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Abstract

Feature selection is a key issue in pattern recognition, specially when prior
knowledge of the most discriminant features is not available. Moreover, in
order to perform the classification task with reduced complexity and accept-
able performance, usually features that are irrelevant, redundant, or noisy
are excluded from the problem representation. This work presents a multi-
objective wrapper, based on genetic algorithms, to select the most relevant
set of features for face recognition tasks. The proposed strategy explores the
space of multiple feasible selections in order to minimize the cardinality of the
feature subset, and at the same time to maximize its discriminative capacity.
Experimental results show that, in comparison with other state-of-the-art
approaches, the proposed approach allows to improve the classification per-
formance, while reducing the representation dimensionality.

Key words: wrappers, multi-objective genetic algorithms, feature selection,
face recognition.

1. Introduction

Face recognition has received significant attention due to its promising
applications in security systems and human-computer interaction, which has
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motivated important new developments in research areas such as image pro-
cessing and artificial intelligence. In general, the methodologies are devel-
oped for face images acquired under controlled conditions, but in practical
situations, face recognition systems usually must also deal with changing con-
ditions like variations in pose, expression and illumination, which introduce
intra-class variability in the extracted features with respect to the training
data [1, 2, 3]. In a face recognition problem, a given face image is classified
into K previously known face classes. This is usually done using a model
trained with the feature vectors extracted from a database of face images
[4, 5].

Two main approaches exist in face recognition, those which are based on
holistic methods and the others based on analytic techniques [6]. Holistic
methods, such as eigenfaces [7], use global characteristics of the face images.
On the other hand, analytic techniques, like the Active Shape Models (ASM)
[8, 9], extract face features related to the eyes, the nose, the mouth, etc.

In facial modeling with ASM, a number of points (i.e. image locations)
are selected from an input image, but only some of these points are useful
for characterizing the face, since the others have small contributions to dis-
crimination, or are noisy. As the training of ASM converges towards salient
edges, if these edges are distorted by noise or some other artifact, like local
illumination variation, erroneous feature matchings might arise [10]. Despite
recent improvements made to ASM techniques, the matching errors may
be undesirably high at some face locations [11, 12]. Even after some new
implementations that improve the landmark location accuracy, the detec-
tion of facial features with varying pose and illumination is still challenging
[13, 1]. Usually, once a set of face image locations (i.e. points) is selected by
the ASM method, a number of features describing each face location is ex-
tracted. Then, the resulting feature vectors representing the faces are usually
of high dimensionality, which makes the classification task more difficult [14].
Also, large feature sets are prone to overfitting and, hence, to achieve poor
generalization performance [15].

In [10], the authors proposed to improve the ASM performance in face
recognition by weighting the facial features according to a method based
on adjusted mutual information. As the authors shown, this criterion al-
lowed the selection of the most relevant landmark points, in order to im-
prove the face classification results. However, the flexibility provided by the
full set of features obtained by the ASM approach has not yet been fully
explored by means of feature selection techniques, in order to reduce the
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dimensionality of the representation while improving the face classification
results. On the other hand, significant progresses have been made with the
application of different artificial intelligence techniques for feature selection.
In particular, many works rely on evolutionary algorithms for feature sub-
set optimization [16, 17, 18, 19], and for the search of optimal representa-
tions [20, 21, 22, 23]. In [24] a genetic wrapper was proposed for the selection
of the most relevant features for improving the accuracy of face recognition.
Nevertheless, this wrapper was focused on classification accuracy improve-
ment, which limits the proposed method since it overlooks other important
issues in face classification (e.g. feature space dimensionality and class over-
lap).

In order to guide the search within the space of feasible face classifica-
tion solutions, here we propose the use of a Multi-Objective Genetic Algo-
rithm [25]. This method allows to overcome the above mentioned limitations
by maximizing the face classification accuracy, while minimizing the number
of features and the mutual information. Two different strategies for the rep-
resentation of the candidate solutions are proposed and compared, and the
generalization performance of the feature subset selection is assessed using
an independent data set.

The organization of this paper is as follows. First a brief introduction
to the use of ASM for face modeling is given in Section 2, and next our
multi-objective wrapper for the selection of features for face classification is
presented in Section 3. Section 4 describes our experiments and discuss the
results obtained for face classification. Finally, our conclusions and ideas for
future work are presented in Section 5.

2. Active Shape Models for Facial Recognition Applications

The ASM approach is used to represent shapes and their expected ways
of deforming as learned from a training set. For this, it uses flexible point
distribution models (PDM), based on the positioning of selected points in
the face image examples [11]. This PDM iteratively deforms to fit the shape
of an object, constrained to vary in the way learned from a set of training
examples. When applied to face recognition, the ASM is trained on a set
of sample faces, and N points are used to represent the shape of each face
within its class (see Figure 1(a)).

Nevertheless, matching errors may arise in the location of the PDM
points, often called landmarks, in a face image (see Figure 1(b)) [10]. Then,

3

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. D

. V
ig

no
lo

, D
. H

. M
ilo

ne
 &

 J
. S

ch
ar

ca
ns

ki
; "

Fe
at

ur
e 

se
le

ct
io

n 
fo

r 
fa

ce
 r

ec
og

ni
tio

n 
ba

se
d 

on
 m

ul
ti-

ob
je

ct
iv

e 
ev

ol
ut

io
na

ry
 w

ra
pp

er
s"

E
xp

er
t S

ys
te

m
s 

w
ith

 A
pp

lic
at

io
ns

, V
ol

. 4
0,

 N
o.

 1
3,

 p
p.

 5
07

7-
50

84
, 2

01
3.



Figure 1: Illustration of the landmark points used to model a face (a) and their location
on an image (b) [10].

considering a training image set with K face classes, each class k = 1, ..., K
is represented by N landmark points Sk,ǫ = {pi(xi + ǫxi

, yi + ǫyi)
k}, where

i = 1, ..., N , (xi, yi) are the coordinates of the landmark point pi and (ǫxi
, ǫyi)

are the respective location errors. Every relevant facial characteristic (e.g.
eye centers, mouth contours, etc.) is represented by a set of landmarks pi,
and the particularities of each point in the image are described by Q fea-
tures (e.g. chrominance, texture, etc.). The features at landmark pi will be
denoted {Fj,i}, with j = 1, ..., Q.

In order to describe each one of the N landmark points pi, the mean µFj,i

and the variance σ2
Fj,i

of the measurements of each feature j taken within
a defined neighborhood of that point are commonly used [10]. These are
computed for all features Fm

j,i, with m = 1, . . . ,M , where M is the number
of training image samples,

µFj,i
=

1

w2

w
∑

r=1

w
∑

q=1

µj,i(r, q), (1)

σ2
Fj,i

= max
r,q∈W

{

σ2
j,i(r, q)

}

, (2)

where (r, q) are the pixel coordinates within the window W (of size w × w),
centered at the landmark point pi [10], µj,i(r, q) = 1

M

∑M
m=1 F

m
j,i(r, q) and

σ2
j,i(r, q) =

1

M

∑M
m=1

(

Fm
j,i(r, q)− µj,i(r, q)

)2

.
To consider the feature variability within the w×w neighborhood of land-

mark pi, the maximum window variance was used in (2). The window size
was set to w = 2max {σǫ}, where σǫ is the standard deviation of landmark
location errors, measured during ASM training. The probability density of
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location errors at each landmark point is assumed to be approximately Gaus-
sian [26].

In this work, the face detector proposed by Demirel et al. [27] is used,
and the process applied to the database of face images in order to obtain the
ASM-based set of features is described in detail in [24, 10].

3. Multi-objective Wrapper for Face Feature Selection

Genetic algorithms (GAs) are meta-heuristic optimization methods, in-
spired on the process of natural evolution, that are capable of finding global
optima in complex search spaces [28]. These optimization algorithms need to
evaluate a problem-dependent objective function to guide the search. How-
ever, in most real-world problems we may be interested in satisfying more
than one objective, and the optimization of one objective may conflict with
the other objectives. In general, the solution of a multi-objective optimiza-
tion problem is not a single point, but a set of points known as the Pareto
optimal front [29].

Different modifications to the traditional GAs were proposed in order to
tackle multi-objective problems [30]. One generic approach is to combine
the individual objective functions into a single aggregative function, or to
consider all but one objective as constraints. Another generic approach is to
determine a Pareto optimal, or nondominated set of solutions. This means,
a set of solutions for which none of the objective values can be improved
without detriment in some of the other objective functions. This approach
takes advantage of the population-based nature of GAs, which allows the
generation of several elements of the Pareto set in a single run [25].

Particularly, the Multi-Objective Genetic Algorithm (MOGA) is a vari-
ation of the classical GA, in which the rank of an individual is the num-
ber of chromosomes in the population by which it is dominated [30]. This
technique addresses the search toward the true Pareto front, while maintain-
ing diversity in the population [31]. A problem that arises in Pareto based
multi-objective evolutionary algorithms is the difficulty to preserve diversity
among Pareto optimal solutions. The population tends to scatter around
the existing optima forming stable sub-populations, or niches. One approach
to overcome this difficulty, which is based on the concept of niching around
promising points, makes use of a sharing function as proposed by Fonseca and
Fleming [30]. Fitness sharing allows the MOGA to maintain the population
diversity while encouraging the search for solutions in unexplored sections of
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Figure 2: General scheme of the proposed multi-objective wrapper.

a Pareto front. This is accomplished by reducing the fitness of solutions in
densely populated areas of the search space [29]. The MOGA, as other fit-
ness sharing techniques, uses the parameter σs to define the size of the niche
around a point in the Pareto front [31]. In this way, the nearby solutions
are penalized in order to maintain population diversity, and to promote the
search around all the salient peaks in the domain of feasible solutions.

Here we propose and study three different wrappers for feature selection
in face recognition applications. The first wrapper is a classical GA, in which
each individual represents a particular selection of the set of facial features ex-
tracted from an input image by means of ASM. The second wrapper that we
propose is a multi-objective GA with an aggregative fitness function, which
combines classification accuracy and the number of features in a single equa-
tion. Finally, we propose a third wrapper which consists of a MOGA, with
the same objective functions considered for the second alternative. Addition-
ally, in this case we also use mutual information as an additional objective, in
order to minimize the interdependence of the selected features. The proposed
multi-objective wrapper method is described as a diagram in Figure 2.

The selection of individuals is done considering the set of coefficients rep-
resented by each chromosome, using the tournament selection scheme. This
consists on choosing a few individuals at random from the population in or-
der to run a competition, from which the winner is selected for reproduction.
To evaluate a particular individual, a set of images is used to compute the
objective functions. In order to perform the evaluation, first, the feature vec-
tors that represent the images are assembled with the coefficients indicated
by the chromosome.

The classical mutation and one-point crossover are used, and an elitist
replacement strategy is applied in order to maintain the best individual for
the next generation.
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3.1. Fitness Functions

In the proposed multi-objective wrappers, one of the target functions
evaluates the feature set suggested by a given chromosome, providing a mea-
sure of the face classification accuracy. Therefore, a classifier is used as the
first objective function, so that the success classification rate is considered
for each evaluated individual. In order to guide the search, while maintaining
a low computational cost, a simple classifier algorithm was considered. This
classifier assigns the test face image, represented by its feature vector, to the
class with the closest prototype (mean feature vector). The mean is first
computed based on the feature vectors in the training set, and the Euclidean
norm was used as distance in our experiments. Then, after an optimized
solution is found, the k -nearest neighbors (KNN) classifier [14] is used to
evaluate the classification performance on the test set.

It shall be observed that it is also beneficial to obtain a face image rep-
resentation containing the smallest number of coefficients, which should be
help in face image classification task, as discussed next.

3.1.1. Aggregative Fitness Function

For the aggregative approach we used a fitness function that combines
classification accuracy and the number of features in a single equation. The
proposed aggregative fitness function is:

Fa = αF1 +
1− α

F2

, (3)

where α is a parameter that assigns a relevance to each objective. The first
term of Fa corresponds to the prediction accuracy, F1 (the fitness function
used in the standard GA), and F2 accounts for the the number of selected
features. In our experiments we adjusted α between 0.7 and 0.9. The second
objective function is defined as

F2 = 100
(

1−
n

L

)

, (4)

so that we obtain a number in the same range as the classification rate.
Here, n is the number of coefficients selected by the chromosome, and L is
the length of the chromosomes.
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Algorithm 1: Population evaluation in the proposed wrapper.

for each individual in the population do

Re-parameterize the face images using the features selected by the chromosome
(given the complete set of ASM features obtained using (1))
Train the classifier with the training set
Test the classifier with the validation set
Assign classification rate as the current value for F1

Assign the current value for F2, based on the number of features (4)
Assign the current value for F3, based on MI (5)
In the case of the aggregative AG, compute the total fitness (3)

3.1.2. Proposed Multi-Objective approach

For the proposed MOGA we used the objective functions F1 and F2,
defined in (3) and (4), respectively. Also, we used an additional objective
function designed to minimize the mutual information (MI) of the selected
coefficients. We computed the MI for every pair of coefficients on the training
data using the method proposed by Peng et al. [32]. We defined this third
objective function as

F3 =
M∗

1 + LM/n
, (5)

where M∗ is the sum of the MI calculated for all the available features (taken
in pairs), and M is the sum of the mutual information calculated for the
features selected by a chromosome.

Considering the three proposed target functions, all steps in the evalua-
tion of a population by the proposed multi-objective wrapper are detailed in
the Algorithm 1.

3.2. Chromosome Codification

In this work, the mean of the color chrominance channels Cr and Cb of
the YCbCr color space were used as features for describing each of the 68
ASM landmark points, meaning that the the dimensionality of a complete
feature vector is N×Q = 136 [10]. We considered two different approaches for
coding the chromosomes, yielding search spaces of significantly different sizes.
In the first case, each gene represents a particular feature, independently of
the landmark point associated to it. Thus, in this approach the chromosome
size is 136, and each feature associated to a given landmark point can be
selected individually and independently. In the second chromosome coding

8

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. D

. V
ig

no
lo

, D
. H

. M
ilo

ne
 &

 J
. S

ch
ar

ca
ns

ki
; "

Fe
at

ur
e 

se
le

ct
io

n 
fo

r 
fa

ce
 r

ec
og

ni
tio

n 
ba

se
d 

on
 m

ul
ti-

ob
je

ct
iv

e 
ev

ol
ut

io
na

ry
 w

ra
pp

er
s"

E
xp

er
t S

ys
te

m
s 

w
ith

 A
pp

lic
at

io
ns

, V
ol

. 4
0,

 N
o.

 1
3,

 p
p.

 5
07

7-
50

84
, 2

01
3.



alternative, each gene in a chromosome represents one of the ASM landmark
points, so the chromosome value indicates whether the corresponding features
are used or not, and hence the chromosome size is reduced to 68. In both
coding alternatives, the initialization consists on a random selection of the
genes (values) in the chromosomes, since no restriction was applied to the
re-combinations of features.

4. Experimental Results and Discussion

A set of face images from the Essex Face Database was used in our experi-
ments [33], which contains a significant diversity of individuals and expression
changes. In order to make a comparative evaluation of our experimental re-
sults with respect to other approaches available in the literature, 100 face
classes were used. Five face images per class were randomly selected for
training and other fifteen face images per class were separated for the test
set [10].

As stopping criteria for the optimization, we considered a maximum of
500 generations, and convergence was assumed after 100 generations without
fitness improvement. After the optimization step, the classification perfor-
mance with the selected feature subsets was evaluated on the test set, which
was not used for the feature selection process. That is, the data from the
test set was not used for the fitness evaluation during the optimization, which
allowed to estimate the generalization performance of the optimized feature
subsets. This test was performed employing a KNN classifier (with k = 1).
We carried out several optimization experiments, considering different al-
ternatives and combination of parameters, and here we discuss the most
relevant.

The experimental results are presented and discussed next. Section 4.1
discusses the experiments performed with the most simple approach studied
in this paper, using the single-objective wrapper. Then, in Section 4.2, the
results obtained with the proposed multi-objective strategies (i.e. aggregative
GA and MOGA) are addressed. Finally, Section 4.3 presents a comparative
analysis of the obtained results.

4.1. Single-Objective Optimization

In this Section, we first describe the experiments that involve chromo-
somes of length 136 (as explained before), which will be referred to as GA-
136. The classifier described in Section 3.1 was used in the evolution, which
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was evaluated on the training data set in order to compute the fitness of
each candidate solution. The GA population consisted of 30 individuals, and
crossover and mutation probabilities were set to 0.8 and 0.025, respectively.
In this case, the proposed GA converged to a set of 62 features, and the KNN
classifier achieved an accuracy of 97.20% on the test data set.

Another set of experiments were conducted with single-objective opti-
mization and GA-136 chromosomes. In order to obtain a better general-
ization performance, we enlarged the training data set using the Smoothed
Bootstrap Resampling (SBR) method [34]. When the amount of data is not
enough to ensure statistically significance, this method can be used to create
new samples by adding noise to the feature values of the original samples.
In particular, zero mean Gaussian noise with σ = 0.1 was used in our exper-
iments, since this value allowed to preserve the variance of the original train
data. Accordingly, in the next experiments (GA-136+SBR), 20 SBR exam-
ples were generated for each class in order to perform the fitness evaluations.
After the convergence of the GA, 68 features were selected, which allowed the
classifier to achieve an accuracy of 97.40% on the test data. Therefore, we can
infer that the resampling of the training data allows better generalization.

However, compared with the previous case, a larger subset of features
was selected. A plot of the maximum fitness value obtained as the number of
generations is increased is shown in Figure 3(a). Note that the convergence
of the GA required about 220 generations in this experiment.

The following approach tested, as explained in Section 3, consisted in re-
ducing the length of the chromosomes to the number of landmark points (68).
This means that, within each chromosome, the selection of a given landmark
implies that both of the corresponding features are used. As a result of this
experiment, referred to as GA-68+SBR, we obtained a reduced feature set
of size 56. With this feature set we obtained 98.0% of classification accu-
racy on the test data set, suggesting that the reduction of the chromosome
size simplified the search space, making the search easier for the GA. Figure
3(b) shows the evolution of the fitness value, and it can be verified that the
best solution was found after only 63 generations. When compared to Figure
3(a), it suggests that the codification strategy with smaller chromosomes, in
addition to the resampled training data set, allowed a faster convergence of
the GA.
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Figure 3: Convergence of the GA in the experiments: a) GA-136+SBR and b) GA-
68+SBR.

4.2. Multi-Objective Optimization

In this section, we discuss the experimental results obtained by using the
simultaneous optimization of multiple objectives. We first used a classical
GA with the aggregative fitness function given in (3), taking into account
the number of features besides the classification accuracy. As in the previous
case, we studied both the codification alternatives with chromosome lengths
136 and 68, and used SBR samples for training.

Figures 4(a) and 4(b) show the convergence plots for the optimizations
using chromosomes of length 136, and the aggregative fitness function with
α = 0.8 and α = 0.85, respectively. In the first case, GA-Aggre-2ob-
136+SBR (α = 0.8), the GA converged to a set of only 32 features, and
the KNN classifier achieved an accuracy of 97.40% on the test data set.
With a similar experiment but using α = 0.85, we obtained a set with ten
additional features (42), which lead to a small improvement on classification
accuracy of the test set (97.80%).

On the other hand, conducting the same experiments indicated above,
but using chromosomes of length 136, we obtained a subset of 46 features
with classification accuracy of 97.60%, and a subset of 56 features giving
an accuracy of 97.80% on the test set, with α = 0.8 and α = 0.85, respec-
tively. For these experiments, the fitness behaviors for different generations
are shown in Figures 4(c) and 4(d). It is noticeable that the convergence
of the GA takes a longer time to optimize two objectives simultaneously, in
contrast to the optimizations with a single objective discussed before.

The last group of experiments consists in using a MOGA to optimize two
and three objectives simultaneously. In addition to classification accuracy
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and the number of features, in these experiments we also considered the
minimization of the mutual information between selected features as a third
objective. For the problem in hand, we obtained the most interesting results
when σs was set to 0.09 and 0.1.

Several optimization experiments were conducted with the MOGA, first
combining classification accuracy and the number of features, and then also
including the mutual information measurement. Performing the optimization
with two objectives (MOGA-2ob, as with the aggregative GA) and chromo-
somes of length 136, we obtained a subset of 37 features (σs = 0.09) giving
an accuracy of 97.30% on the test set, and subset of 32 features (σs = 0.1)
giving an accuracy of 96.67% on the test set. With chromosomes of length
68, we obtained a subset of 38 features giving an accuracy of 97.53%, and a
subset of 30 features giving an accuracy of 97.30% on the test set. In this
way, we compare the MOGA and the aggregative GA, showing that the per-
formances of both are similar, except for a slight improvement of the MOGA
in the later case.

On the other hand, when we also consider the minimization of mutual
information (MOGA-3ob). We obtained a subset of only 26 features giving
an accuracy of 97.00% (σs = 0.09), and a subset of 30 features which obtained
97.53% of accuracy on the test set (σs = 0.09), with chromosomes of length
136. Finally, with chromosomes of length 68, we obtained a subset of 36
features giving an accuracy of 97.93% (σs = 0.09), and a subset of 38 features
giving 98.00% of accuracy on the test set (σs = 0.09).

4.3. Comparative Analysis and Discussion

Table 1 summarizes the results of the aforementioned experiments, and
compares the performances obtained by the optimized subsets of features
with two different approaches representing the state of the art. The second
column shows the classification accuracy achieved by the different feature
sets, obtained with the proposed wrapper optimization method on the test
data set, and the third column shows the number of features involved. The
last column exhibits the relative error reduction (RER) with respect to the
Enhanced ASM [10], meaning the percentage by which the error rate is re-
duced. As illustrated by this table, the optimized representations obtained
by the evolutionary wrappers obtained better classification performances. It
should be observed that these optimized representations provided larger fea-
ture sets when compared to the Enhanced ASM. However, the feature set
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Figure 4: Convergence of experiments: a) GA-Aggre-2ob-136+SBR with α = 0.8, b)
GA-Aggre-2ob-136+SBR with α = 0.85, c) GA-Aggre-2ob-68+SBR with α = 0.8, and d)
GA-Aggre-2ob-68+SBR with α = 0.85.

provided by GA-68+SBR improves the accuracy of the Enhanced ASM in
more than 4%, with two more features.

The multi-objective approaches obtained significantly smaller feature sub-
sets, specially if compared with the Enhanced ASM approach, with better
classification performances. For instance, the smallest subset found consists
of only 26 features and allows a significant reduction of the classification
error, with respect to the Enhanced ASM, with RER 35.76%. Moreover,
the solutions found by MOGA provided fewer features and, at the same
time, produced accuracies that are similar to those obtained by the single-
objective GA. For instance, the MOGA-3ob-68+SBR allowed to reduce the
classification error as much as our earlier GA-68+SBR (RER 57.17%), using
only 38 coefficients (features).

The aggregative multi-objective approach is useful to find small feature
sets with reduced classification error, and the MOGA approaches provided
better solutions (that is, almost the same accuracy with fewer features).
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Table 1: Classification results obtained for the test data

Method Accuracy Number of Relative error
features reduction

DFBFR [27] 93.73% 2× 1002 -
Enhanced ASM [10] 95.33% 54 (reference)
GA-136 96.93% 62 34.26%
GA-136+SBR 97.40% 68 44.33%
GA-68+SBR 98.00% 56 57.17%
GA-Aggre-2ob-136+SBR (α = 0.8) 97.40% 32 44.33
GA-Aggre-2ob-136+SBR (α = 0.85) 97.80% 42 52.89
MOGA-2ob-136+SBR (σs = 0.09) 97.30% 37 42.18
MOGA-2ob-136+SBR (σs = 0.1) 96.67% 32 28.69
MOGA-3ob-136+SBR (σs = 0.09) 97.00% 26 35.76
MOGA-3ob-136+SBR (σs = 0.1) 97.53% 30 47.11
GA-Aggre-2ob-68+SBR (α = 0.8) 97.60% 46 48.61
GA-Aggre-2ob-68+SBR (α = 0.85) 97.80% 56 52.89
MOGA-2ob-68+SBR (σs = 0.09) 97.53% 38 47.11
MOGA-2ob-68+SBR (σs = 0.1) 97.30% 30 42.18
MOGA-3ob-68+SBR (σs = 0.09) 97.93% 36 55.67
MOGA-3ob-68+SBR (σs = 0.1) 98.00% 38 57.17

Additionally, the minimization of the mutual information as a third objective
provides solutions with a better compromise between classification error and
the number of features. However, it is important to observe that in this
experiments we favor solutions that provide high classification accuracy more
than those with fewer features.

An interesting performance analysis can be obtained by changing the
100-class problem into a binary classification task, and then computing the
ROC curve according to the methodology proposed in [35]. For this binary
classification task we took the 15 test patterns of a given class and assigned
them as the registered user class, and all of the remaining test patterns, from
the other 99 classes, were assigned to the unregistered user class. This was
repeated for each of the 100 classes (each time a different class was labeled
as registered) and the classification results obtained were averaged. As the
unregistered users are unknown, the training patterns corresponding to this
class were not used in the classification (we used only the patterns corre-
sponding to the registered user class). Instead of using the KNN classifier,
the rule to classify the test samples was based on the Euclidean distance to
the training samples of the registered user class. This rule can be described
simply as follows: if the distance from the test image to each of the train-
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Figure 5: ROC curve generated by varying the threshold δ in the binary classification task.
The solid line corresponds to the MOGA-3ob-68+SBR, the dashed line to GA-68+SBR,
and the dash-dot line to the complete feature set.

ing (registered) users is less than the threshold δ, it is labeled as registered ;
otherwise the test image is classified as unregistered.

Figure 5 shows the ROC curves constructed with the true positive rate
(TPR) and false positive rate (FPR) indexes, obtained by averaging the re-
sults for the 100 binary classification tests. The classification performance
obtained with the feature set MOGA-3ob-68+SBR (solid line), with the fea-
ture set GA-68+SBR (dashed line), and with the complete feature set (dash-
dot line), for different values of threshold δ (varying from 0 to 120) are shown.
High TPR values indicate that most of the test samples that belong to the
registered class are correctly classified. On the other hand, high values of
FPR occur when unregistered samples are labeled as registered. As can be
seen in Figure 5, to obtain the highest TPR we need to tolerate a FPR differ-
ent of zero. It is important to observe that our optimized feature sets allow
to improve on the classification results obtained with the complete feature
set, obtaining a higher TPR without increasing the FPR. Also, analyzing
the ROC curves it can be noticed that the 38-feature set obtained with the
MOGA shows a significant improvement in classification performance with
respect to the 56-feature set obtained with the classical GA (the same obser-
vation applies to the complete feature set). This confirms our hypothesis that
it is beneficial to minimize the size of the feature set. Also, it can be noticed
that the use of the resampling method allowed to obtain better results.
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5. Conclusions and Future Work

This paper presented and compared multi-objective wrappers, based on
evolutionary computation techniques, designed to optimize the feature se-
lection process in face image classification. The proposed wrappers provide
feature sets of different sizes and face class discrimination capabilities, and
the choice of the most appropriate wrapper should be guided by the require-
ments of the problem in hand (e.g. reduced feature set combined with a high
classification accuracy, or just focus on high classification accuracy). The
experiments were performed on a well known face image data set, where the
face images were represented using the ASM approach. These experiments
revealed that the optimized feature sets offer improved classification accu-
racy in comparison with other state of the art approaches. Probably because
these optimized face representations provide better class separability in the
feature space, while simplifying the classification task. Furthermore, the
dimensionality of the ASM-based representation was significantly reduced,
which also helps to avoid overfitting. Hence, the proposed strategy provides
a valid alternative for the selection of relevant features for face recognition.

In the future, we plan to perform experiments with a larger data set, with
increased variability of pose and illumination, and explore other options in
terms of feature set optimization. We would like to explore other multi-
objective optimization algorithms such as PESA-II or NSGA-II [25], in order
to compare the performance with the MOGA. Also, a measure of compactness
[36] could be also considered as objective function in order to improve the
clustering of classes in our evolutive wrapper. Moreover, we would consider
the use of other heuristic search methods, such as particle swarm [37, 38] and
scatter search [39].
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