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Abstract Model compression is required when large models are used, for example, for a classification
task, but there are transmission, space, time or computing constraints that have to be fulfilled. Multilayer
Perceptron (MLP) models have been traditionally used as classifiers. Depending on the problem, they
may need a large number of parameters (neuron functions, weights and bias) to obtain an acceptable
performance. This work proposes a technique to compress an array of MLPs, through the weights of
a Volterra-Neural Network (Volterra-NN), maintaining its classification performance. It will be shown
that several MLP topologies can be well-compressed into the first, second and third order (Volterra-NN)
outputs. The obtained results show that these outputs can be used to build an array of (Volterra-NN) that
needs significantly less parameters than the original array of MLPs, furthermore having the same high
accuracy. The Volterra-NN compression capabilities were tested for solving a face recognition problem.
Experimental results are presented on two well-known face databases: ORL and FERET.

Keywords Model Compression · Array of Neural Networks · Volterra neural network · Face Recognition

1 Introduction

The purpose of model compression is to find a fast and compact model to approximate a function learned
by, for example, a classifier. Moreover, it is desirable to achieve this without significant loss in perfor-
mance [Buciluǎ et al, 2006]. Often the best performing models that use supervised learning are combi-
nations of complex and large classifiers. However, in some situations, it is not enough for a classifier to
be highly accurate, it also has to meet some requirements regarding on-line execution time, storage space
and limited computational power [Zhang and Wangmeng, 2007].

It is well-known that Multilayer Perceptron (MLP) models are usually considered as a powerful clas-
sification model. However, they easily become large models just by the addition of neurons, for example
in the hidden layer, which has a direct effect over the number of model weights. Similarly, the introduction
of more information to the model, that is to say more input variables in order to better learn the training
data and to improve its classification ability, can cause an increment of the model complexity.
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It has been recently shown that a Volterra model can be extracted from the parameters of a trained
Neural Network (NN) [Stegmayer and Chiotti, 2009]. The Volterra model is formed by Volterra kernels,
which are associated with the parameters of the trained NN. This has proven to be particularly useful for
reproducing the nonlinear and dynamic behavior of new wireless communications devices [Orengo et al,
2007]. Moreover, in [Rubiolo et al, 2010] the Volterra kernels extraction procedure has been used to build
a Volterra-Neural Network (Volterra-NN) model, which is a compressed version of a trained MLP model
over a very simple classification task, maintaining the same recognition rate than the original MLP model
but with fewer parameters. In this work we propose that, since it is possible to obtain a Volterra-NN
model from a single trained MLP model, it is also possible to compress an array of MLPs (aMLP) using
Volterra-NNs. That is to say, the same methodology applied to build a Volterra-NN model from a single
MLP can be used to obtain an array of Volterra-NN models from an aMLP.

In fact, arrays and ensembles of neural classifiers have proven to reach significant better results in
classification problems than single models [Dzeroski and Zenko, 2004][Rahman and Verma, 2011], in
particular for the task of Face Recognition (FR) [Zhang and Wangmeng, 2007]. In these systems, the
first step consists of face detection through image processing techniques. Secondly, a feature extraction
method is applied to extract useful information of the face. Finally, this information is used in a classifier
for recognizing faces [Zhao et al, 2003]. In [Capello et al, 2009] an aMLP model was proposed for the
classification task within a FR system. Specifically, an array of neural networks have been used for clas-
sification, consisting of one MLP for each subject (valid or authorized person), with a final decision made
over the network outputs of the complete array. The classificationwas performed by the maximum output
calculation among all the networks outputs. This configuration has achieved significant improvements
over the performance of a classic MLP. However, the use of this new neural configuration implies much
more parameters, and therefore, a larger and more complex FR system. Due to the fact that FR models
should be able to run on small processing devices such as mobile phones, ipods and security cams, or to
be transmitted online, the model must have an appropriate size in order to adjust to these requirements.

This work presents a novel approach for compressing a face recognition model based on a novel
application of the Volterra-NN method to an array of multilayer perceptrons. It will be shown how an
aMLP model that has learnt a classification problem with a certain (high) accuracy can be compressed
into a more compact representation using a Volterra-NN model. This novel representation involves less
parameters, maintaining however a high recognition accuracy. Two different face recognition databases
have been used to show the effectiveness of the proposed method.

The paper is organized as follows. Section 2 explains in detail the proposed Volterra-NN model and its
use as a classifier in a face recognition system. The materials and methods used in the study are presented
on Section 3. Results of the model evaluation through two public face databases as well as a discussion
of the experiments are shown in Section 4. Finally, Section 5 presents the conclusions and future work.

2 Volterra-Neural Network for neural networks compression

The Volterra series and Volterra theorem was developed in 1887 by Vito Volterra. It is a model for
representing nonlinear dynamic behavior frequently used in system identification [Volterra, 1959]. In
[Stegmayer and Chiotti, 2009] several formulas for the extraction of Volterra weights, independently of
the neural model topology, number of variables involved in the problem and nonlinearity of the system
have been presented. The equations are based on architectures having an hyperbolic tangent activation
functions in the hidden nodes, trained with a classical backpropagation algorithm [Marquardt, 1963], for
multi-input, multi-output systems. The MLP model is trained using the available training data and, after
that, the Volterra weights are obtained from the trained network parameters.

This section presents the Volterra-NN model for aMLP model compression, extending the simple
algorithms for classification proposed in [Rubiolo et al, 2010]. The following subsection presents the
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Fig. 1 Array of MLPs (aMLP) model for classification.

neural model used for face recognition; after that, some basics concepts on Volterra models necessary to
understand the proposed approach are explained. Finally, it is shown how the Volterra-NN can perform
as a classifier when an aMLP is used.

2.1 Neural models for classification

Arrays and ensembles of single multilayer perceptron networks have proven to reach significant better
results in classification problems than single models [Aitkenhead and McDonald, 2003][Bianchini et al,
2005][Capello et al, 2009]. The classifier model is an array of MLPs where there is one MLP model for
each class k to be identified, with k=1..K, being K the total number of classes. Therefore, the aMLP model
is formed by K networks like the one shown in Figure 1. Each network output takes a value of 1 if the
class is identified or 0 otherwise. The first layer of each MLP in the aMLP is a set of NI input neurons,
where each input is an eigenspace vector and there are NH hidden neurons. When a picture has to be
classified, its projected eigenspace vector is used as input for the classifier, that is to say, it is presented
to all the k networks defined for the aMLP model, and the maximum output obtained among all network
outputs is assigned as class label. If a pattern of the kth-class has been presented to the model, a value of
(near) 1 is expected at the kth network.

The application of the Volterra weights extraction method for model compression of a classical multi-
layer perceptron classifier was presented in [Rubiolo et al, 2010]. It was shown how a MLP model which
has learnt a classification problem with a certain (high) accuracy, can be compressed into a more compact
representation using a Volterra model and its parameters, named Volterra weights. Several MLP topolo-
gies can be well-compressed into the first, second and third order Volterra weights, which can be used to
build a Volterra model that needs less parameters than the MLP model and, at the same time, has a simi-
lar high accuracy. This work proposes to apply and extend the compression procedure based on Volterra
models to an array of MLPs to solve a Face Recognition (FR) problem.

The first stage of a complete automatic FR system is face detection. Once detected, the face must
be represented through an appropriate feature extraction method. A global representation can be done
through a well-known technique such us the eigenfaces [Turk and Pentland, 1991] by applying Principal
Component Analysis (PCA) for dimensionality reduction [Kirby and Sirovich, 1990], which is the most
widely used feature extraction method for face recognition [Li and Jain, 2004]. The final stage consists of
the classification carried out by using an appropriate classifier, which be a very simple method, such us
the Euclidean distance or k-nearest-neighbors, or an array or ensemble solution based on hundred of weak
classifiers, being MLP is one of the most popular models [Martinez and Kak, 2001] [Kong et al, 2005].
The next subsection presents the details of the new algorithm proposed for extraction of the Volterra
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Algorithm 1: Volterra weights extraction.
Data:

D: training data
Results:

v(0): 0-order Volterra weight
v(1): 1st-order Volterra weigths
v(2): 2nd-order Volterra weigths
v(3): 3rd-order Volterra weigths

begin1
M ← train MLP model withD2
v(0)← calculate zero-order Volterra weight fromM using (1)3
for 1 ≤ i ≤ NI do4

v
(1)
i ← calculate first-order Volterra weight fromM using (2)5

Assign each v(1)i extracted to v(1)6
for 1 ≤ i ≤ NI do7

for 1 ≤ j ≤ NI do8
v
(2)
i,j ← calculate second-order Volterra weight fromM using (3)9

Assign each v(2)i,j extracted to v(2)10
for 1 ≤ i ≤ NI do11

for 1 ≤ j ≤ NI do12
for 1 ≤ k ≤ NI do13

v
(3)
i,j,k← calculate third-order Volterra weight fromM using (4)14

Assign each v(3)i,j,k extracted to v(3)15
end16

weights from an array of MLPs used for classification, as well as the procedure used to obtain different
order Volterra-NN outputs.

2.2 Volterra-NN model forward computation

[Stegmayer and Chiotti, 2009] have derived equations that allow the calculation of any Volterra kernel
order using the weights and hidden neurons bias values of a neural network that has been trained on a
problem using hyperbolic tangent hidden functions. The following formulas, instead, allow the calculus
of zero, first, second and third order Volterra kernels from a trained MLP having sigmoidal hidden units:

h0 = bo +

NH∑
h=1

w2
h

1

(1 + e−bh)
(1)

h1(·) =
NH∑
h=1

w2
hw

1
h,i

e−bh

(1 + e−bh)2
(2)

h2(·) =
NH∑
h=1

w2
hw

1
h,iw

1
h,j

e−bh (e−bh−1)
(1+e−bh )3

2!
(3)

h3(·) =
NH∑
h=1

w2
hw

1
h,iw

1
h,jw

1
h,k

−e−bh (−e−2bh+4e−1−1)
(1+e−bh )4

3!
(4)

where NH is the number of hidden neurons, NI is the number of input neurons, wh and bh are the weight
and the bias associated with a hidden sigmoidal neuron, respectively; for i, j, k = [1, · · · , NI ]. These
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Fig. 2 Example of the topology of a Volterra-NN model for 2 input variables and three V-NN outputs.

formulas are easilly extended to any kernel order. Due to space restrictions, only up to third order is
shown. To simplify the notation, the Volterra weights will be defined from now on as follows: v(0) = h0,
v
(1)
i = h1(·), v(2)i,j = h2(·) and v(3)i,j,k = h3(·). Algorithm 1 shows in detail the Volterra weights extraction

procedure, in which it is possible to compute the zero, first, second and third-order Volterra weights. The
input is the training data and the outputs are the Volterra weights. The first step consists of training a MLP
classifier model with the training data D as it is possible to see in line 2. From the trained neural model
M , the Volterra weights can be calculated. According to (1), the zero-order Volterra weight is obtained
(line 3). Similarly, by applying (2), (3) and (4), it is possible to compute the first (line 9), second (line 8)
and third-order (line 7) Volterra weights respectively.

The different order Volterra-NN (V-NN) models that can compress a MLP are depicted graphically
in Figure 2. The boxes represent the input variables (in the example, x1 and x2) and the arrows that
join them symbolize their product with their corresponding Volterra weights. The white circles act as
summarizing all the products between input variables and Volterra weights, plus the (n − 1)-order V-
NN model (V (n−1) − NN ). As a result, a new nth-order Volterra model (V (n) − NN ) is obtained. It
is important to highlight that the different cross-products combinations between the input variables are
shown in the figure inside a rectangular box, in an effort to clarify the process for obtaining the different
Volterra outputs. This V-NN model can be similarly applied to any number of inputs.

The output of the 1st-order V-NN model (V (1) −NN ) is obtained analytically by adding the 0-order
Volterra weight v(0) to the product between each input variable (x1 and x2) and their corresponding
1st-order Volterra weights,

s(1) = v(0) + v
(1)
1 x1 + v

(1)
2 x2. (5)
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Algorithm 2: 3rd-order Volterra-NN outputs forward computation.
Data:

x: input point to classify
K: number of elements in the array
v(0): 0-order Volterra weights for the array
v(1): array 1st-order Volterra weights
v(2): array 2nd-order Volterra weights
v(3): array 3rd-order Volterra weights

Results:
s(1): V (1) −NN outputs for the array
s(2): V (2) −NN outputs for the array
s(3): V (3) −NN outputs for the array

begin1
for each element in the array do2

s(1) ← v(0)3
for 1 ≤ i ≤ NI do4

s(1) = s(1) + v
(1)
i xi5

s(2) ← s(1)6
for 1 ≤ i ≤ NI do7

for 1 ≤ j ≤ NI do8
s(2) = s(2) + v

(2)
i,j xixj9

s(3) ← s(2)10
for 1 ≤ i ≤ NI do11

for 1 ≤ j ≤ NI do12
for 1 ≤ k ≤ NI do13

s(3) = s(3) + v
(3)
i,j,k xixjxk14

Assign each s(1) calculated to s(1)15
Assign each s(2) calculated to s(2)16
Assign each s(3) calculated to s(3)17

Determine upper and lower thresholds for each array element (class)18
end19

The second order V-NN model (V (2)−NN ) output is obtained by adding s(1) together with the products
among x21, x22, the cross-product x1x2 and their corresponding 2nd-order Volterra weights, resulting in:

s(2) = s(1) + v
(2)
1,1 x

2
1 + v

(2)
2,2 x

2
2 + v

(2)
1,2 x1x2. (6)

The V (3) −NN model output is obtained similarly:

s(3) = s(2) + v
(3)
1,1,1 x

3
1 + v

(3)
2,2,2 x

3
2 + v

(3)
1,1,2 x

2
1x2 + v

(3)
1,2,2 x1x

2
2. (7)

Similarly, higher order V-NN outputs can be calculated. As can be seen, each high order Volterra
model includes its own parameters (Volterra weights) plus the lower order ones. The new algorithm for
an array of V-NN models forward computation is presented in detail in Algorithm 2. It receives a point
from where the number of input variables NI is determined, the number of elements in the array and
the Volterra weights for each element in the array, obtained by using Algorithm 1. The output of this
algorithm is an array of third-order (V (3) − NN) Volterra outputs, but it is also possible to obtain only
the first-order (V (1) − NN) (lines 3 to 5) and second-order (V (2) − NN) outputs (lines 7 to 10), thus
providing different compressed versions of the original aMLP classifier. The next subsection shows how
the compressed model can be used as a classifier.
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Fig. 3 Model output signal analysis for classification. Full and dotted lines: output signal corresponding to the MLP and V-NN
models, respectively, for training data. Dashed lines: class thresholds.

2.3 Volterra-NN as a classifier

The Volterra-NN model can be applied to a classification problem in which different classes can be
recognized from the output signal. When an array of MLP models is compressed by using V-NN, it is
possible to identify only a class from each of the output signals. That is to say, each V-NN model is
specialized on a class and the output signal analysis determines if the pattern is part of the class. During
the training phase, data are shown in an ordered way, showing first those pattern belonging to the class
associated to the model. In this way, the model output can be considered as a signal having two levels,
with a bound between levels corresponding to the class limit [Korenberg et al, 2001]. For instance, if we
have a three classes problem, the first model is trained with data where the patterns corresponding to the
first-class are activated (they have a 1 as target) and other patterns, which do not represent the first class,
are not activated (they have a 0 as target). Similarly, training data for learning the second and third classes
are presented to their corresponding models.

Figure 3 shows the output signal analysis that has to be performed for determining upper and lower
thresholds for each class. It is possible to see the output signal corresponding to the MLP (full line)
and V-NN (dotted line) models, both for the training data. The lower and the upper threshold (dashed
lines) of the class are measured in order to determine the output-signal level change for the V-NN model,
considering the values obtained for the training set. These changes (thresholds) will allow us to identify
a new data point received for classification as belonging (or not) to the class. The membership of a new
pattern (test point) to the class is identified by analyzing if the output associated to this pattern has a value
between the lower and upper class thresholds.

Since we are analyzing the output of an aMLP model, a different signals, each one corresponding
to a class, must be considered in order to identify which class is activated as a result. First of all, each
individual signal must be evaluated as it was presented in the above paragraph. Secondly, it is necessary
to discover if more than one class model was activated for each pattern. If this situation occurs, a max
criteria is applied. That is to say, the higher value of the activated classes for each pattern will be stated
as the winner class.
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Fig. 4 Samples face images from the AT&T Laboratories Cambridge ORL Database of faces [Li and Jain, 2004].

Fig. 5 The Facial Recognition Technology (FERET) database [Phillips et al, 2000]. Examples of different categories of probes
(images). The duplicate I image was taken within one year of the fa image and the duplicate II and fa images were taken at least
one year appart.

3 Materials and Methods

3.1 Face Databases

Two independent face databases have been used in this study. They provide typical experimental setups
for face recognition. They are explained in detail in the following paragraphs.

3.1.1 AT&T Laboratories - ORL

The first experiments were done by using the AT&T Laboratories Cambridge ORL Database of Faces1

since it is widely used in the face recognition literature [Li and Jain, 2004]. In this database, there are
10 different images of each of 40 persons of different gender, ethnic background and age (see Figure 4).
For some subjects, the images had been taken at different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses). All the images were taken
against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance
for some side movement). The complete database contains 400 grayscale face images of size 92 x 112
pixels. From this dataset, three subject were used in this study having ten pictures associated with each
one.

Training a distinct classifier for each class (in this case, subject) requires sufficient training data per
class. However, in face recognition tasks it is common to have a small number of pictures per person. In
fact, since different data partitions are used to train and validate the classifier, two pictures for subject are
available for testing. Hence, noise addition to the test dataset has been performed in order to enlarge it
and to obtain more test samples to prove the performance of the Volterra-NN model. The noise used was
Gaussian noise with a mean of 0 and a variance between 0.01 and 0.1. After this procedure, a total of 66
patterns per class have been obtained for the testing dataset.

1 www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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3.1.2 FERET

The Facial Recognition Technology (FERET) database [Phillips et al, 2000] ran from 1993 through
19972, sponsored by the Department of Defense’s Counterdrug Technology Development Program through
the Defense Advanced Research Products Agency (DARPA). The aim was to develop automatic face
recognition capabilities that could be employed to assist security, intelligence and law enforcement per-
sonnel in the performance of their duties. The FERET image corpus was assembled to support government
monitored testing and evaluation of face recognition algorithms using standardized tests and procedures.
The final corpus consists of 14051 eight-bit grayscale images of human heads with views ranging from
frontal to left and right profiles.

The facial images were collected in 15 sessions between August 1993 and July 1996. Collection
sessions lasted one or two days. To maintain a degree of consistency throughout the database, the same
physical setup and location was used in each photography session. Images of an individual were acquired
in sets of 5 to 11 images. Two frontal views were taken (fa and fb); a different facial expression was
requested for the second frontal image. For 200 sets of images, a third frontal image was taken with a
different camera and different lighting (fc image). The remaining images were collected at various angles
between right and left profile (see Figure 5). To add variations to the database, a second set of images
was taken, for which the subjects were asked to put on their glasses and/or pull their hair back. The set
of images referred to as a duplicate indicates a second set of images of a person that was taken on a
later date, resulting in variations in scale, pose, expression, and illumination of the face. Similarly to the
previous dataset, three subject were used in the study having ten pictures associated with each one, adding
gaussian noise to the pictures to increase the number of training/testing patterns.

3.2 Classifier architecture

Figure 6 shows the neural network topology used in this study, an array of MLP models, each one asso-
ciated with a subject to recognize. Several MLP topologies have been evaluated from where the corre-
sponding Volterra weights have been extracted after training. For simplicity in the analysis of the results,
in particular which respects the performance of the V-NN compression capabilities, only three classes
(k=3) of each database are presented in the tables. The full results obtained on both face databases can be
found as supplementary material.

In face recognition problems, the training and test datasets generally have high dimensionality due to
the pictures size. Therefore, an appropriate feature extraction method is needed. A global representation
can be done using a widely used technique such us the eigenfaces [Turk and Pentland, 1991] by applying
Principal Component Analysis (PCA) for dimensionality reduction [Kirby and Sirovich, 1990]. Although
PCA can highly reduces the feature space, the application of a technique called Scree Test [Jackson,
1991] further reduces the dimensionality of the features space focusing only on those most representative
eigenfaces. Scree Test is applied for determing the number of principal componenets of the training and
test datasets, according to the percentage of variability of the data to be shown. This technique allows
obtaining the different components in an orderly way acording to the variability of the data, so the first
principal components represent the data of more variability.

Regardless of the data that are modeled with PCA, it is common to use a value of 85% of the total
variance of the space of caracteristics for identification [Jackson, 1991]. Applying Scree Test in the ORL
dataset, the 85% of the variance of each training set is represented by 11 eigenfaces, so each MLP model
consists of 11 input neurons. As regards hidden neurons number, a simple heuristic will be adopted in
which the number of neurons NH are 11,22 and 33; and an output that takes a value of 1 if the subject
is recognized. Considering the case of the FERET dataset, the 85% of the variance of each training set is

2 www.itl.nist.gov/iad/humanid/feret
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Fig. 6 aMLP model (upper part of the classifier) for Face Recognition problem, which can be compressed into an array of Volterra-
NN models (lower part of the classifier)

represented by 9 eigenfaces. Therefore, each MLP model consist of 9 input neurons, a number of hidden
neuron that can be 9,18 or 27, and also only one output. For each input signal arriving at the array, a
V-NN output of a certain order can be obtained. For example, to obtain a first order V (1) −NN output,
the maximum s(1) from the array is selected.

The model parameters (weights and biases) are initialized with random values uniformly distributed
between 0 and 1. Neurons in the hidden and output layers have sigmoid activation functions. All the
MLPs are trained with the Levenberg-Marquardt algorithm [Madsen et al, 2004] in order to guarantee a
fast convergence. To avoid overfitting, a k-fold cross-validation procedure [Haykin, 1999] has been used,
using the standard setup of splitting the available images of each person into 80% of each class data for
training and 20% for testing. The complete dataset has been randomly split into k = 3 mutually exclusive
subsets of equal size, repeating the experiments three times in each fold. The cross validation estimate of
the overall accuracy of a model has been calculated by simply averaging the accuracy measures over the
test datasets. In each experiment and repetition, MLP and V-NN models having less than 100% classifi-
cation rate for each class of the training dataset have not been considered in this study. This restriction
was imposed to the classifier performance in order to be able to measure precisely any loss of accuracy
originated by the proposed Volterra-NN compression method.
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3.3 Performance measures

This subsection presents two classical measures for comparing models performance. Besides, a new mea-
sure for trade-off analysis and final model selection is proposed.

3.3.1 Recognition rate and space saving rate

For comparing each output from the proposed V-NN models against the corresponding MLP classifier,
two performance measures are used: recognition rate (RR) and data space savings (SS), adapted here for
an aMLP classifier. In classification problems, the primary source of performance measurements is the
overall accuracy of a classifier estimated through the classification or recognition rate [Duda and Hart,
2003]. For measuring compression, data compression ratio can be used to quantify the reduction in data
representation size produced by a compression algorithm. However, the space saving measure is given
here instead, defined as the reduction in size relative to the uncompressed space [Salomon, 2007], often
reported as a percentage, which gives a better idea of compression power. For both cases, the greater the
rate, the better the result.

To estimate how much is the compression level obtained, SS is calculated as the relation between
the number of parameters needed for a Volterra-NN output (the Volterra weights) and the number of
parameters of each corresponding MLP architecture (the weights and biases). It is well-known that for a
MLP model, the number of model parameters can be calculated as follows:

PMLP = NI ×NH +NBH +NH ×NO +NBO, (8)

where NI , NH and NO are the number of neurons at input, hidden and output layers, respectively; and
NBH and NBO are the number of bias for each neuron in the hidden and output layers, respectively. In
an array of MLP models, these measures are affected by the array length a. Hence, the number of model
parameters for an aMLP can be calculated as

PaMLP = a × PMLP . (9)

From each MLP that is part of the array of MLPs, a Volterra-NN output (of a particular order) can be
extracted: s(1) that includes only the zero and first-order Volterra weights; s(2) includes up to the second-
order Volterra weights; and s(3) that corresponds to a third-order model output. The following equations
show the number of parameters necessary to build each of these outputs, for a given training set.

For the V (1) −NN model output we have

Ps(1) = NI . (10)

In this case, the number of parameters necessary to build s(1) are each first-order Volterra weight that
multiplies each input variable.

For the second-order model V (2) −NN we have the following output

Ps(2) = Ps(1) +N2
I − N2

I −NI
2

. (11)

The number of parameters necessary to build s(1) are summed up together with the number of parameters
necessary for s(2) (the second-order Volterra weights). There is a second-order weight for each input
variable squared, plus the cross-products between each input variable. With respect to these last ones,
since the symmetrical weights are equivalent, they are considered only once. That is why half of the
cross-product weights are counted.
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Fig. 7 Trade-off measure determination by analyzing the possible solutions of compressing a model.

The number of parameters necessary to build V (3) −NN are

Ps(3) = Ps(2) +N2
I , (12)

that is to say, the number of weights associated with s(2) plus the product of each third-order weight
corresponding to each input variable, counting only once the symmetrical weights.

As Volterra-NN can be applied to the compression of an aMLP model, the output now will be an
array of V-NN outputs of different order. That is to say, for example, for each MLP inside the array three
different order V-NN outputs can be obtained. In this case, the number of V-NN models parameters has
to be redefined as

Pas(i) = a × Ps(i) , (13)

where i = 1,2,3. Therefore, the space saving measure SS is calculated as

SS = 1− Pas(i)

PaMLP
. (14)

3.3.2 Model selection: measure for trade-off solution indication

Different solutions can be evaluated by calculating the performance measures presented above. A V-
NN model output can have a value associated to the recognition rate or to the space saving measures.
However, sometimes these values can differ from each other having even completely opposite meaning
and the problem of how determining the best set of parameters arises. For instance, one solution can have
a high performance as regards RR but a very low SS rate, or vice versa.

It is possible to consider the error for both measures as a point in a coordinate axis graph, where
the X axis represents es = 1 − SS, and the Y axes is associated to er = 1 − RR. Therefore, a point
can be defined as a pair [es,er], being [0,0] the optimum. Figure 7 shows examples of models and their
associated errors in this new space. Let us suppose a model 1 that has SS=0.9 and RR= 0.7 and an error
to the optimum represented in the point M1 = [0.1, 0.3]. For model 2, where SS= 0.7 and RR= 0.9, the
error is M2 = [0.3, 0.1]. Model 3, in which SS= 0.3 and RR = 0.95, has an error M3 = [0.7, 0.05]; and
a model 4, with SS= 0.95 and RR= 0.3, has an error M4 = [0.05, 0.7].
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Considering these errors, a trade-off solution could be found as the minimum Euclidean distance from
the point [es, er] to the optimim [0,0]. However, when calculating these distances, it is possible to have
cases with the same result, but opposite values. For example, points M1 and M2 are equidistant from the
main diagonal and have the same Euclidean distance to the optimum; similarly to any other models that
could be located on the blue parabola depicted in Figure 7. However, M2 is a better classifier than M1,
while M1 is better compressed than the first one. Hence, it is necessary to discriminate which of the two
points is the best solution for the problem under study.

Since FR is a classification problem, where it is reasonably to think that a better RR would be consid-
ered more important than SS, it is possible to infer that the trade-off solution must always be above the
diagonal of the coordinate axes graph, because in a classification problem it could be more important to
have a high recognition rate than a high space savings rate. But, in some applications, it can be needed a
better compressed model than an excellent classifier; in that case SS would be more important than RR.

In order to evaluate which is the trade-off solution (more adequate model) for a problem, in the family
of solutions that arose from the experiences, we define a new measure ∂ which represents a trade-off
between RR and SS as follows:

∂ =
√
(γer)2 + ((1− γ)es)2, (15)

where γ is a regularization parameter. Precisely, to be able to perform the discrimination needed above,
we propose to modify the distance calculation including a regularization parameter γ. In order to consider
γ as a weight that allows us to select between two models, its value can be modified according to whether
a better compressor or a better classifier is needed, with γ ε [0, . . . , 1].

When γ = 0.5, both er and es are considered with the same importance; the preference for RR is
enphasized with a γ > 0, 5 (for example, red line in the figure), while the preference for SS is obtained
choosing a γ < 0.5 (for example, green line in the figure). Applying (15) to each model Mk, presented in
Figure 7 and considering RR as a preference over SS with, for example γ = 0.8, we obtain ∂M1

= 0.241,
∂M2

= 0.1, ∂M3
= 0.146, and ∂M4

= 0.56. Now it is possible to conclude, without any doubt, that
the best compromise solution is M2 for the presented example, since it has the minimum distance to the
optimum, according to the new distance calculation proposed.

4 Results and discussion

The experimental results obtained on two well-known face recognition problems are shown in this section.
First of all, the results on class by class recognition rates are presented. Then, global RR and SS values
for all the models obtained are shown. At last, global results using the new measure for model selection
are presented.

4.1 Recognition performance for each class

From each aMLPI,H,O model considered in this study, their corresponding zero-order, first-order, second-
order and third-order Volterra weights have been extracted according to Algorithm 1 and their corre-
sponding array of Volterra-NN outputs s(1), s(2) and s(3) have been obtained using Algorithm 2. Table
1 presents the results obtained for the models recognition rate (RRi) for each class i = 1, 2, 3 over the
face recognition task, calculated over the ORL Database test set; whereas Table 2 shows similar results
but calculated over the FERET database.

In Table 1 it is possible to see that, when the aMLP classifier has 11 hidden neurons (3MLP11,11,1),
the RR values regarding class 1 (RR1) are between 91% and 94% for all 3V-NNs(1) , 3V-NNs(2) and
3V-NNs(3) ; for the second class (RR2), these values vary from 90% to 94%; and they are between 91%
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Table 1 Recognition rates (RRi) for each class i = 1, 2, 3 for three aV-NN (a=3) classifiers and their corresponding first-order
s(1), second-order s(2) and third-order s(3) outputs, for the AT&T Laboratories Cambridge ORL Database of Faces. Bold numbers
highlight the best value of RR for each order V-NN output.

3MLP11,11,1 3MLP11,22,1 3MLP11,33,1

RRi[%] RR1 RR2 RR3 RR1 RR2 RR3 RR1 RR2 RR3

aMLPI,H,O 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3V-NN

s(1)
94.28 93.94 97.47 92.76 92.25 91.92 97.14 91.92 94.28

3V-NN
s(2)

91.92 92.09 91.25 92.76 91.24 94.27 95.29 94.44 90.57
3V-NN

s(3)
91.58 90.23 91.58 90.23 89.06 88.89 86.19 90.74 93.26

Table 2 Recognition rates (RRi) for each class i = 1, 2, 3 for three aV-NN (a=3) classifiers and their corresponding first-order
s(1), second-order s(2) and third-order s(3) outputs, for the Facial Recognition Technology (FERET) Database. Bold numbers
highlight the best value of RR for each order V-NN output.

3MLP9,9,1 3MLP9,18,1 3MLP9,27,1

RRi[%] RR1 RR2 RR3 RR1 RR2 RR3 RR1 RR2 RR3

aMLPI,H,O 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3V-NN

s(1)
94.11 94.27 95.62 86.70 95.62 93.94 88.38 91.41 96.63

3V-NN
s(2)

91.08 88.38 91.58 88.89 87.88 94.11 92.25 90.07 95.29
3V-NN

s(3)
90.40 85.35 93.10 89.56 85.52 85.86 91.92 84.34 85.01

and approximately 97% for the third class (RR3). As regards the second FR problem (Table 2) when the
aMLP classifier has 9 hidden neurons (3MLP9,9,1), the RR values are similarly high for class 1, 2 and 3.

Focusing on Table 1, it can be seen that a worse RR rate is obtained for the classification problem
if 3V-NNs(3) is used instead of the original aMLP, specially for class 2. This lower RR is, still, of 90%.
Furthermore, the 3V-NNs(1) output requires a significant lower number of parameters than the original
3MLP11,11,1 classifier (a relation of 1 : 12). Similar conclusions can be drawn from Table 2, in wich the
FERET Database is used: the simplest V-NN output is, at the same time, the best one. But if we take
into account that the three 3MLPI,H,1-model topologies in both cases, with NI = 11, NH = 11, 22, 33
for ORL and NI = 9, NH = 9, 18, 27 for FERET, are solutions to the same problem, actually it is not
necessary to consider just only one topology as the best solution. That is to say, there are many possible
solutions to the same problem and it is possible to obtain the best according to the goals that are followed.
For instance, the best recognition rate in ORL Database case is obtained by the first-order Volterra-NN
output for 3MLP11,33,1, which is approximately as high as 97.50%; while the best recognition rate in
FERET Database case is obtained by the first-order Volterra-NN output for 3MLP9,27,1, acchieving an
RR of 96.63%.

Tables 3 and 4 show the space savings rate for the models discussed in this paper and the mean values
of the recognition rate for these models. The upper part of each table shows the number of parameters and
global RR measure for the three aMLP topologies. The second part of the table shows parameters and
performance measure values related to the Volterra-NN outputs. First of all, the number of parameters
needed for each neural classifier architecture (PaMLP ) involved in this study is shown at the first row,
while the number of Volterra weights needed for each Volterra-NN model (Pas(i) ) is shown in the first
column. The values which fill the RR and SS columns are the average recognition rate and space saving
capabilities, respectively, for each combination between a MLP classifier and the corresponding Volterra-
NN output.

As stated before (equations (8) and (9)), the number of parameters required for the neural classifier
depends not only on NI but also on the number of neurons at the hidden layer NH , as well as in the
number of elements in the array. Therefore, considering the ORL Database, the number of parameters for
3MLP11,11,1 is 432, for 3MLP11,22,1 it is 861, and the 3MLP11,33,1 model has a total of 1290 parame-
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Table 3 Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=3) classifiers and their corresponding
first-order s(1), second-order s(2) and third-order s(3) outputs, for the the AT&T Laboratories Cambridge ORL Database of Faces.

3MLP11,11,1 3MLP11,22,1 3MLP11,33,1

PaMLPI,H,O
→ 432 861 1290

RR[%]→ 100.00 100.00 100.00

3V-NN P
as(i)

RR[%] SS[%] RR[%] SS[%] RR[%] SS[%]

3V-NN
s(1)

33 95.23 92.36 92.31 96.16 94.44 97.44
3V-NN

s(2)
231 91.75 46.53 92.76 73.17 93.43 82.09

3V-NN
s(3)

594 91.13 −37.50 89.39 31.01 90.07 53.95

Table 4 Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=3) classifiers and their corresponding
first-order s(1), second-order s(2) and third-order s(3) outputs, for the Facial Recognition Technology (FERET) Database.

3MLP9,9,1 3MLP9,18,1 3MLP9,27,1

PaMLPI,H,O
→ 300 597 894

RR[%]→ 100.00 100.00 100.00

3V-NN P
as(i)

RR[%] SS[%] RR[%] SS[%] RR[%] SS[%]

3V-NN
s(1)

27 94.67 91.00 92.09 95.48 92.14 96.98
3V-NN

s(2)
162 90.35 46.00 90.29 72.86 92.54 81.88

3V-NN
s(3)

405 89.62 −35.00 86.98 32.16 87.09 54.70

ters (see Table 3). Regarding the FERET Database, the number of parameters for 3MLP9,9,1 is 300, for
3MLP9,18,1 it is 597, and the 3MLP9,27,1 model has a total of 894 parameters (see Table 4).

4.2 Recognition rate and space saving rate

In the case of the different order Volterra-NN outputs, the number of parameters only depends on the
number of inputs, as it is possible to see in (10), (11) and (12). However, for an array, this number must be
multiplied by the array size. Therefore, the number of parameters for 3V-NNs(1) is 33, and the number of
parameters needed for 3V-NNs(2) and 3V-NNs(3) are 231 and 594, respectively. In the FERET Database,
the number of parameters for 3V-NNs(1) is 27, and the number of parameters needed for 3V-NNs(2) and
3V-NNs(3) are 162 and 405, respectively.

Focusing on Table 3, it is possible to see that when using 3V-NNs(1) instead of the 3MLP11,11,1

classifier, a global recognition rate for the face recognition problem of 95.23% can be obtained and
a compression or space saving rate of 92.36% can be achieved. Almost half of this space saving rate
is obtained if the 3V-NNs(2) output is used, and there is no compression when using 3V-NNs(3) . For the
3MLP11,22,1 model, the compression achieved by the Volterra-NN models is higher because of the amount
of parameters associated with this model; in this case, the SS value achieves a maximum of 96.16% when
the smallest possible number of parameters is considered (a first-order Volterra-NN output). A similar
case is related to 3MLP11,33,1 model, where this trend is also verified. The results obtained with the other
dataset are quite similar (Table 4). For instance, a global recognition rate of 94.67% can be obtained and
a compression or space saving rate of 91% can be achieved when the 3V-NNs(1) is used instead of the
3MLP9,9,1 classifier.

From both Tables 3 and 4 it is possible to conclude that an array of MLPs for classification can be well-
compressed by using Volterra-NN model; and this compression rate can be, in some cases, even higher
than 90%. Moreover, very high recognition rates are achieved. In fact, the aMLP model architecture can
be more and more complex, can have many more hidden units, but the number of weights needed to build
each Volterra-NN output will remain the same while the number of input variables of the problems are
the same, and this will certainly be reflected in even higher space saving rates.
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Table 5 RR with the same SS in aV-NN, OBD, and OBS
(ORL Database).

3MLP11,11,1

PaMLPI,H,O
→ 432

RR[%]→ 100.00

P
as(i)

RR[%] SS[%]

3V-NN(1) 95.23
OBD 33 40.57 92.36
OBS 61.11

Table 6 SS in aV-NN, OBD, and OBS, with the same RR
(ORL Database).

3MLP11,11,1

PaMLPI,H,O
→ 432

RR[%]→ 100.00

P
as(i)

RR[%] SS[%]

3V-NN(1) 33 92.36
OBD 192 ≈ 95 58.44
OBS 285 34.03

Table 7 RR with the same SS in aV-NN, OBD, and OBS
(FERET Database).

3MLP9,9,1

PaMLPI,H,O
→ 300

RR[%]→ 100.00

P
as(i)

RR[%] SS[%]

3V-NN(1) 94.67
OBD 27 38.38 91.00
OBS 40.24

Table 8 SS in aV-NN, OBD, and OBS, with the same RR
(FERET Database).

3MLP11,11,1

PaMLPI,H,O
→ 300

RR[%]→ 100.00

P
as(i)

RR[%] SS[%]

3V-NN(1) 27 91.00
OBD 204 ≈ 95 32.00
OBS 198 34.00

Furthermore, in some cases, these high compression rates have not to be payed by lower model classi-
fication rates. For example, for the 3MLP11,11,1 model in the ORL Database, the best RR value is related
to the 3V-NNs(1) output, achieving 95.23%, and having a space saving rate of more than 92%. The ex-
actly same case can be seen in the FERET Database, in which the 3MLP9,9,1 model acchieves an RR of
94.67%, having a space saving rate of 91%.

Considering the 3MLP11,22,1 case, in Table 3 the best RR value is associated with the 3V-NNs(2)
output, which has only a SS of 73.17%. But if a better compression is necessary for this topology, it
is possible to choose the 3V-NNs(1) which has a SS of 96.16% and preserves a very high RR value of
92.31%. Even though the differences are minimum between 3V-NNs(1) and 3V-NNs(2) outputs regarding
the second model in both tables, in Table 4 the results are slightly different if it is considered the model
3MLP9,18,1. Here, the best RR and SS are obtained in the same case, achieving a space saving of 95.48%
preserving the 92.09% of recognition ability if the 3V-NNs(1) output is chosen.

For the 3MLP11,33,1 model, in Table 3, the best RR value is associated with the 3V-NNs(1) Volterra-
NN model and it is possible to achieve a SS of 97.44%. This is a very interesting result, because with
approximately less than 3% of the parameters of the original aMLP classifier, the classification capacity
of 3V-NNs(1) is very high (94.44%) and very close to the aMLP model. This particular case can be consid-
ered as the best overall result obtained in this study, where the 3MLP11,33,1 classifier can be compressed
in almost a 98% using the corresponding 3V-NNs(1) Volterra-NN output without significantly loosing
recognition capability. Similar results can be highlighted in Table 4. Once again, a small difference of
0.4% can be seen as regards the output (3V-NNs(1) or 3V-NNs(2) ) that is related to the best RR obtained
in the 3MLP9,27,1 classifier. Despite this, it is possible to state that the best overall result obtained in this
case is related to the 3V-NNs(1) Volterra-NN output, in which the classifier can be compressed in almost
a 97%, maintaining a 92% of recognition rate.

We have compared our proposal against two classical weight pruning algorithms (as simpler ways of
compression) for MLP models, such as Optimal Brain Damage (OBD) [Cun et al, 1990] and Optimal
Brain Surgeon (OBS) [Hassibi et al, 1993]. Two aspects have been compared: i) RR of each method
while maintaining the same number of parameters; ii) SS considering approximately the same RR value
for all the three methods. In ORL database case, for the 33 parameters used for 3V-NNs(1) in order to
achieve an RR of 95.23%, OBS and OBD obtained RR values of 40.57% and 61.11%, respectively (see
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Table 9 Measure for trade-off solution ∂ comparison for 3Volterra-NN models corresponding to a 3MLP classifier, for the the
AT&T Laboratories Cambridge ORL Database of Faces. The best value for each model is highlighted in bold.

∂ 3V-NN γ1 = 0.25 γ2 = 0.5 γ3 = 0.75
3V-NN

s(1)
0.059 0.045 0.041

3MLP11,11,1 3V-NN
s(2)

0.402 0.271 0.147
3V-NN

s(3)
1.031 0.689 0.350

3V-NN
s(1)

0.035 0.043 0.058
3MLP11,22,1 3V-NN

s(2)
0.202 0.139 0.086

3V-NN
s(3)

0.518 0.349 0.190

3V-NN
s(1)

0.024 0.031 0.042
3MLP11,33,1 3V-NN

s(2)
0.135 0.095 0.067

3V-NN
s(3)

0.346 0.236 0.137

Table 10 Measure for trade-off solution ∂ comparison for 3Volterra-NN models corresponding to a 3MLP classifier, for the Facial
Recognition Technology (FERET) Database. The best value for each model is highlighted in bold.

∂ 3V-NN γ1 = 0.25 γ2 = 0.5 γ3 = 0.75
3V-NN

s(1)
0.069 0.052 0.046

3MLP9,9,1 3V-NN
s(2)

0.406 0.274 0.153
3V-NN

s(3)
1.013 0.677 0.346

3V-NN
s(1)

0.039 0.046 0.060
3MLP9,18,1 3V-NN

s(2)
0.205 0.144 0.100

3V-NN
s(3)

0.510 0.345 0.196

3V-NN
s(1)

0.030 0.042 0.059
3MLP9,27,1 3V-NN

s(2)
0.137 0.098 0.072

3V-NN
s(3)

0.341 0.236 0.149

Table 5). As regards FERET database, considering that 3V-NNs(1) needs 27 parameters for an RR value
of 94.67%, OBD obtained an RR value of 38.38%, and OBS achieved an RR of 40.24% for the same
number of parameters (see Table 7). With respect to compression, as it is possible to see in Tables 6 and
8, for maintaining an RR of 95% in both databases, while V-NN needs approximately 30 parameters,
OBS and OBD require approximately 200 parameters or more.

As a limitation of the aV-NN model, it can be noted that the model reduces its compression capability
as long as the number of units in the hidden layer of the original MLP decreases. That is to say, as smaller
the number of hidden neurons needed to solve the problem, less compression will be obtained by the
aV-NN model.

From the previous paragraphs, it can be seen that it is necessary to look at both RR and SS tables,
for each dataset, to select the best model compressed, which can be confusing. The next subsection will
present this analysis in a simplified manner, through the use of the proposed ∂ trade-off measure.

4.3 Global results for model selection

Tables 9 and 10 present the ∂ values for each 3V-NN, considering three different γ values. The rows group
the three possible 3V-NN outputs (s(1), s(2) and s(3)) for each 3MLP topologies that are shown, which
vary in the number of hidden neurons inside the single MLP model. The three main columns represent
the application of three different γ values, each one to emphasize the priority of SS over RR (γ = 0.25),
RR over SS (γ = 0.75), or both of them equally measured (γ = 0.5).

Taking into account the results at the first column (γ = 0.25) of Table 9 on the one hand, it is possible
to conclude that the best trade-off solution is reached by 3V-NNs(1) when the topology of the MLP model
is 3MLP11,33,1, achieving the minimum ∂ value 0.024 (it is the best SS (97.44%) and its RR is up to
94.44%). On the other hand, focusing on the same column of Table 10, similar conclusions can be drawn

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. R

ub
io

lo
, G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

C
om

pr
es

si
ng

 a
rr

ay
s 

of
 c

la
ss

if
ie

rs
 u

si
ng

 V
ol

te
rr

a-
N

eu
ra

l N
et

w
or

k:
 a

pp
lic

at
io

n 
to

 f
ac

e 
re

co
gn

iti
on

"
N

eu
ra

l C
om

pu
tin

g 
\&

 A
pp

lic
at

io
ns

, 2
01

2.



18

due to the best trade-off solution is also reached by 3V-NNs(1) , when the MLP model is 3MLP9,27,1,
achieving the minimum ∂ value 0.030 (SS is 96.98% while its RR is as higher as 92.14%).

For the second column (γ = 0.5), the trade-off solution is associated with the same solution that in the
previous case: 3V-NNs(1) for the MLP model 3MLP11,33,1 in Table 9 and for the MLP model 3MLP9,27,1

in Table 10. For this case, both measures at both experiences have high values and determine the trade-off
solution when there is no priority criteria between RR and SS rates.

In the third column, in wich γ = 0.75, the 3V-NNs(1) model for the 3MLP11,11,1 model is the trade-
off solution at Table 9, achieving the minimum ∂ value 0.041. Its RR value is the best one (95.23%) and
its SS is up to 92.36%. In Table 10, the 3V-NNs(1) model for the 3MLP9,9,1 model is also the trade-off
solution for the third column, with an RR value of 94.67% and a SS of 91%.

It is necessary to note that the last ∂ in Table 9 has a very close value (∂ = 0.042) for 3V-NNs(1)
when the topology of the MLP model is 3MLP11,33,1. But, in this last case, SS is higher than RR and this
situation is penalized by the value of γ, because of the priorities in model selection. It is important to note
that for all previously options, 3V-NNs(1) is the best trade-off model, which requires fewer parameters to
be represented, and therefore is the smallest one.

Another important point to be highlighted is that the model selection step is a necessary task that has to
be performed in order to be certain of which model and parameters are the most suited to a dataset. In this
sense, the ∂ measure can help in the comparisons among models. Furthermore, this measure could help
finding the best possible classifier for each class by combining different order V-NN outputs, obtained
from different neural topologies and configurations.

Finally, from the analysis of Tables 9 and 10, it can be seen that consistent results are obtained with
respect to the detailed analysis performed on Tables 3 and 4, achieved however in a more compact and
simpler way, thanks to the new proposed trade-off measure.

5 Conclusions and future work

This paper has shown a method to obtain a compact representation of an array of MLPs using the different-
order aV-NN model outputs. Two algorithms that implement the proposed approach have been explained.
Algorithm 1 allowed extracting the Volterra kernels from the MLP parameters (after training). Algorithm
2 allowed obtaining the third-order (V (3) − NN) Volterra output by using the Volterra weights when
a new data point to be classified is received. The aV-NN has been tested on a face recognition task,
obtaining almost the same accuracy than three different configurations of arrays of MLP classifiers. They
have been significantly compressed into less parameters. Experimental results have demonstrated the
capabilities of the proposed V-NN model to compress a solution to the face recognition problem with
very high recognition and space savings rates. Furthermore, a new trade-off measure for model selection
was proposed, allowing to consider in a simple manner a priority of one rate over the other one. This new
measure ∂ allowed us to evaluate different solutions in a compact way by only considering one value,
which arised from the relationship between the recognition rate and the space savings. This measure was
useful for indicating one of the obtained outputs as the best one, considering both rates at the same time
but with a different weights.

Future work involves further application of the proposed method to more complex problems, involv-
ing more classes for classification and data having an evolution on time. Besides, the V-NN compression
capabilities could be tested on ensembles of different kinds of neural network models. These different
NN classifier topologies should be further studied in order to establish their impact on the compression
capabilities offered by the proposed Volterra-NN model approach.
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Supplementary Table 1 Recognition rates (RRi) for each class i = 1, 2, .., 36 for an aV-NN (a=36)
classifier and its corresponding first-order s(1), second-order s(2) and third-order s(3) outputs, for the
AT&T Laboratories Cambridge ORL Database of Faces. The experiment was performed by using a
36MLP40,40,1 model, trained with the information of 36 subjects of the ORL Database.

36MLP40,40,1

RRi[%] RR1 RR2 RR3 RR4 RR5 RR6 RR7 RR8 RR9 RR10 RR11 RR12

aMLPI,H,O 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 90.28
36V-NN

s(1)
95.83 94.44 95.83 95.83 95.83 100.00 97.22 97.22 94.44 95.83 95.83 94.44

36V-NN
s(2)

95.83 95.83 94.44 98.61 94.44 94.44 100.00 97.22 98.61 98.61 95.83 95.83
36V-NN

s(3)
93.06 98.61 94.44 98.61 98.61 95.83 97.22 95.83 95.83 100.00 95.83 97.22

RRi[%] RR13 RR14 RR15 RR16 RR17 RR18 RR19 RR20 RR21 RR22 RR23 RR24

aMLPI,H,O 97.22 97.22 97.22 97.22 97.22 97.22 97.22 88.89 97.22 97.22 97.22 97.22
36V-NN

s(1)
95.83 94.44 94.44 95.83 98.61 97.22 94.44 95.83 98.61 97.22 98.61 98.61

36V-NN
s(2)

93.06 97.22 95.83 94.44 95.83 97.22 93.06 95.83 94.44 95.83 94.44 100.00
36V-NN

s(3)
93.06 95.83 95.83 98.61 98.61 95.83 94.44 95.83 100.00 98.61 94.44 97.22

RRi[%] RR25 RR26 RR27 RR28 RR29 RR30 RR31 RR32 RR33 RR34 RR35 RR36

aMLPI,H,O 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22 97.22
36V-NN

s(1)
98.61 95.83 91.67 94.44 95.83 97.22 98.61 97.22 95.83 98.61 95.83 94.44

36V-NN
s(2)

95.83 97.22 94.44 93.06 98.61 98.61 91.67 97.22 95.83 97.22 94.44 94.44
36V-NN

s(3)
95.83 98.61 97.22 98.61 94.44 97.22 95.83 93.06 94.44 95.83 95.83 93.06

Supplementary Table 2 Global recognition rate (RR) and space saving(SS) comparison for an aV-
NN (a=36) classifier and its corresponding first-order s(1), second-order s(2) and third-order s(3) outputs,
for the the AT&T Laboratories Cambridge ORL Database of Faces. The experience was performed by
using an 36MLP40,40,1 model, thus representing 36 subject of the ORL Database.

36MLP40,40,1

PaMLPI,H,O
→ 60516

RR[%]→ 96.79

aV-NN P
as(i)

RR[%] SS[%]

36V-NN
s(1)

1440 96.29 97.62
36V-NN

s(2)
30960 95.99 48.84

36V-NN
s(1)

88560 96.37 −46.34
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Supplementary Table 3 Recognition rates (RRi) for each class i = 1, 2, .., 40 for an aV-NN (a=40)
classifier and its corresponding first-order s(1), second-order s(2) and third-order s(3) outputs, for the Fa-
cial Recognition Technology (FERET) Database. The experiment was performed by using a 40MLP37,37,1

model, trained with the information of 40 subjects of the FERET Database.

40MLP37,37,1

RRi[%] RR1 RR2 RR3 RR4 RR5 RR6 RR7 RR8 RR9 RR10

aMLPI,H,O 97.16 97.50 100.00 96.25 97.73 97.61 97.50 97.50 98.52 97.95
40V-NN

s(1)
100.00 95.11 97.50 95.00 97.05 95.00 99.09 94.20 95.45 95.00

40V-NN
s(2)

97.50 93.64 98.41 97.73 95.45 96.14 97.05 94.55 98.18 95.00
40V-NN

s(3)
93.07 93.86 100.00 96.59 97.73 96.48 96.02 96.36 97.16 95.00

RRi[%] RR11 RR12 RR13 RR14 RR15 RR16 RR17 RR18 RR19 RR20

aMLPI,H,O 97.95 97.73 94.66 99.55 98.30 97.50 96.36 97.50 97.50 96.82
40V-NN

s(1)
95.91 99.89 96.93 99.43 98.86 95.23 97.27 95.00 95.00 95.00

40V-NN
s(2)

94.43 98.30 95.00 97.05 99.09 97.39 95.00 96.59 95.34 93.98
40V-NN

s(3)
95.00 99.77 95.00 95.34 98.41 98.98 93.52 95.00 95.00 94.77

RRi[%] RR21 RR22 RR23 RR24 RR25 RR26 RR27 RR28 RR29 RR30

aMLPI,H,O 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 95.23 97.50
40V-NN

s(1)
98.98 94.66 97.61 95.91 99.43 96.70 95.00 98.52 99.55 95.00

40V-NN
s(2)

98.41 95.00 97.05 96.93 99.32 94.43 95.00 95.45 94.89 95.00
40V-NN

s(3)
94.20 97.05 98.75 96.48 97.39 94.43 95.00 96.14 98.41 95.00

RRi[%] RR31 RR32 RR33 RR34 RR35 RR36 RR37 RR38 RR39 RR40

aMLPI,H,O 95.11 92.84 91.59 97.50 97.27 97.39 97.50 96.82 98.52 97.50
40V-NN

s(1)
97.95 97.73 94.32 96.36 95.00 95.23 99.43 98.30 95.00 95.11

40V-NN
s(2)

94.66 97.73 96.25 97.84 96.59 95.57 99.66 98.30 94.09 95.80
40V-NN

s(3)
97.95 98.07 95.68 96.36 96.36 97.50 93.64 94.32 95.45 96.25

Supplementary Table 4 Global recognition rate (RR) and space saving(SS) comparison for an aV-
NN (a=40) classifier and its corresponding first-order s(1), second-order s(2) and third-order s(3) outputs,
for the Facial Recognition Technology (FERET) Database. The experience was performed by using an
40MLP37,37,1 model, thus representing 40 subject of the FERETE Database.

40MLP37,37,1

PaMLPI,H,O
→ 59200

RR[%]→ 97.16

aV-NN P
as(i)

RR[%] SS[%]

40V-NN
s(1)

1480 96.69 97.50
40V-NN

s(2)
29600 96.34 50.00

40V-NN
s(1)

84360 96.37 −42.50
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