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Abstract:
The problem of restoring a signal or image is often tantamount to approximating the solution of
a linear inverse ill-posed problem. In order to find such an approximation one might regularize
the problem by penalizing variations on the estimated solution. Among the wide variety of
methods available to perform this penalization, the most commonly used is the Tikhonov-Phillips
regularization, which is appropriate when the sought signal or image is expected to be smooth,
but it results unsuitable whenever preservation of discontinuities and edges is an important
matter. Nonetheless, there are other methods with edge preserving properties, such as bounded
variation (BV ) regularization. However, these methods tend to produce piecewise constant
solutions showing the so called “staircasing effect” and their numerical implementations entail
great computational effort and cost. In order to overcome these obstacles, we consider a mixed
weighted Tikhonov and anisotropic BV regularization method to obtain improved restorations
and we use a half-quadratic approach to construct highly efficient numerical algorithms. Several
numerical results in signal and image restoration problems are presented.

Keywords:
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1. Introduction and preliminaries

In a general context, a linear inverse problem can be formulated as the need of finding w in an equation
of the form

T w = y, (1)

where T : X → Y is a bounded linear operator between two infinite dimensional Hilbert spaces X and
Y , the range of T is non-closed and y is the data, which is supposed to be known, perhaps with a certain
degree of error. In the sequel and unless otherwise specified, the space X will be L2(Ω) where Ω⊂ Rn
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SOP TRANSACTIONS ON APPLIED MATHEMATICS

is a bounded open convex set with Lipschitz boundary. Under these hypotheses, it turns out that problem
(1) is ill-posed in the sense of Hadamard ([1]), the Moore-Penrose inverse of T is unbounded and small
errors in the data y may result in very large errors in the corresponding approximations of w ([2]). Before
any attempt is made to approximate the solution of (1), the problem must be “regularized”. Regularizing
an inverse problem consists essentially of replacing the problem by a sequence of “well-posed” problems
whose solutions converge (in an appropriate way) to a solution (or to a least squares solution) of (1). Using
the Tikhonov-Phillips method is undoubtedly the most common way of regularizing an ill-posed problem.
Although the method can be formulated within a very general mathematical theory by means of spectral
theory (see [3]), the widespread of its use is mainly due to the fact that it can also be formulated as an
unconstrained optimization problem. In fact, given an appropriate functional P(w) (in the sequel we shall
refer to P as a penalizer) with domain D ⊂X , the regularized solution obtained by the Tikhonov-Phillips
method and such a penalizer, is the global minimizer wα (provided it exists), over D , of the functional

Jα,P(w) = ‖T w− y‖2 +αP(w), (2)

where α is a positive constant called regularization parameter. The original method was proposed
independently by Phillips and Tikhonov in 1962 and 1963 ([4], [5]) using P(w) = ‖w‖2

L2(Ω)
. Other

penalizers can also be used to regularize the problem. Each choice of P results in a different regularized
solution possessing particular properties. In the past 15 years considerable attention has been given to
finding “appropriate” penalizers for a given problem. Thus, for instance, it is well known that the choice
of P(w) = ‖w‖2

L2(Ω)
produces always smooth regularized approximations which converge, as α → 0+,

to the best approximate solution (i.e. the least squares solution of minimum norm) of problem (1) (see
[3]) while for P(w) = ‖|∇w|‖2

L2(Ω)
the order-one Tikhonov-Phillips method is obtained. Similarly, the

choice of P(w) = ‖w‖BV(Ω) (where ‖·‖BV denotes the total variation norm) or P(w) = ‖|∇w|‖L1(Ω), result
in the so called “bounded variation regularization methods” ([6], [7]). The use of these of penalizers is
strongly suggested when preserving discontinuities or edges is an important matter. The method, however,
tends to produce piecewise constant approximations and therefore it will most likely be inappropriate in
regions where the exact solution is smooth ([8]), producing the so called “staircasing effect”. For general
penalizers P, sufficient conditions guaranteeing existence, uniqueness and weak and strong stability of the
minimizers under different types of perturbations were found in [9].

Given that each penalizing term engraves the solution with particular properties, in certain types of
problems, particularly in those in which it is known that the regularity of the exact solution is heterogeneous
and/or anisotropic, it is reasonable to think that the use of two or more penalizers of different nature,
that could somehow spatially adapt to the local characteristics of the exact solution, would be more
convenient. During the last 15 years many regularization methods have been developed in light of this
simple reasoning. Thus, for instance, in 1997 Blomgren et al. ([10]) proposed the following penalizer:

P(w) =
∫

Ω

|∇w|p(|∇w|)dx, (3)

where p is a decreasing function satisfying lim
u→0+

p(u) = 2, lim
u→∞

p(u) = 1. Thus, in regions where the

gradient of w is small the penalizer is approximately equal to ‖|∇w|‖2
L2(Ω), corresponding to a Tikhonov-

Phillips method of order one (appropriate for smooth regions). On the other hand, when the modulus of
the gradient of w is large, the penalizer resembles the bounded variation seminorm ‖|∇w|‖L1(Ω), which, as
previously mentioned, is a good choice for border detection purposes. Although this model for P is quite
reasonable, proving basic properties of the corresponding generalized Tikhonov-Phillips functional turns
out to be quite difficult. The authors proved existence of global minimizers of functional (2), by using the
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
regularization

theory of variable Lp spaces. In 1997 Chambolle and Lions suggested a different way of combining these
two methods ([8]). They defined a thresholded penalizer of the form:

Pβ (w) =
∫
|∇w|≤β

|∇w|2 dx+
∫
|∇w|>β

|∇w|dx,

where β > 0 is a prescribed threshold parameter. Thus, in regions where borders are more likely to be
present (|∇w|> β ), penalization is made with the bounded variation seminorm while a standard order-one
Tikhonov-Phillips method is used otherwise. This model was shown to be successful in restoring images
possessing regions with homogeneous intensity separated by borders. However, in the case of images
with non-uniform or highly degraded intensities, the model is extremely sensitive to the choice of the
threshold parameter β . More recently, penalizers of the form

P(w) =
∫

Ω

|∇w|p(x)dx, (4)

for certain functions p with range in [1,2], were studied in [11] and [12]. It is timely to point out here that
all previously mentioned results are valid only for the case of denoising (no blurring), i.e. for the case
T = id. More recently, Mazzieri, Spies and Temperini studied penalizers of the form

P(w) = λ0

∫
Ω

|
√

1−θ(x)w(x)|2dx+λ1

∫
Ω

‖θ(x)A (x)∇w(x)‖dx (5)

where λ0, λ1 are positive constants, θ(x) is a weighting function with values on the interval [0,1] and A(x)
is a symmetric positive-definite matrix field, introduced to take into account possible local anisotropic
penalization. General existence, uniqueness and stability results of global minimizers of the corresponding
generalized Tikhonov-Phillips functionals

Jθ (w) = ‖T w− y‖2 +λ0

∫
Ω

|
√

1−θ(x)w(x)|2dx+λ1

∫
Ω

‖θ(x)A (x)∇w(x)‖dx (6)

can be found in [13] and [14]. Several remarks are in order. First note that the extreme case θ(x) = 0 ∀x
corresponds to the classical Tikhonov-Phillips method. For θ(x) = 1 ∀x one gets a pure BV method, with
the classical Bounded Variation method corresponding to the case of A (x) = id ∀x. Other choices of the
matrix field A are possible in order to induce anisotropic BV penalization. Feasible ways of constructing
this matrix field can be found for instance in [15]. The general case can then be thought of as a convex
combination of classical L2 and anisotropic BV penalizers.

2. Signal restoration with a half quadratic approach to mixed regulariza-
tion

Approximating the minimizer of (6) presents quite serious computational challenges. In fact, for high
dimensional problems like those arising in image restoration, all standard optimization algorithms will
require many hours of CPU time in any modern personal computer. In order to reduce the computational
burden originated by this difficulty, we shall next consider an alternative approach to the problem of
finding the minimizer of (6). The tactic is based upon the general ideas introduced by D. Geman in
[16] for image recovery and used later by J. Idier in [17] for solving detection-estimation problems, and
it consists of rewriting the functional in an appropriate form via half-quadratic optimization tools. To
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SOP TRANSACTIONS ON APPLIED MATHEMATICS

introduce this approach, we will first consider the case of minimizing functional (6) when Ω is a subset of
R, meaning w(x) represents the signal we wish to restore. Without loss of generality we shall assume
Ω = [0,1]. The operator A will necessarily be the identity, meaning our functional takes the form

Jθ (w) = ‖T w− y‖2 +λ0

∫ 1

0
|
√

1−θ(x)w(x)|2dx+λ1

∫ 1

0
|θ(x)w′(x)|dx. (7)

2.1 Signal restoration by mixed regularization

Since restoring the signal w(x) is tantamount to finding the minimizer of the previous functional, in
order to proceed numerically we will need to discretize the problem. For that, we will take M equally
spaced points xm ∈ [0,1] and define our discretized signal u ∈ RM by um

.
= w(xm) for m = 1,2, ...,M. In

the same way, let T ∈ RN×M and v ∈ RN be discretized versions of the operator T and of the observation
y, respectively, and let θm

.
= θ(xm) for m = 1,2, ...,M. We now introduce a discrete finite-differences

approximation of functional (7) as follows:

Jθ (u) = ‖Tu− v‖2 +
λ0

M

M

∑
m=1

(1−θm)u2
m +

λ1

M

M

∑
m=2

θm

∣∣∣∣um−um−1

1/M

∣∣∣∣ . (8)

The restored signal w(x) will then be approximated by the discrete signal represented by the vector
minimizing this functional. The main difficulty for finding such a minimizer arises from the non-
differentiability of the absolute value at the origin, which precludes the differentiability of Jθ (u). To
overcome this impediment we shall replace the absolute value by a function φ(t) approximating it
and satisfying certain additional regularity and asymptotic assumptions. For general non-quadratic
penalizers, in order to preserve edges and discontinuities between homogeneous regions, it is important
to appropriately choose the behavior of this function φ . Two groups of functions have mainly been
considered in the literature. Namely:

• L2L1: we say that a function φ : R→ R is of L2L1 class if it is even, non-constant, convex and of
class C 1 on R, C 2 at the origin and asymptotically linear.

• L2L0: we say that a function φ : R→ R is of L2L0 class if it is even, non-constant, non-decreasing
on R+, asymptotically constant and of class C 2 at the origin.

It is important to point out that an L2L1 or L2L0 function does not need to be an approximation of the
absolute value. Thus, for instance, in certain detection-estimation problems for the case of restoration of
piecewise smooth signals, the L2L0 function φ(t) = min{t2,η2} (for a given η), results appropriate ([17],
Section 6.4.1). In our case, we will pick the L2L1 function

φ(t) = φη(t)
.
=
√

t2 +η2−η , (9)

for η > 0 sufficiently small, and replace functional (8) with

Jθ ,φ (u) = ‖Tu− v‖2 +
λ0

M

M

∑
m=1

(1−θm)u2
m +

λ1

M

M

∑
m=2

θmφ

(
um−um−1

1/M

)
. (10)

Now that we have a differentiable functional, we will introduce a duality relation which will later allow us
to conveniently write the corresponding first order necessary condition as a linear system.
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
regularization

2.2 Non-quadratic and half-quadratic duality

Let φ(t) be a non-quadratic function satisfying: (i) φ(t) is even; (ii) φ(
√

t) is concave on R+ and (iii)
φ(t) is continuous at t = 0 and φ ∈ C 1(R\{0}). Under these hypotheses, it can be shown ([18], Section
12) that there exists a function ψ(b) so that the pair (φ ,ψ) satisfy the following duality relation:

φ(t) = inf
s>0

(st2 +ψ(s)), (11)

ψ(s) = sup
t∈R

(φ(t)− st2).

Expression (11) is usually referred to as the half-quadratic form of φ . For instance, for φ = φη as in (9), it
can be easily shown that the corresponding dual function is

ψη(s) = η
2s−η +

1
4s

. (12)

By using the dual function ψ(s) we now define the following functional, which introduces an auxiliary
variable s ∈ RM−1

+ :

Kθ ,φ (u,s)
.
= ‖Tu− v‖2 +

λ0

M

M

∑
m=1

(1−θm)u2
m +

λ1

M

M

∑
m=2

θm

(
sm

(
um−um−1

1/M

)2

+ψ(sm)

)
. (13)

Now, equations (10) and (13) are closely related. In fact, by minimizing Kθ ,φ (u,s) with respect to
s ∈ RM−1

+ we obtain:

inf
s∈RM−1

+

Kθ ,φ (u,s)

=‖Tu− v‖2 +
λ0

M

M

∑
m=1

(1−θm)u2
m +

λ1

M
inf

s∈RM−1
+

[
M

∑
m=2

θm

(
sm

(
um−um−1

1/M

)2

+ψ(sm)

)]

=‖Tu− v‖2 +
λ0

M

M

∑
m=1

(1−θm)u2
m +

λ1

M

M

∑
m=2

θm inf
sm∈R+

(
sm

(
um−um−1

1/M

)2

+ψ(sm)

)

=‖Tu− v‖2 +
λ0

M

M

∑
m=1

(1−θm)u2
m +

λ1

M

M

∑
m=2

θmφ

(
um−um−1

1/M

)
=Jθ ,φ (u), (14)

where the second equality holds since each element of s is associated independently to one and only one
term of the sum. Our goal can then be thought of as minimizing Kθ ,φ (u,s) with respect to both u and s.
We start by defining a diagonal matrix S ∈ RM×M , with diagonal elements sm such that s1 = 0, and sm

are the components of vector s. Furthermore, by defining the diagonal matrix Θ ∈ RM×M by Θm,m = θm

and letting L1 be the one-dimensional first order finite difference matrix (i.e. (L1u)m = um− um−1 for
m = 2,3, ...,M and L1,1 = 0), we can finally write

Kθ ,φ (u,s) = ‖Tu− v‖2 +
λ0

M
ut(IM−Θ)u+λ1MutLt

1ΘSL1u+
λ1

M

M

∑
m=2

θmψ(sm). (15)
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SOP TRANSACTIONS ON APPLIED MATHEMATICS

The minimizer of Kθ ,φ (u,s) with respect to u can be found by simply solving the system given by the first
order necessary condition, which turns out to be linear. In fact, from expression (15) we obtain

(T tT +
λ0

M
(IM−Θ)+λ1MLt

1ΘSL1)u = T tv. (16)

Nonetheless, we still need to minimize Kθ ,φ (u,s) with respect to s. Here again, the duality rela-
tion comes in handy since by differentiating expression (11) we observe that the elements bm

.
=

argmin
sm∈R+

(
sm

(
um−um−1

1/M

)2

+ψ(sm)

)
must satisfy

bm =
φ ′(tm)

2tm
, (17)

where tm = (um−um−1)/(1/M). Let us notice that φ(t) has continuous second order derivative at zero,
provided that φ(t) be of class L2L1 or L2L0, and then L’Hôpital’s rule implies that φ ′(t)

2t has a removable
singularity at zero. Hence for tm = 0, we define bm = φ ′′(0)/2.

We shall now proceed to build an algorithm for approximating the minimizer of Jθ ,φ (u) by using
expressions (16) and (17) via a fixed-point type argument as follows.

2.3 Numerical implementation of the half-quadratic approach

Since minimizing (15) implies the simultaneous minimization with respect to the inter-dependent
variables u and s, we will state a simple cyclic iterative algorithm that was found to be quite effective:

Step 1 - Initializing: set j = 0, and initialize u j = u0.

Step 2 - Counting: let j = j+1.

Step 3 - Updating bm: update b j
m using equation (17). That is,

b j
m

.
=

φ ′(M(u j−1
m −u j−1

m−1))

2M(u j−1
m −u j−1

m−1)
, m = 2, . . . ,M.

Step 4 - Updating u: update u j by solving (in the least-squares sense) the linear system

(T tT +
λ0

M
(IM−Θ)+λ1MΘLt

1B jL1)u j = T tv,

where B j is M-by-M diagonal matrix with its first diagonal element 0 followed by b j
2,b

j
3, . . . ,b

j
M .

Step 5 - Convergence: if a previously defined convergence criterion is satisfied, the algorithm ends and
u j is taken as the restored signal. Else, the algorithm repeats from step 2.

In the next section, we shall generalize this half-quadratic approach to the case of image restoration
problems (i.e. for n = 2).
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
regularization

3. The half-quadratic approach to image restoration with mixed L2 and
anisotropic BV regularization

Consider now the model problem (1) along with functional (6) and assume Ω = [0,1]× [0,1]. Here
now w(x) represents the intensity of a gray-scale image at the point x ∈Ω. We discretize the image to
obtain an M-by-M matrix U , consisting of the values of w at the centerpoints of an M-by-M pixel grid.
Next, we stack the columns of U to get a vector u ∈RM2

so that uM(l−1)+m =Um,l ∀ l,m = 1,2, ...,M. We

proceed in the same way to obtain Θ ∈ RM2
and v ∈ RN2

, corresponding to discretized versions of θ(·)
and of the observation y, respectively. Finally, T ∈ RN2×M2

will represent an appropriately discretized
version of the operator T and Am the 2-by-2 matrix obtained by evaluating the matrix-valued function
A (·) at the centerpoint of the mth pixel. Thus, our discretization of functional (6) takes the form

Jθ (u) = ‖Tu− v‖2 +
λ0

M2

M2

∑
m=1

(1−θm)u2
m +

λ1

M2 ∑
m∈M

θm

∥∥∥∥∥Am

(
M(um−um+1)

M(um−um−M)

)∥∥∥∥∥
1

, (18)

where M is the set of all indexes which do not correspond to a pixel in the bottom or left borders of the
image. Naturally, the restored image will be approximated by the minimizer of this functional. In order to
find such a minimizer, let us begin by noticing that the m-th term of the discretized anisotropy penalizer
on (18) is now ∥∥∥∥∥Am

(
M(um−um+1)

M(um−um−M)

)∥∥∥∥∥
1

= |M
(
am

1,1(um−um−M)+am
1,2(um−um+1)

)
|

+ |M
(
am

2,1(um−um−M)+am
2,2(um−um+1)

)
|, (19)

where am
i, j, i, j = 1,2, are the elements of the 2-by-2 matrix Am. Here again, to avoid the non-

differentiability of the absolute value at the origin, we will replace it with the function φ(t) = φη(t)
defined in (9), for which the corresponding dual function is ψ(s) = ψη(s) given by (12). Following the
same steps as in section 2.2 and using the duality relation (11), we approximate (19) by∥∥∥∥∥Am

(
M(um−um+1)

M(um−um−M)

)∥∥∥∥∥
1

≈ inf
s∈RM2

(
sm
[
M
(
am

1,1(um−um−M)+am
1,2(um−um+1)

)]2
+ψ(sm)

)
+ inf

q∈RM2

(
qm
[
M
(
am

2,1(um−um−M)+am
2,2(um−um+1)

)]2
+ψ(qm)

)
, (20)

Define now the M2-by-M2 diagonal matrices Ai, j for i, j = 1,2, such that Ai, j
m,m = am

i, j if m∈M and Ai, j
m,m =

0 otherwise, and let R1 and R2 be the M2-by-M2 matrices defined by R1
.
= A1,1(L1⊗ IM)+A1,2(IM⊗Lt

1)

and R2
.
= A2,1(L1⊗ IM)+A2,2(IM ⊗Lt

1), where IM denotes the M-by-M indentity matrix and ⊗ is the
Kronecker product. We then build, in the same way we did for signals, the functional

Kθ ,φ (u,s,q) =‖Tu− v‖2 +
λ0

M2 ut(IM2 −Θ)u+λ1utRt
1ΘSR1u+λ1utRt

2ΘQR2u

+
λ1

M2 ∑θmψ(sm)+
λ1

M2 ∑θmψ(rm), (21)

where S and Q are the M2-by-M2 diagonal matrices whose diagonal elements are sm and qm, respectively.
It can now be easily seen that

inf
s,q∈RM2

+

Kθ ,φ (u,s,q) = Jθ ,ψ(u)≈ Jθ (u), (22)
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SOP TRANSACTIONS ON APPLIED MATHEMATICS

where Jθ ,ψ(u) is the approximation of (18) obtained by using (20). We now want to find the minimizer
of functional (21) with respect to u. As for the case of signals (equation (15) ), the first order necessary
condition of Kθ ,φ (u,s,q) with respecto to u results in a linear system, given by(

T tT +
λ0

M2 (IM2 −Θ)+λ1Rt
1ΘSR1 +λ1Rt

2ΘQR2

)
u = T tv. (23)

Since we also need to minimize Kθ ,φ (u,s,q) with respect to s and q, we define

bm
.
= argmin

sm∈R+

(
smM2 (am

1,1(um−um−M)+am
1,2(um−um+1)

)2
+ψ(sm)

)
,

and
cm

.
= argmin

qm∈R+

(
qmM2 (am

2,1(um−um−M)+am
2,2(um−um+1)

)2
+ψ(qm)

)
.

We now resort to (11) to deduce that the elements bm and cm must satisfy

bm =
φ ′(M

(
am

1,1(um−um−M)+am
1,2(um−um+1)

)
)

2M
(

am
1,1(um−um−M)+am

1,2(um−um+1)
) (24)

and

cm =
φ ′(M

(
am

2,1(um−um−M)+am
2,2(um−um+1)

)
)

2M
(

am
2,1(um−um−M)+am

2,2(um−um+1)
) . (25)

Based upon all of the above, we shall state a cyclic iterative algorithm for image restoration as follows:

Step 1 - Initializing: set j = 0, and initialize u j = u0.

Step 2 - Counting: let j = j+1.

Step 3 - Updating bj
m: update b j

m using equation (24). That is,

b j
m =

φ ′(M
(

am
1,1(u

j−1
m −u j−1

m−M)+am
1,2(u

j−1
m −u j−1

m+1)
)
)

2M
(

am
1,1(u

j−1
m −u j−1

m−M)+am
1,2(u

j−1
m −u j−1

m+1)
)

Step 4 - Updating cj
m: update c j

m using equation (25). That is,

c j
m =

φ ′(M
(

am
2,1(u

j−1
m −u j−1

m−M)+am
2,2(u

j−1
m −u j−1

m+1)
)
)

2M
(

am
2,1(u

j−1
m −u j−1

m−M)+am
2,2(u

j−1
m −u j−1

m+1)
)

Step 5 - Updating u: update u j by solving the linear system(
T tT +

λ0

M2 (IM2 −Θ)+λ1Rt
1ΘB jR1 +λ1Rt

2ΘC jR2

)
u j = T tv

where B j and C j are the M2-by-M2 diagonal matrices with elements b j
m and c j

m for m ∈M and 0
otherwise.

Step 6 - Convergence: if a previously defined convergency criterion is satisfied, the algorithm ends and
our restored signal is defined as u j. Else, the algorithm repeats from step 2.
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
regularization

4. Applications to signal and image restoration

The purpose of this section is to present some applications of the algorithms developed above for
half-quadratic mixed L2-BV regularization in signal and image restoration problems.

4.1 A signal restoration example

A basic mathematical model for signal blurring is given by convolution as a Fredholm integral equation
of first kind:

y(x) =
∫ 1

0
k(t,x)w(t)dt .

= T w(x), (26)

where w and y are the original and blurred signal, respectively, and k(t,x) is called point spread function
(PSF) or blurring kernel. For the numerical examples that follow we took k(t,x) to be Gaussian, i.e.

k(t,x) = 1√
2πσb

exp
(
− (t−x)2

2σ2
b

)
, with σb > 0 and equation (26) was discretized in the usual way (using

collocation and quadrature), resulting in a discrete model of the form

Tu = v, (27)

where T is an (M+1)× (M+1) matrix and u,v ∈ RM+1 (u j = w(x j), v j = y(x j), x j =
j

M , 0≤ j ≤M).
We took M = 130 and σb = 0.04. The data g was contaminated with a 1.5% zero-mean Gaussian
additive noise (i.e. standard deviation equal to 1.5% of the range of v). Figure 1(a) shows the original
signal u (unknown in real life problems) and the blurred noisy signal v which constitutes the data of the
inverse problem. Figure 1(b) shows the restoration obtained with the classical Tikhonov-Phillips method
(corresponding to θ(x) = 0 in functional (6) ). Figure 1(c) shows the restoration obtained with the pure
BV penalizer (θ(x) = 1 in (6) ) and finally, Figure 1(d) depicts the restoration obtained with the mixed
L2-BV penalizer with θ(x) chosen by scaling to [0,1] the absolute value of the derivative of the regularized
solution obtained with a pure Tikhonov-Phillips method. It is timely to point out here that the choice of θ

is a very important matter about which we shall not discuss in this article. In all cases, the regularization
parameters used were estimated using Morozov’s discrepancy principle.
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Original signal
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Original signal
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Original signal
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ISNR = 4.680

ISNR = 2.611

ISNR = 6.508

Figure 1: (a) Original signal and observation; (b) Tikhonov-Phillips restoration; (c) BV restoration; (d)
Mixed L2-BV restoration.

As expected, the combined method returns a much better restoration. This is clearly reflected in the
ISNR values for all three cases. The CPU times required to perform the latter mixed restoration was
compared to those required by another program based in the traditional Newton-Raphson method. Given
the same stopping criteria, the algorithm proposed here was in average over thirty five times faster than the
other, what provides strong evidence of the computational efficiency of these new half-quadratic approach.
We will next present a few applications to image restoration problems.

4.2 Image restoration examples

4.2.1 A gray-scale image

For the following examples we used a two dimensional convolution model for the blurring operator
with PSF of atmospheric turbulence type (gaussian kernel) with vertical and horizontal variances σ2

v and
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
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σ2
h , respectively:

T w(x,y) =
∫ ∫

Ω

(2πσhσv)
−1 exp

(
− (x− s)2

2σ2
h
− (y− t)2

2σ2
v

)
w(s, t)dsdt. (28)

Here w(s, t), for (s, t) ∈ Ω ⊂ R2, represents the gray-scale intensity at the point (s, t) of the image we
want to restore. The set Ω is the support of the image, which in all cases we took to be [0,1]× [0,1].
Here too, model (28) was discretized in the usual way by taking a regular M×M grid on Ω and stacking
the columns of the discretized version of the image w(s, t) to form a vector u ∈ RM2

. The resulting
discretized model was then of the form Tu = v where T is an M2-by-M2 matrix and the components of v
correspond to the values of the observation T w(x,y) at the centerpoints of the corresponding pixels. For
the examples that follow we took σ2

v = σ2
h = 0.02, M = 100 and the data of the inverse problem (namely

v) was contaminated with 1% additive white noise.

Figure 2(a) shows the blurred-noisy image (data of the inverse problem) while Figure 2(b) shows the
restoration obtained with a Tikhonov-Phillips method (pure L2 penalizer). This restoration was later used
to build the anisotropic penalization matrices Am (as done in [15]) and the components θm of the convex
combination vector, in a similar way as it was done for signals.

(a) (b)

Figure 2: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.

In Figure 3 we present the restorations obtained using pure BV penalizers; isotropic case in (a) and
anisotropic in (b).
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(a) (b)

Figure 3: (a) Isotropic BV restoration; (b) Anisotropic BV restoration.

Finally, Figure 4 shows the restorations obtained with the mixed L2-BV penalizer; isotropic case in (a)
and anisotropic in (b).

(a) (b)

Figure 4: (a) Mixed L2-isotropic BV restoration; (b) Mixed L2-anisotropic BV restoration.

For comparison purposes, the original image is presented in Figure 5 and all ISNR values in Table 2.
Once again, the best restoration is obtained with the combined L2-anisotropic BV penalizer. It is also
timely to see that the ISNR value of the anistropic BV restoration is significantly larger than the one
obtained with the isotropic BV penalizer. Also, the ISNR increases from any one of the single methods to
the corresponding combined one (namely, isotropic BV to mixed isotropic and anisotropic BV to mixed
anisotropic). These observations clearly highlight the relevance and potential applications of the combined
methods.
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
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Figure 5: Original image

Restoration Type ISNR

Tikhonov 4.140
Isotropic BV 3.666
Anisotropic BV 5.032
Mixed Isotropic 4.517
Mixed Anisotropic 5.118

Table 1: ISNRs of each restoration

4.2.2 A color image

Finally we present an application to a color image restoration problem. Here the forward model consists
of applying the integral operator given by equation (28) to each one of the three layers (RGB) of the
image. Blurring, noise contamination and restoration were all performed separately on each one of the
layers. Figure 6(a) shows the blurred-noisy image (data) while Figure 6(b) shows the restoration obtained
with a Tikhonov-Phillips (pure L2) regularization method. Here too this restoration was used to build the
anisotropic penalization matrices Am and the components θm of the convex combination vector.

Figure 7 shows the restorations obtained with pure BV penalization terms, both isotropic (a) and
anisotropic (b). The difference between the restorations induced by taking into account gradient-induced
directions stands out clearly. Finally, Figure 8 shows the restorations performed with mixed L2-BV
regularization.

71

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

F.
 J

. I
ba

rr
ol

a 
&

 R
. S

pi
es

; "
Im

ag
e 

re
st

or
at

io
n 

w
ith

 a
 h

al
f-

qu
ad

ra
tic

 a
pp

ro
ac

h 
to

 m
ix

ed
 w

ei
gh

te
d 

sm
oo

th
 a

nd
 a

ni
so

tr
op

ic
 b

ou
nd

ed
 v

ar
ia

tio
n 

re
gu

la
ri

za
tio

n"
SO

P 
T

ra
ns

ac
tio

ns
 o

n 
A

pp
lie

d 
M

at
he

m
at

ic
s,

 p
p.

 5
7-

95
, 2

01
4.



SOP TRANSACTIONS ON APPLIED MATHEMATICS

(a) (b)

Figure 6: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.

(a) (b)

Figure 7: (a) Isotropic BV restoration; (b) Anisotropic BV restoration.
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Image restoration with a half-quadratic approach to mixed weighted smooth and anisotropic bounded variation
regularization

(a) (b)

Figure 8: (a) Mixed L2-isotropic BV restoration; (b) Mixed L2-anisotropic BV restoration.

To better illustrate and compare the performances of the methods, Figure 9 shows the original image
while Table 2 shows the ISNR values for each one of the five restorations.

Figure 9: Original image

Restoration Type ISNR

Tikhonov 3.325
Isotropic BV 3.104
Anisotropic BV 4.042
Mixed Isotropic 3.846
Mixed Anisotropic 4.420

Table 2: ISNRs of each restoration

Similar observations as for the gray-scale example can be made here. Namely, the best restoration is
once again obtained with the combined L2-anisotropic BV penalizer, the ISNR value of the anisotropic
BV restoration is considerably larger than the one for the isotropic BV penalizer and the ISNR values
increase from any one of the single methods to the corresponding combined one.
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5. Conclusions

In this article we used a non-convex reformulation plus a non-quadratic half-quadratc approach to
attack a general Tikhonov-Phillips regularization method where the penalizers are given by mixed
spatially varying weighted convex combinations of L2 and BV functionals. Both isotropic and anisotropic
BV diffusion were considered. The associated optimization problems were then recast by means of a
duality argument as half-quadratic optimization problems. The method proposed in this article resulted
in significantly faster algorithms as compared to direct Newton-based methods. Numerical results in
signal and image restoration problems were shown along with their ISNRs, whose higher values for the
mixed-anisotropic restorations showed substantial improvements.
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