms is based in the
fast wavelet packet transform (FWPT) energy distributions in
the nodes of scales 3, 4 and 5. We obtain the FWPTs of the
different waves in the ECG. Figure 4 presents two examples
of FWPT energy distributions in the 8 terminal nodes of level
3 from mothers wavelet Daubechies and Symmlets 4, of the
same QRS.

With these kind of graphs we find (comparing the FWPT
relative energies of the different nodes of the different waves
of the ECG ) those atoms which best reflected the information
related only to the QRS.

To generate the different atoms ( fWPk in Figure 2) we

use the MakeWaveletPacket Wavelab function of Matlab
[13]. This function generates orthogonal periodizated wavelet
packets with a correct temporal support.

We make one Wapid detector for each atom selected, and
one set of optimal parameters was found for each, by the use
of the 6 registers that were randomly previously chosen.

To obtain the signal S f , the matched filter output, we de-
cided to implement the inner product as a simplification of
the Correlation Waveform Analysis coefficient CWA equa-
tion given by [8]:

S f [n] =
∑

N−1
i=0

( fWPk[n−i]− ¯fWPk)
ST D fWPk

x [n− i]

C
(2)

where xxx is the signal vector under analysis; C is a con-
stant empirically found and fWPkfWPkfWPk the corresponding wavelet
packet atom, ¯fWPk its average value and ST D fWPk its stan-
dard deviation.

Having explored and tested different alternatives of non-
linear filtering, we decide, based on the performance reported
by different authors [15], to implement an nonlinear filter-
ing modulus based on the model proposed by Hamilton and
Tompkins scheme (HT) [16].

Thus, on the output of the filtered signal (S f ), the HT algo-
rithm is applied returning IS f , the integral of the power of S f
(taken with a 100 msecs. time windows, equal to the average
length of the QRS). In IS f an adaptive threshold algorithm is
applied in real time, which detects the QRS occurrence [9].

The block that takes the output of the nonlinear filtering
(IS f ) is the peak detection logic. This block applies an adap-
tive threshold algorithm that finds in real time the possible
QRS occurrence. For this purpose, it compares IS f with an
threshold function, resulting from the combination of three
independent variables MFR = M+F +R [9], where M is the
steep slope adaptive threshold; F is the integrative adaptive
threshold and R is the expected beat adaptive threshold.

The peak detection logic is completed by a set of decision
rules. In the designed detector, these are confined to verify
that the detected heartbeat does not fall into the refractory pe-
riod. Therefore, after a positive detection, the system blocks
any possible occurrence of QRS for a period of 270 msec.

IV RESULTS AND DISCUSSION

Wapid run on a total of 92,232 QRSs originally annotated
in the database and the most important averaged results are
presented in Table 1 . Those values were obtained with dif-
ferent atoms from different wavelet packet dictionaries.

To compare the results obtained with the detector designed
in this study, against a classical detector based in traditional
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Table 1: Wapid performance with different atoms and classical reference
algorithm performance.

Wavelet Atom Sensib (%) P. P. (%)

Daubechies 4 3.2 63.91 59.27

4.1 88.01 89.36

4.2 87.26 97.91

5.2 87.92 98.16

5.3 87.87 95.67

Daubechies 8 3.2 75.45 72.41

4.1 85.07 89.27

4.2 80.67 88.67

5.2 88.93 95.13

5.3 70.01 76.12

Symmlets 8 3.2 76.27 76.91

4.1 89.04 95.22

4.2 89.57 96.12

5.2 88.09 95.13

5.3 86.09 94.95

Classic 93.01 97.73

linear filtering, we implement an algorithm which consid-
ers all of the blocks of Figure 1. This reference algorithm
pre-process the signal using a FIR comb type low pass filter
with rejection frequency of 50 Hz cascaded with an high pass
IIR filter of order 8 with 0.8 Hz cut-of frequency. The lin-
ear filtering block consists of two short IIR filters in cascade,
which form a bandpass centered at 15 Hz. Remaining blocks
of the reference algorithm share the same characteristics with
Wapid.

In Table 1 it is clear that, despite the simplicity of the al-
gorithm, the positive predictability with the best parameter
setting is high (98.16 %), but sensitivity is well below (87.87
%) of the classical reference algorithm. This is because the
algorithm is very robust against noise and various changes
in morphology, but the ectopic ventricular and some not nor-
mally conducted beats often complicate the current QRS de-
tection, or the detection of subsequent beats.

It can easily be verified measuring times of run, that the
computational load of the traditional detector based on clas-
sical filtering is more than 2 times larger than Wapid. On
the other hand, we measure the number of elementary op-
erations the two detectors carried out only in those blocks
that they differ: the matched filter versus linear filtering and
pre-processing. Peak detection and detection logic, which are
common to the two algorithms are composed of many con-
ditional statements, which makes that elementary operations
do not provide an accurate measure for computational cost in-
volved. For Wapid, optimal filtering assembly with a template
generated by node 4.2 (or atom 17) of the wavelet packet dic-
tionary generated by Daubechies 4, optimized for a number
of 32 coefficients, reported a total of 32 sums; 32 multipli-
cations and 32 data handling operations (assignments). The
classical reference algorithm counts with an 46 coefficients
FIR high pass filter, one notch filter of 9 coefficients (gener-

ated by convolution of two FIR filters) and a low-pass FIR fil-
ter of 13 coefficients. The total count of the classical scheme
in pre-processing and linear filtering is 72 sums; 72 multip; 3
divisions and 72 assignments, more than twice the number of
elementary operations of Wapid.

V CONCLUSSIONS

In this work a new QRS detection algorithm, based on
mixing classical and recent developed signal processing tech-
niques, was presented. The results obtained show its ability
to detect QRS complex robustly and efficently. Future works
will explore alternatives to improve ectopic beats detection
mantaining relatively low computational effort.
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