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bCentro de Investigación en Ingenieŕıa en Sistemas de Información, CONICET, Lavaise

610, Santa Fe, (3000), Argentina, gstegmayer@santafe-conicet.gov.ar
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Abstract

Dimensional reduction is a widely used technique for exploratory analysis of

large volume of data. In biological datasets, each object is described by a

large number of variables (or dimensions) and it is crucial to perform their

analyses in a smaller space, to extract useful information. Kohonen self-

organizing maps (SOMs) have been recently proposed in systems biology

as a useful tool for exploratory analysis, data integration and discovery of

new relationships in -omics datasets. SOMs have been traditionally used for

clustering in several data mining problems, mainly due to their ability to

preserve input data topology and reduce a high dimensional input space into

a 2-D map. In spite of this, the above-mentioned dimensional reduction can

lead to counterintuitive results. Sometimes, maps having almost the same

size, trained on the same dataset, and with identical learning algorithms

and parameters, may find different clusters. However, one would expect

that small changes in map sizes or another training condition would not
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result in an abrupt different location of any of the grouped patterns. The

aim of this work is to analyze and explain this issue through a real case

study involving transcriptomic and metabolomic data, since it might have

an important impact when interpreting clustering results over a biological

dataset.

Keywords: clustering, bioinformatics, dimensional reduction, topology

preservation.

1. Introduction

Among clustering methods used in biological data mining today [1, 2, 3],

self-organizing maps (SOMs) [4, 5] provide the dual property of finding clus-

ters of patterns and relate them by similarity, preserving input data topology

as well as reducing a high dimensional input space into a 2-D map [6, 7, 8].

This is possible because SOMs perform a non-linear projection of the input

data onto the elements of a regular array, usually of low dimension [9]. The

main characteristics of the projection is the preservation of neighborhood

relations in the output space, which makes possible to see more clearly the

structure hidden in the high-dimensional data, such as clusters [10, 11]. This

capability of topology-preserving mapping [12] is one of its main advantages

over other dimension reduction methods, although one of its shortcomings is

the difficulty for non-expert users to interpret the SOM results [11].

SOMs have been applied with success to the analysis of expression pro-

files in several biological studies [13] and it is one of the first computa-

tional intelligence techniques that has been used for this kind of analysis

[14, 15, 16, 17, 18, 19]. In fact, SOMs have been recently proposed in sys-
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tems biology as a useful tool for exploratory analysis, integration and mining

of different biological data [20, 21]. Biological data analysis usually consists

of two phases: exploratory data inspection to generate hypothesis that have

to be verified afterwards [22].

If a SOM is viewed from the perspective of its properties for dimension

reduction, the non-linearities introduced in the mapping must be considered.

These may lead to certain results whose interpretation might not be trivial.

Thus, this phenomenon might have an important impact when interpreting

clustering results over biological datasets. In order to guarantee the correct

analysis of input data, there are different measures to quantify the goodness

of a map in terms of the accuracy of the maps in preserving the topology

(neighborhood relations). A widely used measure is the topographic error

that determines how continuous the mapping from the input space to the

map grid is [23]. However, it has been studied that it seems to have a ten-

dency to depreciate rectangular maps [10] and it sometimes fails to effectively

recognize mismatches between the input space and a map [12].

In any case, a continuous mapping and a good resolution are desired.

A mapping is considered continuous if the data vectors that are very close

in the input manifold are mapped to the same or adjacent neural units. A

good map resolution is obtained when vectors that are distant in input space

are not mapped closed in output space. However, the topology cannot be

perfectly preserved and there is always a trade-off between the continuity

and the resolution, which results in discontinuities in the mapping [24]. This

behavior was named automatic selection of feature dimensions by Kohonen

himself [25]. The aim of this work is to analyze and explain this issue through
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a real case study involving transcriptomic and metabolomic data, since it

might have an important impact when interpreting clustering results over a

biological dataset. Section 2 describes the materials and methods used in

this study. Section 3 presents the jumping-pattern behavior issue through a

real case. In Section 4, a simple artificial example is used for detailed analysis

and explanation and, afterwards, a real case study involving transcriptomic

and metabolomics data is shown. Finally, the conclusions can be found on

Section 5.

2. Materials and methods

The biological dataset used in this study has 2458 values obtained from

transcriptional profiles and metabolic accumulation of S. lycopersicum x S.

pennellii introgression lines (ILs) [26]. The ILs harbor, in certain chromo-

some segments, introgressed portions of the wild Solanum species (Solanum

pennelli). The use of ILs allows the study and creation of new varieties of

such species by introducing exotic traits and thus constitutes a useful tool in

crop domestication and breeding [27, 28]. The interest in comparing the cul-

tivated Solanum lycopersicum with the different ILs lies on the fact that some

wild Solanum lycopersicum fruits have proven to be the source of several spe-

cific agronomic traits, which could be used for the improvement of Solanum

lycopersicum commercial lines. After log-transforming the green/red ratio

values over the entire dataset, genes whose expression did not change signifi-

cantly were discarded from further analysis. As a result of the pre-processing

and selection steps, 70 metabolites and 1159 genes were selected [29].

Let us suppose having a SOM map trained with the standard batch-
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Figure 1: Neurons of interest in a SOM map.

training algorithm [4] provided by the somtoolbox made available by the

Helsinky University of Technology1. The map has been linearly initialized

by the two eigenvectors with the greatest eigenvalues computed from train-

ing data [30]. The maps were trained with the default training parameters

and a Gaussian neighborhood function. Each neuron of the map is given a

consecutive number that starts with 1 in the upper left corner, numbering

continues consecutively in columns, until it finishes in 900 in the right down

corner of the map (see an example in Figure 1).

3. Results: the jumping-pattern behavior issue

If a 30x30 SOM map is trained for 100 epochs with the previously men-

tioned dataset, the amino acid alanine is clustered in neuron 1. If a SOM of

31x31 neurons is used for the same dataset and training conditions, after 100

epochs alanine is located in neuron 445, a cluster far away from neuron 1.

Nevertheless, all other transcripts and metabolites in neuron 1 of the 30x30

map are consistently clustered in neuron 1 of the new 31x31 map.

This fact can be quite confusing. If an input vector is clustered in a

1http://www.cis.hut.fi/somtoolbox/
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neuron, it is assumed that the variation pattern of this input vector is more

similar to the other elements within this neuron than to any others in the

map. Furthermore, given that neighbourhood neurons are similar among

them and due to the topology preservation property, it should be expected

that if there is a change in a given data point allocation, it would be to any

neighbourhood neuron, but never to a neuron located at almost half-of the

map of distance.

The images in Figure 2.a) show results after training a 30x30 SOM map

for the amino acid alanine2. A black point is depicted in the position where

this metabolite is located at different training epochs. The images show

that this pattern, near the end of the training stage (at epoch 98), jumps

from neuron 401 towards neuron 2. That is to say, on epoch 97 the neuron

centroid more similar to the alanine is the 401, and in the epoch 98 it is

the neuron centroid 2. Finally, at epoch 100, alanine ends located at neuron

1. According to the Euclidean distances, this jumping is correct. However,

neurons 2 and 401 are quite distant in the map and this large jump was

unexpected.

On the other hand, Figure 2.b) shows results from a 31x31 SOM, trained

exactly with the same training parameters (and with the same dataset) as the

previous map. When both trained maps are compared, a clear inconsistency

in the clusters is found. As explained above, if the 30x30 map is taken as the

reference map, all the data patterns that were grouped in neuron 1 in this

map are consistent with the data points found in the neuron 1 of the 31x31

2Video animations of the figures in this paper can be found on:

http://sourcesinc.sourceforge.net/ostm/
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Figure 2: The pattern metabolite alanine (black dot) location at different training epochs

in a) a 30x30 SOM map; b) a 31x31 SOM map.

map. The exception is the alanine, which has been located in a neuron that

is more than 15 neurons away in the 31x31 map (neuron 445).

A natural question that may arise here is: what happens if the maps

training is continued for more epochs? The result is that after training 50

additional epochs, both maps (30x30 and 31x31) are consistent, but then

they become inconsistent again when epoch 200 is reached.

After this initial analysis we can conclude that, given the difference on

map sizes, the data patterns move at a different speed, and by cutting the

training at a given epoch number, there is no visible reason why they should

all stay in the same cluster in both maps. However, there is still an issue to

address: how is it possible that a data point could jump 15 neurons apart in

only one training epoch? Stated differently: how is it possible that there are
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some patterns which are similar to a group of neurons located in a position

of the map, but they can also be similar to another neuron far away of this

position?

4. Discussion: a 3-D perspective of a 21-D problem

Let us suppose now that we have a 30x30 SOM map trained with a hypo-

thetical experiment involving genes, composed by only three gene expression

levels on a microarray. Therefore, in this simple example, each data point

has 3 dimensions and we will consider only the following neurons on the map:

1, 32, 63, 94, 125, 156 and 187 (see Figure 1).

Suppose we have a given gene x, whose corresponding expression values

are [4, 2, 3]. To further simplify the analysis, only the following neuron cen-

troids over all the map will be considered: w1 = [2, 2, 3]; w32 = [2, 2, 2];

w63 = [2, 3, 2]; w94 = [2, 4, 2]; w125 = [2, 4, 3]; w156 = [3, 4, 3] and w187 =

[4, 4, 3]. Figure 3 shows these centroids and their location in a 30x30 SOM

model, as well as the centroids values and their Manhattan distance3 to the

data pattern x, indicated as m(x,wi). This distance is calculated here as the

sum of the absolute error between x and wi on each dimension4. It should

be noted that the distance between each analyzed centroid (from 1 to 187)

in the diagonal line is always 1.

At a certain point during training, x is assigned to the neuron centroid

3For simplicity, the Manhattan distance is used in this example. The considerations

for Manhattan distance hold for Euclidean distance as well.
4For example: the distance between x = [4, 2, 3] and w32 = [2, 2, 2] is calculated as

m(x,w32) = |4− 2|+ |2− 2|+ |3− 2| = 2 + 0 + 1 = 3.
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Figure 3: Simplified 3-D example: centroids location and values of the neurons of interest

in a 30x30 SOM map and their Manhattan distance to a data pattern x.

w1. Then, in the next training iteration, x jumps from neuron 1 to neuron

187, meaning that the shape of the pattern is more similar to the shape of

w187 at this training step. As can be seen from Figure 2 these centroids are

quite distant in the map. The fact that a data pattern is closer to distant

centroids than to some of the intermediate neurons goes against intuition.

In terms of neighbourhood neurons, this jumping implies a Von Neumann

neighbourhood with radius 12, which is clearly a large distance in a 30x30

map.

However, Figure 3 shows that m(x,w1) = 2 and m(x,w187) = 2, while the

distances between x and all the other intermediate centroids are greater than

2. For instance, if x is assigned to w1 and after a training epoch the centroid

w187 assumes the value [4, 3.9, 3], now m(x,w187) = 1.9 and therefore, x

must jump to the w187 centroid. After some more training, it may happen

that w1 takes the values [2.2, 2, 3]. In this case, now m(x,w1) = 1.8 and

again, the data point x must jump-back to neuron 1, without being assigned,
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previously, to any of the intermediate centroids w156, w125, w94, w63 nor w32.

This means that the data point is more different to the intermediate centroids

and cannot be assigned to any of them, even when all the neighbour neurons

are very similar among them. In other words, in this projected space, the

shortest path between the neurons does not seem to be a straight line, since

the distances are actually measured on the original space.

This analysis has been performed taking into account the 2-D dimensions

of the SOM. If we would look at the problem in its original 3-D dimensional

space, we would build a graph like the one presented in Figure 4. It shows

all the analyzed centroids in blue and the data point x indicated with a red

circle. The distance between each point can be seen clearly here. Now is

possible to see how the data point x is as close to w1 as to w187, and it

is more distant to the rest of the neurons. This means that, what can be

seen as an abrupt jumping in a 2-D map, it is not counter-intuitive in the

original dimensionality of the problem, because in a 3-D space, those points

are clearly, the closest ones.

The jumping-pattern issue will now be seen in the dimensions of a real

problem (the tomato dataset presented in Material and Methods). Figure

5 shows the detail of the jumping amino acid alanine and the centroids of

the neurons 401 and 2 for a 30x30 SOM map. In this case, the distance

between points has been calculated using the classical Euclidean distance.

The left of the figure shows the results after 90 training epochs with a 30x30

SOM map. At this stage of the training process, the Euclidean distance

d(x,w401) = 0.93, while d(x,w2) = 0.95, therefore x is clustered in neuron

401 (indicated with an arrowhead). The right part of the figure shows that,
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Figure 4: Centroids of a 30x30 SOM map in a 3-D problem.

after 98 training epochs, the distance between the pattern x and w2 is now

the shortest, and therefore x has to be assigned to the neuron 2 (arrow

indication).

Each of the curves in the real case has 21 dimensions and it is very hard

to analyze which are those that make the data point more similar to one

centroid over another one. In any case, the assignments of the pattern to

each centroid on each epoch are correct and coherent. Analogously to the 3-

D example, only these two neuron centroids (at training epoch 98) are more

similar to the data point x than any other neuron in the whole map, due to

the fact that the distances are measured in the original 21 dimensions of the

problem.

11

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. H

. M
ilo

ne
, G

. S
te

gm
ay

er
, L

. K
am

en
et

zk
y,

 M
. G

. L
óp

ez
 &

 F
. C

ar
ra

ri
; "

C
lu

st
er

in
g 

bi
ol

og
ic

al
 d

at
a 

w
ith

 S
O

M
s:

 o
n 

to
po

lo
gy

 p
re

se
rv

at
io

n 
in

 n
on

-l
in

ea
r 

di
m

en
si

on
al

 r
ed

uc
tio

n"
E

xp
er

t S
ys

te
m

s 
W

ith
 A

pp
lic

at
io

ns
, 2

01
2.



Figure 5: Centroids of a 30x30 SOM map in a real 21-D problem.

5. Conclusions

To conclude, we can say that, although the jumping-pattern behavior in a

SOM map may seem hard to understand, it is possible that some data points,

similar among them, are grouped in distant neurons when considering two

maps with slightly different sizes or variants in the training process. This

is not the general case, however. In a 900 neurons map that clusters more

than 2400 data points, there may be around 10 patterns in total that can

eventually jump between distant neurons in the map.

In general, this behavior can be considered as inherent to any method for

non-linear dimension reduction. Particularly in this case, it is well-known

that there is some loss of information when the original problem is reduced

and projected into 2-D. This is especially true when the original space has

a high dimensionality. There might be some cases that cannot be projected

perfectly and therefore, while they are correct in the original dimension, they

may seem incorrect in the reduced one. However, whilst some information

might be lost due to the dimension reduction technique, from the original

dimensions of the problem it might be impossible to visualize, analyze or
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extract any useful information.
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