
Abstract— This article describes the development of a library

for Matlab (The MathWorks, Inc.) for sounds recognition based

on Spiking Neural Networks. The mathematical model of the

integrate and fire type is presented. The main modules of the

library are as follows: encoding in “spikes”, spiking neural net-

work and finally the training module. To illustrate its use, the

library application to the task of phoneme recognition is pre-

sented.

Keywords— automatic speech recognition, artificial neural

networks, spiking neural networks.

I. INTRODUCTION

Artificial neural networks (ANN, Artificial Neural Net-
works English) are composed of basic units called neu-
rons, interconnected by different weights that determine how
strongly interacting these neurons. Unlike the ANN, in the
live cells, the temporal dimension, in the excitation signal and
the response, are as important as the intensity. This way of
working of the ANN has been produced by an oversimplifi-
cation of the first biological models that apparently omitted
this dimension and now appears as crucial. As usual, simpli-
fication is only valid in some contexts.

The search for a closer analogy to the biological reality
has recently led to the development of pulsed neural networks
(SNN of Spiking Neural Networks) [1]. Neurons communi-
cate with one another in a language in which the given mean-
ing to the receiving neuron is encoded in the time of action
potentials (AP). These sets of action potentials can be treated
as a signal. A neuron can fire (generate AP) if its input AP oc-
curring in a given sequence and not fire if the same increase
in distance (time difference between AP), whether the inter-
val between them is more long,whether the interval between
them is longer or shorter.

Thus, communication and computation in biological neu-
rons are completely different from the way that work un-
til now computers and classical artificial neural networks.
If these information can be encoded in the phase of action
potentials (or pulses for artificial neurons), could also be in-

corporated into models of neurons the ability to change their
behavior depending on the timing of the input signals. This
would lead to a learning rule for changing the temporal prop-
erties of the network connections, ie the idea of dynamic
synapses [2, 3].

In this work the implementation of a Matlab [4] library is
presented in and are tested the principal modules of spiking
neural network to classify audio signals. The rest of the paper
is organized as detailed below. Section 2 presents the mathe-
matical model of pulsating networks. Section 3 presents the
main modules of the software. Section 4 presents some nu-
merical results and simulations. Finally, Section 5 presents
the conclusions and proposals for future works.

II. SPIKING NEURON NETWORKS

A. Integrate and fire model

The neuron model used is the type pulsating integrates and
fire, the model used in [5]. The neuron is modeled by an RC
circuit (Fig. 1). The membrane potential is μ(t), while this
potential is less than a threshold value μthreshold , the dynamics
is modeled by:

dμ(t)
dt

= 1
C

(
− μ(t)−μrest

R + I(t)
)

(1)

donde:
μ(t) = Membrane potential versus time [Volts].
urest = Initial membrane potential [Volts].
I(t) = Total current that reaches the neuron [Amperes].
R = Membrane resistance [Ohm].
C = Membrane capacitance [Farad].
If the potential μ(t) exceeds the value μthershold , the neu-

ron fires (generates a “spike’) and the following events occur:

The potential u(t) is reset to a value ureset .
The neuron enters an absolute refractory period.
The neuron generates a spike to exit.
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Figura 1: Electrical circuit of the integrates and fire model.

B. Integrate-and-fire equations

Applying Kirchhoff node rule to currents at Node 1 and
Ohm’s law in the circuit of Figure 1, we can derive the equa-
tions for the model:

I(t) = μ(t)
R + IC(t) (2)

Applying the definition of capacitance:

C
dμ(t)

dt
= IC(t). (3)

From (2) and (3), we obtain:

I(t) =
μ(t)

R
+C

dμ(t)
dt

which is a linear ordinary differential equation (LODE) first
order. If we now consider that the capacitor has an initial po-
tential (μrest ) we obtain:

dμ(t)
dt

=
1
C

(
−μ(t)−μrest

R
+ I(t)

)
(4)

Returning to equation (1) and write it differently:

dμ(t)
dt

+
1
C

μ(t) =
μrest

RC
+

I(t)
C

.

If we now assume a constant stimulus, given the following
definitions and we rewrite the last equation:

I0
def
= I(t)

μ def
= μ(t)

μ ′ def
=

dμ(t)
dt

μ ′+
1

RC
μ =

I0

C
+

μrest

RC
(5)

Figura 2: Principals software modules

The particular solution is [6]:

μ(t) = (μrest +RI0)
(

1− e−
t

RC

)
+Cie−

t
RC , (6)

the latter being the form as used in the work.

III. SOFTWARE MODULES

In the Fig. 2 the principals software modules are presented.

A. Signal encoding with spikes

A very important process when working with spiking neu-
ral networks is the encoding of analog data pulse into trains
or “spikes”. The neural networks processed as input a set of
times of firing and generate output to another set of firing
times. There are several ways to encode analog values in
sets of times of fires.

The simplest method is to encode the time proportional to
the analog value, with the disadvantage that only a time val-
ue is obtained. A generalization of this method is to use a
time window that moves over time, and different portions of
a one-dimensional time signal is converted into pulses. An-
other simple way is to apply a coding threshold signal and
generating a firing time set each time the value of the signal
exceeds the predefined threshold. A method utilizing more
than one neuron is encoding by populations of neurons. One
way to implement this method is using receptive fields [7].

The method implemented in this library detects events
on the spectrogram of an audio signal. The process is
straightforward because the x-axis of the spectrogram is the
time variable and it is only necessary to define the char-
acteristic events or searched in the energy axis (Z axis) of
the spectrogram, then place them in time. Another impor-
tant feature of this method is that if we repeat the process
for several frequencies in the same spectrogram, we ob-
tain a set of firing times of trains or “spikes”. The main
functions of this module are: GenerarMapaEventos,
EspectrogramaNBandas and EtapaPreprocesado.

652 J.T. Molas et al.

IFMBE Proceedings Vol. 49 

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 T

. M
ol

as
 G

im
én

ez
, I

. R
. P

er
al

ta
, C

. E
. M

ar
tín

ez
 &

 H
. L

. R
uf

in
er

; "
D

ev
el

op
m

en
t o

f 
a 

L
ib

ra
ry

 f
or

 S
ou

nd
 C

la
ss

if
ic

at
io

n 
U

si
ng

 S
pi

ki
ng

 N
eu

ra
l N

et
w

or
k"

V
I 

L
at

in
 A

m
er

ic
an

 C
on

gr
es

s 
on

 B
io

m
ed

ic
al

 E
ng

in
ee

ri
ng

 C
L

A
IB

 2
01

4,
 V

ol
. 4

9,
 p

p.
 6

51
-6

54
, 2

01
5.



B. Spiking Neural Network

The basic units of the network are type neurons
integrate-and-fire as previously described. These neurons
can be of two types: excitatory (α) or inhibitory (β ).
Excitatory neuron generates stimulus which increases the
potential of the membrane of the postsynaptic neuron
and inhibitory neuron decreases the potential. Neurons
are organized in a feed-forward type network in three
layers: input layer, hidden layer and output layer. The
trigger response function is exponential and can be mod-
ified very easily. All parameters of each neuron can be
configured. The main functions implemented in this mod-
ule are: MostrarPotencialesVsCorrientes,
SimulacionAnalitica and
SimulacionNumericaEuler.

C. Training module

Training based on the temporal coding of spikes is an
important area of research in the SNN because of its great
similarity with biological learning and methods of supervised
training for the perceptron and the sigmoid neurons can not
be applied directly to the SNN. Exist other methods based on
the error gradient methods [8] assuming linear approximation
around of the fire instant of the neuron. Another important as-
pect of training is the number of spikes that are used for train-
ing the network. These methods can be classified into two
types, simple spikes and multiple spikes training algorithms.
Another important aspect of training is the error function to
upgrade the connection weights in the case of neurons spikes
can be used multiple measures of distances between spikes
[9]. In the first step, in this training module will be im-
plemented by means of genetic algorithms. The implemented
function of this module is ArmarGruposCapaW, which is
a method which groups the neurons are firing at a frequen-
cy close to sync for a short time and generate a spike on the
post-synaptic neuron to recognize a pattern.

IV. SIMULATIONS AND RESULTS

A. Generating events (“spikes”)

The implemented algorithm analyzes a number of frequen-
cy bands of a word (in this case, the pronunciation of a dig-
it) detects when and where the event of interest occurred.
This event may be the maximum value, when it starts to grow
or when it starts to decrease [10] [5]. A simple way to im-
plement this algorithm is by applying the spectrogram to the
audio signal, then the width of the time windows or the fre-
quency resolution is calculated, to achieve the number of fre-

Figura 3: Above: 40-band spectrogram of the word one. Center:
Representation of the positions “spikes” calculated for each frequency and
the offset event. Bottom: Representation of the positions calculated for the

onset event.

Figura 4: Top: stimulus current. Bottom: membrane potential.

quency bands that want to use, then a simple algorithm with
the instants of events of interest to us are detected. The Fig.
3 shows the spectrogram of the word “one”, the events gen-
erated over 40 frequency bands for two types of events, offset
and onset.

B. Application of different stimuli (current)

To understand the functioning of the neuron integrates and
fire, it is useful to apply different types of stimuli (current)
and plot the behavior of the membrane potential. A current
ramp is a simple stimulus to generate and gives us enough
information about the relationship between stimulus current
and firing frequency. In the Fig. 4 the relationship between
the current and membrane potential are shown.

C. Two Alpha-coupled neurons

Here will be described an essential feature to under-
stand how the Alpha-coupled neurons can recognize a pat-
tern. The basic idea is very simple, it is part of the property
that two neurons with the same parameters physical (τ ,
μrest , μreset and μthreshold) when stimulated by the same cur-
rent will fire at the same frequency. This is shown in Fig. 5,

Development of a Library for Sound Classification Using Spiking Neural Network 653

IFMBE Proceedings Vol. 49 

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 T

. M
ol

as
 G

im
én

ez
, I

. R
. P

er
al

ta
, C

. E
. M

ar
tín

ez
 &

 H
. L

. R
uf

in
er

; "
D

ev
el

op
m

en
t o

f 
a 

L
ib

ra
ry

 f
or

 S
ou

nd
 C

la
ss

if
ic

at
io

n 
U

si
ng

 S
pi

ki
ng

 N
eu

ra
l N

et
w

or
k"

V
I 

L
at

in
 A

m
er

ic
an

 C
on

gr
es

s 
on

 B
io

m
ed

ic
al

 E
ng

in
ee

ri
ng

 C
L

A
IB

 2
01

4,
 V

ol
. 4

9,
 p

p.
 6

51
-6

54
, 2

01
5.



Figura 5: Membrane potentials in terms of two types of current into two
Alpha-coupled neurons.

where the estimulam a neuron with a constant current and
the other with a decreasing ramp. It can be seen as the cur-
rents are similar, the periods too. This feature can be used to
generate groups of neurons, through the connection weights
during the training stage. These neurons could recognize a
phoneme, when firing at approximately the same time, for a
set of events from the spectrogram coded. This same group
of neurons would be connected to a single neuron of the out-
put layer act as synchronism detector and generate a spike
indicating this phoneme.

V. CONCLUSIONS

In this work we present some modules to a library for
MATLAB using a spiking neural network to recognition
sounds by encoding events from a time-frequency transfor-
mation. In subsequent work other learning strategies will be
implemented in the training module and use the parallel com-
puting capabilities of MATLAB. For availability contact the
authors.
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