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Abstract— A Brain-Computer Interface (BCI) is a system
that provides direct communication between the brain of a per-
son and the outside world. In the present work we use a BCI
based on Event Related Potentials (ERP). The aim of this pa-
per is to efficiently solve the classification problem consisting on
labeling electroencephalogram records as target (with ERP) or
non-target records (without ERP). We evaluate the performance
of a BCI by using the Wavelet Packet Transform with the Local
Discriminant Basis (LDB) method to find an orthogonal basis
that maximizes the difference between the two classes involved.
The performance of the LDB patterns and the temporal data
(without post-processing) are analyzed with the Fisher Linear
Classifier. It is shown that the bets results are obtained with LDB
patterns calculated by Daubechies 4 as filter, Sum of Squares as
discriminant function and the first 18 more discriminant basis
vectors.

Keywords— Wavelet Packet Transform, Local Discriminant
Basis, Event Related Potencial, Brain Computer Interface.

I. INTRODUCTION

If a person has a neurological desease which has disrupted
or altered the neuromuscular channel through which the brain
communicates and controls the person’s environment, then
a Brain-Computer Interface (BCI) can significantly improve
the individual’s quality of life. By using only brain activity
and without needing any normal channel or peripheral nerves
and muscles, BCI provides a person with a new way of com-
munication with the outside world [1],[2].

It has been demonstrated [3],[4],[5], that when a subject is
asked to decide to which of 2 possible categories an item be-
longs, and one of the 2 categories is rare and infrequent, these
“rare” items will evoke in the electroencephalogram (EEG)
over the parietal cortex an Event Related Potential (ERP).
One of the main components of such ERP is an enhanced
positive-going component with a latency of about 300 ms
(called P300 wave). This is called the “oddball” paradigm
[6], [7].

Although a perfect classification rate can be achieved by
averaging 40 EEG records, doing so is useless for commu-
nication purposes since the transfer speed is low (about 60s
per item) [7]. On the other hand, single-trial ERP detection
methods would allow high communication speed, and there-
fore, they are strongly desirable. Traditional analysis meth-
ods are not suitable for single-trial detection since the SNR
is low (around −5dB) and the EEG signal is non-stationary.
Thus, methods able to highlight the ERP signal from the
background EEG are needed. In this work, like in others (e.g.
[8],[9]), the Wavelet Packet Transform (WPT) was used due
to it’s ability to explore the time-frequency information of
ERP signals. We aim to improve the feature extraction stage
for single-trial EEG signals by increasing the separability be-
tween the two classes, which in terms ought to improve the
classification rate of the temporal data. We propose to evalu-
ate BCI performance by using WPT to obtain a dictionary of
orthogonal basis functions. Local Discriminant Basis (LDB)
is then used to get the most discriminant orthogonal base for
representation and classification of ERP signals.

II. MATERIALS AND METHODS

A. Database

An Open-Access P300 speller database was used [10].
EEG records from 18 subjects were acquired by 10 electrodes
in the positions shown in Fig. 1 with reference in the right ear
(A2) and ground in right mastoid (M2). The records were dig-
italized at a rate of 256 Hz . The Farwell and Donchin oddball
paradigm was used [2]. A 6-by-6 matrix containing letters
and numbers are displayed on a computer screen. During the
experiment, a subject is asked to spell different words. The
person must focus on one character at the time. As stimulus,
a row or a column of the matrix is randomly flashed. In each
stimulating block, every row and column of the matrix is in-
tensified only once. If the person is well concentrated, when
the chosen character is illuminated, a relevant event occurs,
i.e. an ERP signal is elicited [7]. Since there are 2 classes in-
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Fig. 1: Positions of the electrodes used in acquisition of EEG recording.
Modified from [10].

volved, the 6-by-6 matrix results in 12 possible events (one
per each row and one per each column), of which only 2 are
relevant (with ERP) in every intensification block.

Each subject participated in 4 sessions. The first session
was a copy-spelling run, where the individuals had to spell
the words CALOR, CARINO & SUSHI. The second one was
also a copy-spelling run, but only the word SUSHI had to be
spelled. The other two session were free-spelling runs, i.e.,
the person chose the word he/she wanted to spell. In this
work we used the first and second sessions as training and
testing sets, respectively. Each session consisted on 15 trials,
resulting in 2880 EEG epochs per channel (480 target and
2400 non-target) for the training set and 900 EEG epochs per
channel (150 of them being target) for the testing set.

The pre-processing stage was done in the following steps:

1. Application of a 15th order low-pass FIR filter with a cut-
off frequency of 15Hz for each channel and for each sub-
ject [11].

2. Extraction of unique epoch of one second duration (256
samples) at the beginning of the intensification.

3. Detection and resetting of outliers beyond 6 standard de-
viations (i.e. any value greater than 6 was reset to 6).

4. Normalization with z-score per subject and per channel.
The testing set was normalized with the mean and the
standard deviation of the training set.

5. Downsampling at 64Hz.
6. Channel concatenation. A N×640 matrix per subject was

conformed, where N was the number of trials and 640 =
10channels×64samples.

B. Wavelet Packet Decomposition

WPT is a generalization of multiresolution analysis. Given
a vector Ω0,0 ∈ Rn with n = 2n0 , by the convolution subsam-
pling operators constructed by a mother wavelet, the vector
Ω0,0 is transformed into two subsequences Ω1,0 Ω1,1 of length
n/2. In other words, the signal is partitioned into a high fre-
quency portion called Detail and a low frequency portion
called Approximation. Next, the same operators are applied
to these 2 subsequences, so obtaining another two subfre-

quency bands of length n/4. This process is repeated J times.
At the end, a binary tree is obtained where each node of the
tree represents subspaces with different frequency localiza-
tion. Each node has an associated subspace, which admits an
orthogonal basis. Such basis can be obtained by going down
the tree [12],[13].

There are more than 22J−1
possible orthogonal wavelet

packet basis for representing our signal. In this work we used
LDB method which maximize the difference between the
classes of the problem. The algorithm measures the power
of discrimination of each subspace in the binary tree by ap-
plying a given information cost and comparing the goodness
of each node (subspace) for the classification problem. As in
the best-basis search algorithm, this is done by evaluating if
the union of two children nodes must be kept or not [14]. Let
p = (pi)

n
i=1 and q = (qi)

n
i=1 be two non-negative sequences

with ∑ pi = ∑qi = 1, representing the normalized energy dis-
tributions of 2 generic signals belonging to class 1 and class 2
of the classification problem, respectively. A discriminant in-
formation function D(p,q) measures “how differently” p and
q are distributed. Options for D are:

• I-divergence or Antisymmetric Relative Entropy:

I(p,q) .
=

n

∑
i=1

pi log2
pi

qi
, (1)

where log2(0)
.
= −∞, log2(x/0) .

= +∞ for x > 0. Note
that I is not a metric since it is not symmetric.

• J-divergence or Symmetric Relative Entropy:

J(p,q) .
= I(p,q)+ I(q,p). (2)

• Sum of Squares:

W (p,q) .
= ‖p−q‖2 =

n

∑
i=1

(pi−qi)
2. (3)

Once the LDB is computed the projection coefficients can
be used for classification purposed. However, if we want to
reduce the dimensionality of the problem, then only the coef-
ficients associated to the first few most discriminant vectors
can be used as input of the classifier.

C. Classifier

We assumed that the classes involved in the problem are
linearly separable, so a Linear Discriminant Analysis (LDA),
more precisely the Linear Fisher method, was used. LDA as-
signs to a new input x ∈ RN one of two possible class labels,
according to the sign of the function wT x+ b, where w and
b are obtained after training the classifier with known exam-
ples corresponding to the training set [15]. It is well known
[16] that LDA, can be a powerful tool for the classification of
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ERP signals. The main advantages of LDA are: it is easy to
implement, it’s required O(n3) calculation and it delivers sim-
ilar classification results as other more complex classification
methods. It is therefore no surprise that LDA is one of the
most commonly used classifiers of BCI systems, which jus-
tifies our choice of it. The performance of the classifier was
based upon three indices: accuracy, sensitivity and specificity.

D. Implementation and Experiments

The classification results of the temporal patterns were
used to compare the results achieved by LDB patterns. Be-
fore training the classifier, we balanced both the training and
the testing sets of the temporal data. In other words, each pat-
terns had the same amount of epochs with and without P300,
where the latter ones where randomly selected.

WPT with decomposition level J = 6 was applied to the
training balanced set per channel an per subject together with
Daubechies 4 as mother wavelet. The choice of J = 6 corre-
spond to the maximum decomposition level for a 64 length
signal. On the other hand, the choice of Daubechies 4 was
made because of it is widely used in EEG processing. This
wavelet also has morphological similarities with the P300
component of ERP signals, reason from which it is com-
monly used for ERP detection [17].

We constructed LDB patterns for each discriminant mea-
sure, since LDB can be implemented with different cost func-
tions. In order to analyze the information cost and optimize
the number of discriminant vectors, LDB patterns were made
to vary in increments of 2, from 2 to 64 features per channel.

The training set was used to construct the LDB basis. Both
the training and the testing coefficients were computed as the
associated projection of the EEG signals onto this orthogonal
basis. This coefficients were then used as inputs to LDA.

The whole LDB procedure (including dataset generation)
was repeated 10 times.

III. RESULTS

For the present problem at hand it is strongly desirable
to minimize the number of false positive labels. Hence, we
focused our analysis on the specificity index in order to com-
pare the goodness of classification and to select the best cost
function. The third column in Table 1 shows the maximum
median for the different amount of features analyzed, corre-
sponding to the specificity index. Columns 2 and 4 show per-
centiles 25th and 75th, respectively. Finally, the last column
contains the number of features needed in each case. Simi-
larly, the Sum of Squares (3) resulted in the best performance
for the other 2 indices. Fig. 2 depicts the variation of all three
indices with respect to the number of features per channel
using Sum of Squares.

Table 1: Best Median, P25 and P75 percentiles for the three discriminant
measure corresponding to specificity index.

Measure P25 Median P75 #Feature

Antisymmetric 0.6970 0.7498 0.8200 22

Symmetric 0.6899 0.7576 0.8210 14

Sum of Squares 0.7355 0.7698 0.8221 18

Fig. 2: Variation in the classification indices as function of the number of
features per channel.

It is appropriate to mention here that for just 18 char-
acteristics per channel, all 3 indices were between 0.7898
and 0.7925, indicating a classification success of about 78%.
These results are very encouraging for an efficient online BCI
system since accuracy above 70% allows communication and
device control [18].

Since the main objective is to improve the performance of
the whole BCI system, we compared the best LDB result with
temporal data classification results. This is shown in Fig. 3.

Fig. 3: Performance classification comparison between temporal data and
LDB with the Sum of Squares measure with 18 characteristics per channel.

The cpu times of the classification stage were also com-
pared. Classification with LDB with 18 features per channels
was around 2000 times faster than classification with tempo-
ral data. Finally, a bit rate comparison was performed [19].
While temporal data achieved 46.51 bits/min our method
achieved 115.2 bits/min, which is slightly lower than those
obtained by state of the art method [18].
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We have also evaluated the statistical significance of these
results by computing the probability that a given experiment
be better than the temporal classification patterns. In order
to perform this test, we assumed statistical independence of
the classification errors for each epoch and we approximated
the binomial distribution for the errors by a gaussian distribu-
tion. Both assumptions are realistic: independence is obvious
while the normal approximation is reasonable because of the
high number of testing epochs used (51000) in classification.
Our results showed that LDB Sum of Squares with 18 charac-
teristics per channel is significantly better than temporal data
with probability higher than 99.99%.

IV. DISCUSSION

Although it is clear from Table 1 that none of the three
measures presents a significant difference with respect to the
others, the Sum of Squares was chosen as the best discrimi-
nant measure due to its highest specificity. In Fig. 2 one sees
that the classification index increases, it reaches a maximum
at about 20 characteristics per channel, and then its starts to
decrease.

A comparison of the best LDB results with temporal pat-
terns showed that the use of LDB Sum of Squares with just
18 characteristics per channel is significantly better than the
classification rates obtained by temporal patterns. Moreover,
the processing time of the classification stage was greatly
reduced and the communication speed was significantly in-
creased.

V. CONCLUSION

In this work the use of WPT together with LDB algorithm
for increasing the classification rate in BCI systems was an-
alyzed. The best result was obtained with LDB patterns con-
structed by Daubechies 4, decomposition level J = 6, Sum of
Squares as discriminant measure and the first 18 basis vec-
tors. This LDB pattern reached overall accuracy of 78.67%
against a 68.67% obtained with the temporal patterns and
it provided 40% increase in communication effectiveness.
Also, the processing time of the classification stage was sig-
nificantly trimmed down as consequence of the fact that the
dimension of the original signal was reduced by more than
70%. Finally, as a general conclusion we point out that the
simultaneous use of WPT and LDB constitutes a very good
tool to explore and extract the most relevant features of the
P300 wave embedded in the EEG signal, increasing the clas-
sification performance and improving the whole BCI system.
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