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Abstract

Searching metabolic pathways that relate two compounds is a common task

in bioinformatics. This is of particular interest when trying, for example, to

discover metabolic relations among compounds clustered with a data min-

ing technique. Search strategies find sequences to relate two or more states

(compounds) using an appropriate set of transitions (reactions). Evolution-

ary algorithms carry out the search guided by a fitness function and explore

multiple candidate solutions using stochastic operators. In this work we pro-

pose an evolutionary algorithm for searching metabolic pathways between

two compounds. The operators and fitness function employed are described

and the effect of mutation rate is studied. Performance of this algorithm is

compared with two classical search strategies.
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1. Introduction

Using search strategies to solve different problems is common in many

areas of knowledge. In many cases, employing classical strategies for se-

quential state space exploration allows to find solutions rapidly. When all

possible solutions are exhaustively explored the strategies are called unin-

formed search strategies, and this is the case of breadth first search (BFS)

and depth first search (DFS) algorithms [1]. It is a well-known fact that

there are problems in which a very high number of solutions must be ex-

plored, making classical methods practically inapplicable. For example, in

KEGG database [2] there are around 17000 compounds with approximately

14000 connections among them, and a high branching factor. There are

different approaches to address these problems, among which evolutionary

algorithms (EA) have an important place. The main difference with DFS

and BFS is that EA do not explore the state space exhaustively, but rather

use several heuristics to select the most promising regions to explore. These

methods are grouped in four families: Genetic Algorithms [3], Evolutionary

Strategies [4], Genetic Programming [5] and Evolutionary Programming [6].

Each one was originated by different motivations, and they differ mainly by

their representation schemes, and operators of selection and reproduction

[7]. Although the convergence for genetic algorithms is guaranteed by the

schema theorem [8], real values codification is limited by the number of bits

used. Instead, the evolutionary strategies directly use real values to encode

the problem variables, but their convergence depends on the operators used.

Evolutionary algorithms use stochastic search based on the evolution of a

population of candidate solutions, applying a set of operators and a fitness

function that evaluates the quality of the solutions generated. Some inter-
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esting aspects about these techniques are the simplicity of the operators

used, the possibility of using fitness functions with very few formal require-

ments, and the ability to explore multiple points of the search space in each

iteration [9]. These characteristics makes them an attractive alternative to

deal with several problems in biology [10, 11, 12].

Different search strategies to find metabolic pathways that relate com-

pounds have been recently proposed. The algorithm described by Ogata et

al. [13] is based on BFS and builds pathways between pairs of compounds by

the combination of allowed relations (metabolic reactions). The method of

Linked Metabolites [14] first builds an integrated graph and then performs

the pathway search specifying a maximum number of reactions between

source and target compounds. Metabolic PathFinding Tool [15] assigns to

each operator a cost equal to the number of reactions where the compound

participates. McShan et al. [16] use the A∗ search algorithm to explore the

solutions space guided by a cost function based on the Manhattan distance

and a heuristic function that uses structural information of compounds to

generate characteristic descriptors. A more recent algorithm based on BFS

is proposed by Heath et al. [17], where a metabolic pathway linking two

compounds is found preserving a specified number of atoms (atom track-

ing) between the beginning and ending compounds. However, these last two

algorithms require information about the molecular structure of the com-

pounds to be used, and BFS-based methods require a significant amount

of memory to store all the search tree. Furthermore, given that methods

based on BFS look for a specified number of pathways, the order in which

the nodes of the tree are visited can bias the search to particular solutions

(unless the successors are selected using randomized traversals). Another

alternative is based on elementary modes. These methods use stoichiometry
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of reactions and several restrictions to identify minimal sets of enzymes that

can operate at steady state, with all irreversible reactions used in the ap-

propriate direction [18, 19]. Computing all elementary modes is expensive,

even for small networks [20]. There also exist retrosynthesis-based methods

that build new metabolic pathways to produce a compound of interest in

an organism [21]. These methods begin with the desired compound and use

reverse enzymatic reactions to synthesize a metabolic pathway from simpler

compounds. Although the problem being addressed in those works is close

to our own, their objective differs from the one proposed in this paper.

Finding relationships between two given compounds is not an easy task,

in particular when data come from different sources such as metabolic and

transcriptional profiles∗. In this case, one possible approach is to create

clusters from the combined sources using a data mining tool [22]. This way,

applying the “guilt-by-association” principle [23, 24] genes and metabolites

that vary coordinately can be found. Since the relationship among metabo-

lites and transcripts is mainly given by metabolic pathways†, the following

step would be searching such pathways with the available data. Tradition-

ally, metabolic pathways search was manually performed, but the current

increase in the volume of data demands for computational tools to perform

the search automatically [17]. Many efforts have been made to automate the

process, but obtained results are not biologically feasible. For example, in

[25] a search for metabolic pathways with up to 9 reactions among glucose

∗Metabolic profile: measurement of concentration levels of small molecules. Transcrip-

tional profile: measurement of activity levels of a set of genes.
†A metabolic pathway is a sequence of chemical reactions that transform a substrate

into one or various products through a series of intermediary compounds.
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and pyruvate was performed and approximately 5x105 metabolic pathways

were found, many of them biologically not possible.

The main contribution of this work is the proposal of an evolutionary

algorithm to find metabolic pathways, capable of relating two compounds

in a common and valid reaction chain. To achieve this, a data mining tool

was used to generate clusters from a real biological dataset, and pairs of

compounds within the clusters were used for the genetic search of metabolic

pathways. Afterwards, objective measures were defined to quantify the per-

formance of the algorithms, and the effect of the mutation rate on the evo-

lution was studied. Finally, the proposed algorithm was compared with two

methods based on classical search algorithms.

The paper is organized as follows: Section 2 describes the proposed

algorithm for the evolutionary search of metabolic pathways between two

compounds. The data used, the objective measures, and the results obtained

are briefly described in Section 3. Finally, Section 4 presents the conclusions

of this work.

2. Proposed algorithm

This section presents the proposed algorithm, that we will call evolu-

tionary algorithm for the search of metabolic pathways (EAMP). First, the

state space and search operators employed are defined. Then, the struc-

ture of the chromosomes and the way the information is coded is presented.

Afterwards, the genetic operators used and their functioning are described.

Finally, the fitness function employed is presented, the terms that compose

it are analyzed and the effect that each of them produces on the search is

described.
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There are different approaches to explore the space of all the possible

metabolic pathways linking two specific compounds. One proposal consists

of generating a list of compounds that must be excluded from the search [26].

However, incorrect definitions can exclude compounds necessary to produce

results of biological interest. A different approach was proposed in [27]

where sets of “substrate-product” binary relations were used to represent

the reactions and each relation was labeled according to its function inside

the reaction. The main stream of the pathways was built using only the

relations containing information about the transformation of the substrates.

Following that idea, the state space is defined as the set C of all metabolic

compounds in the KEGG database. This database contains information of

genes, proteins and metabolic compounds of hundreds of different organisms

and the allowed binary relations between compounds are describe by trans-

formations r. The compound on which the transformation is applied will be

called substrate s, and p will be the product or new resulting state. Trans-

formations will be represented as ordered pairs ri = (si, pi), with si, pi ∈ C

and si 6= pi. In addition, the substrate and product of ri will be identified

using the notation si and pi respectively, being ŝ the initial compound and

p̂ the final compound of the metabolic pathway. In this way, a metabolic

pathway is built as a sequence of transformations that produce p̂ starting

from ŝ. Finally, the sequence of possible states q = [ŝ, p1, p2, . . . , p̂] is defined

as the sequence of compounds that take part in the transformation.

2.1. Structure of the chromosomes

The sequence of transformations r leading to the production of p̂ from ŝ

is coded in the chromosome as c = [r1, r2, . . . , ri, . . . , rN ], where N indicates

the number of genes and the sequence is read from left to right. In this
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context, the term chromosome indicates a data structure such as a vector,

and should not be interpreted in a biological way. This value can vary in the

range [1, NM ], where NM is the maximum number of reactions the metabolic

pathway can contain. When the number of reactions exceeds this level, the

chromosome truncates to contain only the first NM reactions.

2.2. Genetic operators

This section describes the genetic operators‡ designed for the EAMP.

Due to the requirements of this application in particular, it has been neces-

sary to make various changes to classical genetic operators, which, if directly

applied, would limit the convergence of the algorithm. In order to facilitate

their explanation, four sets of transformations are defined. R∗ contains the

complete set of allowed transformations, R1 = {ri�ri = (ŝ, pi)} ∧R1 ⊂ R∗

contains only those transformations that use ŝ, RN = {ri�ri = (si, p̂)} ∧

RN ⊂ R∗ contains all transformations that produce p̂, and R+ = R1 ∪ RN

contains the union of the two previous sets. The algorithm finds a solu-

tion when it reaches a predefined maximum number of generations or when

the fitness of an individual takes the value 1, indicating that it encodes

a metabolic pathway that relates the indicated compounds. Moreover, if

maximum number of generations is reached, the algorithm is stopped and

returns the best individual found.

Initialization. The algorithm is initialized by defining the number of in-

dividuals M that the population contains and a value Ni ≤ NM for each

individual, which indicates the maximum number of genes a chromosome

‡This general term indicates operations applied over chromosomes. For example, the

crossover operator combines genetic information of two chromosomes to produce a new

one.
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can initially have. Chromosomes can be built in two ways. If a random

initialization strategy is used, transformations are selected according to

c =


ri ∈ R+ if N = 1,

[ri, rj ] , ri ∈ R1, rj ∈ RN if N = 2,

[ri, . . . , rk, . . . , rj ] , ri ∈ R1, rk ∈ R∗, rj ∈ RN if N > 2,

(1)

where every gene r is a transformation randomly selected from the corre-

sponding set. When a valid initialization strategy is employed, transforma-

tions are selected according to

c =


ri ∈ R+ if N = 1,

[ri, . . . , rj−1, rj ] , ri ∈ R1, rj ∈ R∗�sj = pj−1 if N ≥ 2.

(2)

All transformations that are already part of the chromosome are not selected

again to be inserted into the sequence. When valid initialization is forced to

set a chromosome with Nx genes, it will be called fixed-length valid initial-

ization, and the chromosome will be completed up to contain the specified

number of genes.

Selection. In this algorithm the traditional roulette method was used [9].

This method is based on assigning a value f to each individual that is propor-

tional to its contribution to the fitness mean of the population. Tournament

selection with 3, 5 and 7 competitors was also tested. In an independent

experiment, six searches were performed, each one with 30 runs. Results

show that roulette uses searching times significantly lower than tournament

(p < 0.05). Elitism is employed to guarantee the preservation of the fittest

individuals in each generation. The parameter ε determines the number of
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individuals that will be preserved and that will pass to the following gener-

ation without any modification.

Crossover. This operator presents an important modification compared

to the classical one, because it promotes the formation of valid bonds of

the genetic material. The crossover point φ for each parent (c1, c2) is ran-

domly selected from a set containing pairs of positions (φ1, φ2) that satisfy

δ(si, pj) = 1, where δ is the Kronecker delta function, which takes value

1 when si ∈ c1 and pj ∈ c2 are equal. Figure 1 shows a diagram of the

functioning of the operator in the case of two parents that are not com-

pletely valid (see definition of validity later). Each block represents a gene

and codes a chemical reaction in which letters represent the substrates and

products of each relation. It can be noticed that if a simple crossover method

is applied without considering the sequence of reactions, the validity of the

generated offspring would probably diminish. However, if the crossover is

carried out in one of the highlighted pairs of positions (φ1, φ2), the validity

of the offspring will increase. When there is not a feasible crossover point,

two different progenitors are selected.

Mutation. This operator replaces a chromosome gene by another one where

s or p of the new gene is p of the previous gene or s of the following gene,

respectively. Each chromosome has a probability µ of being mutated in a

single randomly selected position. The new gene is obtained according to
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a b b r r d z q v t t p w f o l m s

h j n g k n u c t g b q q y y r r e

φ1

φ2

b q q y y r r ea b

Figure 1: Diagram of the functioning of the crossover operator. Each block corresponds

to a gene encoding a transformation. In each gene, substrate and product are represented

by letters at left and right of each arrow, respectively. Shaded elements indicate pairs of

positions (φ1, φ2) where a valid crossover can be made.

mut(ri) =



r ∈ R+ if N = 1,

r ∈ R1 if N > 1 ∧ i = 1,

r ∈ RN if N > 1 ∧ i = N ,

r ∈ R∗�p = si+1 if N > 1 ∧ 1 < i < N ∧ u ≤ 0.5,

r ∈ R∗�s = pi−1 if N > 1 ∧ 1 < i < N ∧ u > 0.5,

(3)

where s and p are, respectively, the substrate and product of the new gene

r; si+1 is the substrate of the gene that is located in the position next to the

mutated gene ri, and pi−1 is the product of the gene that is in the position

previous to the mutated gene. Value u is randomly selected in the range

[0,1]. Figure 2 presents a diagram of the functioning of this operator. The

choice of a new gene can result in a wide range of possible chromosomes. It

is observed that in the chromosome placed at the top of the figure the gene

selected to mutate has a valid relation with the previous gene, but not with
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Figure 2: Diagram of the functioning of the mutation operator. The selected gene to

mutate is marked with a black rectangle. Top: Chromosome with a selected gene to be

mutated. Bottom: Possible resulting chromosomes after mutation.

the next one. Transformations that replace the gene to mutate should use

the compound r as a substrate, the compound z as a product or both in the

best case (bottom of the figure).

If a classical mutation operator is applied, there is high probability that

the validity of the chromosome will diminish, because the new gene would

not establish a valid union with their neighboring genes. On the contrary, if

a valid mutation strategy is applied like in (3), it is more probable that the

chromosome will increase its validity, as it can be seen in the chromosome

at the bottom of the figure. Although in some cases the validity of the

new chromosome might decrease, it is the cost to pay to be able to explore

distant regions of the search space and leave local minima.
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2.3. Fitness function

To evaluate the desired characteristics of the solutions, a fitness function

f was built taking into account features of biochemical reactions, and it

was employed to direct the search. The function f for the chromosome c is

defined as f(c) = α [V (c) + βE(c) +Q(c) + I(c)], where α = 1/(3 + β) is

a normalization constant driving the function to the range [0,1] and β de-

termines the relative contribution of E measure. This function takes value

1 when a valid metabolic pathway, without trivial cycles, that produces p̂

from ŝ is found. In case of having information about the relative abundance

of compounds, this function could be modified to weight the reactions ac-

cording to the probability of occurrence, which is directly associated with

the abundance of the compounds involved. The four measurements that are

part of the function are described below.

Validity (V ). It quantifies the number of valid concatenations present in

the chromosome, defining them as those consecutive pairs of transformations

where the product pi of ri is the substrate si+1 of the transformation ri+1.

Based on this, validity is calculated as

V (c) =
δ(ŝ, s1) + δ(pN , p̂) +

∑N−1
i=1 δ(si+1, pi)

N + 1
. (4)

It varies in the range [0,1], being 1 when all operators are concatenated

and the compounds s1 and pN are the ones desired.

Valid extremes (E). This term evaluates the transformations r1 and rN

to verify they contain the desired ŝ and p̂ compounds. The calculation is

done according to E(c) = 1
2 [δ(ŝ, s1) + δ(pN , p̂)]. This term varies in the

range [0,1] and reaches its maximum value when the compounds s1 and pN

are the ones desired. This plays an important role when the size of the

metabolic pathways exceeds NM .
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Unique reactions rate (Q). This term penalizes the repetition of transfor-

mations in the chromosome. Function ϕ is defined for its calculation, which

evaluates a sequence and returns the number of unique elements present in

it. The rate is calculated as Q(c) = (ϕ(c) − 1)/(N − 1) and it is defined

Q(c) = 0 when N = 1. It varies in the range [0,1] and reaches its mini-

mum value when the sequence contains a unique element repeated N times

(ϕ(c) = 1).

Unique compound rate (I). This term penalizes the repetition of com-

pounds in the pathway. The rate is calculated as I(c) = (ϕ(q)− 2)/(N − 1)

and it is defined I(c) = 0 when N = 1. It varies in the range [0,1] and reaches

its minimum value when the chromosome contains transformations that only

produce si or pi (chromosomes containing repetitions of the transformations

of si → pi and pi → si). For example, in the metabolic pathway codified in

the chromosome c = [a → b][b → a][a → b][b → d] the number of reactions

is N = 4 and the sequence of states associated to it is q = [a, b, a, b, d] (see

definition on page 6) where only three compounds are unique (ϕ(q) = 3).

In consequence, I(c) = 1
3 .

To illustrate the calculation of the fitness function, the lower chromosome

in Figure 1 will be used. If it is assumed that ŝ = a and p̂ = e, then V (c) = 1

and E(c) = 1 because the substrate of each reaction is produced by the

previous reaction and the terminal compounds (a and e) are the compounds

to relate. Q(c) = 1 since each gene in the chromosome is unique; and given

that the sequence of compounds is q = [a, b, q, y, r, e], results ϕ(q) = 6

and I(c) = 1, since all the compounds appear only once in f . Therefore,

f(c) = 1. Instead, if we now assume that the third gene of the chromosome

is [b→ q], then V (c) = 2
3 and E(c) = 1 because there are 2 invalid reactions

(between genes 2-3 and 3-4) and the terminal compounds are the same;
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Table 1: Clusters selected to search for metabolic pathways.

Cluster A Cluster B

Compounds Isomers Compounds Isomers

I II I II

arginine C00062 C00792 asparagine C00152 C01905

glycerate C00258 glycine C00037

lysine C00047 histidine C00135

ornithine C00077 C00515 isoleucine C00407

serine C00065 C00740

tyrosine C00082

threonine C00188 C00820

valine C00183 C06417

Q(c) = 3
4 since there is a gene repeated in the chromosome (third gene);

given that now q = [a, b, q, q, r, e], results ϕ(q) = 5 and I(c) = 3
4 . Therefore,

f(c) ∼ 0.792.

3. Results and discussion

This section presents the results obtained in the evaluation of EAMP

and its comparison with two classical search methods. First, the data used

in the experiments are described. Then, the measures employed to compare

the algorithms are presented. Afterwards, EAMP behavior is analyzed using

different mutation rates. Finally, a comparison is made between the mea-

sures obtained with the different algorithms during the search of metabolic

pathways.

The set of valid compounds to generate metabolic pathways and the

possible chemical reactions among these compounds were extracted from
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the KEGG database§. This source was used because it is widely cited in

literature, and it contains information of a wide variety of organisms. In

KEGG each compound is identified by means of a single code and chemical

reactions store the information of the transformations using this coding. In

addition, chemical reactions are stored as sets of “substrate-product” binary

relations, where each one is labeled according to the function which the pair

fulfills inside the chemical reaction. The relations labeled “main” were the

ones selected to conduct the experiments since they contain the information

about the transformations s→ p [28]. The dataset used in the experiments

was built by extracting and filtering all main pairs in order to preserve only

one copy of each one. Each one was splitted into a backward and a forward

reaction. After processing the data, 14346 transformations relating 5936

compounds were extracted from the KEGG database¶. Moreover, there is

a subset of compounds (≈ 5% of dataset) with a high branching factor that

reaches values up to 118.

Suppose that, for example, two clusters are found from a dataset with

a data mining tool, and that we want to find a metabolic pathway relating

two compounds belonging to each of those clusters. Then, we could use an

algorithm for searching metabolic pathways and a set of possible transfor-

mations to link them. In this work, the dataset used consisted of metabolic

and transcriptional profile data from tomato fruits cultivated under con-

trolled conditions and harvested during maturation process [29]. A data

mining tool based on a neural model [30] was selected to obtain the clusters.

This tool is based on a self-organized map and uses the principle of “guilt-

§http://www.genome.jp/kegg/
¶The last free available version of KEGG data was downloaded in May, 2011.
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by-association” to build clusters of metabolites and transcripts with high

probability of participating in the same biological process. It is important

to remark that the use of a data mining tool is not a requirement of the

algorithm. Compounds to relate could be selected using other criteria, for

example, they could be manually selected. Transformations extracted from

KEGG were used for linking compounds. Pairs of compounds belonging to

each cluster were used to perform the search and test the algorithms. Ta-

ble 1 presents details of the compounds belonging to the clusters. Isomers

detailed in this table were considered as different compounds, so cluster A

contains 6 compounds and cluster B contains 12 compounds. To simplify the

notation, each compound code will be used without considering the letter

and zeros preceding the number.

3.1. Performance measures

To compare the results obtained with different algorithms, the time re-

quired to find a metabolic pathway (t) was measured‖, as well as the number

of transformations (L) that the pathway contains and the number of com-

pounds (ψ) belonging to the cluster of the pair of compounds which are part

of the pathway. In the case of the EAMP, the number of generations used

to find a pathway (G) was also evaluated. For each pair of compounds, 20

runs were carried out. For each run the maximum value (indicated by sub-

script M), the minimum value (indicated by subscript m) and the median

(indicated by the symbol indicated by the symbol “̂”) for several measures

were determined. These runs were carried out to evaluate the diversity of

pathways found with different algorithms. In most measurements the me-

‖Experiments were conducted using a PC INTEL Pentium IV 3 GHz.
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dian was used instead of the mean since it is a more robust measure for

asymmetric distributions, as it happens in these cases.

To evaluate the proportion of cluster compounds in the metabolic path-

way, we define the explanation rate of the cluster as

Λ =
max
k
{ψk}

|Ψ|
, (5)

where k indicates the run number, ψk is the number of cluster compounds

included in the pathway found in the run k, and |Ψ| is the total number

of cluster compounds. This rate varies in the range [0,1] and indicates the

proportion of cluster compounds present in the metabolic pathway. Values

of Λ close to 1 indicate that the pathway relates a great number of clus-

ter compounds. The Wilcoxon signed-rank test was used to perform the

statistical analysis of data [31].

3.2. Mutation rates and initialization strategies

To evaluate the influence of the mutation rate, this parameter was stud-

ied in the range 0.01–0.1, for the compounds marked in Table 1. Applying

elitism (ε = 1) the best solution in each generation was preserved. In all

runs a population of M = 1000 individuals, a maximum chromosome size of

NM = 100 genes, an initial maximum number of genes per chromosome of

Ni = 50, and a crossover probability γ = 0.8 were used. Preliminary tests

were performed with values of γ in the range [0.5,0.9] and a step of 0.05.

The best results were obtained for γ = 0.8. Random initialization, valid ini-

tialization and fixed-length valid initialization, were tested employing those

parameters. For this last one, initial number of genes was set to Nx = NM .

Results for the searching time and the number of generations were sim-

ilar in both cases. To evaluate normality of the distributions of the time
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Figure 3: Influence of the mutation rate on the searching time required by EAMP to

find a solution using three different initialization strategies. Triangles, circles and squares

indicate the median time of the dataset for each initialization and vertical bars represent

the corresponding 95% confidence interval. Triangles indicate random initialization, circles

indicate valid initialization and squares indicate fixed-length valid initialization. Times

are plotted in logarithmic scale.

data, the Jarque-Bera test [32] was used. It performs an hypothesis test to

compare a metric relating symmetry and kurtosis values of the distribution

tested versus a normal distribution. In all cases, data showed non-normal

distributions. Given that a median value is better than an average value to

characterize asymmetric distributions, the first one was employed for each

distribution of the time data and a confidence interval using bootstrap tech-

nique [33] was estimated. Confidence intervals for each distribution data are

shown in Figure 3. The symbols (triangles, circles and squares) correspond
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to the median of the time values for each initialization strategy and the

vertical lines represent the corresponding 95% confidence interval calculated

by the bootstrap technique. Triangles correspond to results for random

initialization, circles indicate valid initialization and squares correspond to

fixed-length valid initialization. All times are shown in logarithmic scale.

The minimum searching time for each strategy was associated to the lowest

value of the median for all mutation rates. In addition, it was considered

that overlapped confidence intervals did not present statistically significant

differences.

Figure 3 shows that valid initialization and fixed-length valid initializa-

tion have only small differences between them but they produce significant

improvements compared to random initialization. For all the initialization

strategies a solution was found for every run. Minimum searching time for

random initialization was found at pm = 0.04 with no significant differences

in the range 0.02–0.05. For valid initialization strategy the minimum was

reached at 0.02 and there were no significant differences in the range 0.01–

0.05. Fixed-length valid initialization strategy only has a lowest searching

time at pm = 0.01.

These results may be due to how the mutation operator works. In the

context of random initialization, two phases for the mutation operator can

be identified. In the first phase, the operator helps building blocks of genes

to increase the average population validity. In the second phase, when there

are a few blocks per individual, these blocks are modified by the mutation

operator in a way that allows the crossover operator to generate a feasible

solution. As a consequence, the first phase can be delayed by low proba-

bilities, while the second phase can be slowed by high probabilities because

they would introduce a high variability in the searching process. Therefore,
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it is expected that intermediate probability values produce the best results.

When both valid initialization strategies are analyzed, the effect of the

mutation rate on them is different and high mutation values slows the search.

Thus, given that chromosomes are completely valid at the beginning and due

to crossover operations also produce valid chromosomes, the incorporation

of a high number of mutations slow the searching of solutions. Therefore,

although mutations prevent the search from stopping at a local minimum,

they drive it away from the region of the initial feasible solutions.

The differences between the valid initialization strategies could be ex-

plained by the initial number of genes in the population. Since fixed-length

valid initialization has a larger number of genes at the beginning, small

increases in the mutation rate produce larger effects. This is because the

number of genes to mutate is proportional to the number of genes in the pop-

ulation. In addition, given that at the beginning all chromosomes are valid,

the number of cross points increases and the speed at which unnecessary

genes are eliminated is reduced.

An exponential increase in the searching time, in the range 0.05–0.1, was

seen for random and valid initialization strategies because of the variability

effect introduced by elevated mutation rates. The range of probabilities

for fixed-length valid initialization was broader probably because the initial

number of genes to mutate is larger than for the other strategies, increasing

the influence of high mutation rates. In reference to the metrics for the

evaluation of the pathways (L, ψ and Λ), similar values were found among

the three strategies. This indicates that the use of any valid initialization

strategy improves searching time without producing significant effects on

the characteristics of the solutions found.

In summary, the use of a valid initialization strategy significantly im-
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proves the searching time, driving exploration of the search space towards

where it is more probable to find a solution. Since shorter searching times

were obtained with a valid initialization, this strategy will be used for fu-

ture comparisons between EAMP and other techniques. Although for fixed-

length valid initialization strategy searching time at pm = 0.01 was similar

to valid initialization in the range 0.01–0.05, this last one will be used be-

cause it is less sensitive to changes in the mutation rate. Finally, pm = 0.04

will be employed because the major difference between the three strategies

is achieved with this value.

3.3. Comparison between classical search strategies and the proposed evolu-

tionary algorithm

To compare the performance of EAMP against classical BFS and DFS

algorithms, measures obtained for the search of metabolic pathways were

compared. The EAMP was evaluated applying the parameters values set in

the previous subsection.

BFS and DFS algorithms were modified to incorporate a control of re-

peated states, that allows to discard operators producing compounds pre-

viously generated in the pathway. In the case of the DFS, the maximum

depth for the search was limited to 100 transformations to apply the same

restriction as the one set for the EAMP.

Both classical algorithms explore the state space by building a search

tree, where each node is a compound and the connections represent possible

reactions among them (parent nodes are the substrates and child nodes are

the products). Therefore, a pathway consists of a set of compounds and

reactions that link them. However, while BFS explores all nodes with depth

d (pathways with d − 1 reactions) before those of depth d + 1, DFS takes
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Figure 4: Boxplot showing the search time and the length of the pathways for the results

of EAMP, BFS and DFS algorithms. Search times are expressed in seconds and are shown

in white; the length of the pathways found are expressed in number of transformations and

are shown in gray. Time is plotted in logarithmic scale. Each box represents the central

50% of the data. Circles indicate atypical measurements. Segments extending outside

the boxes indicate the maximum and minimum limits from which values are considered

atypical.

every pathway until it reaches a leaf node.

Since the set of solutions found by BFS and DFS algorithms is influenced

by the order in which operators are applied, a single search may generate

biased solutions due to their initial ordering. To avoid this effect, we use

as many randomizations or randomized traversals as pathways searched by

EAMP. For each randomization, the first pathway found was considered.

Metrics for each algorithm were calculated as an average value over ran-

domizations.
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Table 2: Comparison between BFS and EAMP. Time t̂ is expressed in seconds and L in

number of transformations. |Ψ| indicates the number of compounds in each cluster.

Search −→ 1 2 3 4 5 6

|Ψ| −→ 6 12

Compounds to Relate −→ 62 - 47 258 - 77 47 - 258 37 - 82 135 - 65 135 - 82

t̂
EAMP 17.6 8.6 8.3 3.4 15.2 8.4

BFS 16.1 77.5 142.0 10.2 12.6 12.9

LM

EAMP 13 11 17 9 19 18

BFS 4 5 5 3 5 5

L̂
EAMP 6.5 7 8 5 9 6

BFS 4 5 5 3 5 5

Lm

EAMP 4 5 5 3 5 5

BFS 4 5 5 3 5 5

ψM

EAMP 3 3 2 4 3 4

BFS 2 2 2 3 2 2

ψ
EAMP 2.4 2.1 2.0 2.3 2.1 2.1

BFS 2.0 2.0 2.0 2.4 2.0 2.0

Λ
EAMP 0.50 0.50 0.33 0.33 0.33 0.33

BFS 0.33 0.33 0.33 0.25 0.17 0.17

Results regarding the search time and the diversity in the lengths gen-

erated with the three methods are shown in Figure 4. Boxplots for search

times are shown in white and the length of the pathways found are shown

in gray. In each diagram, the body of the box contains the central 50% of

the data and the complete diagram reflects the variability of the analyzed

measure. The box bottom and top limits correspond to the quartiles Q1 and

Q3 respectively, and the segment dividing each box into two halves shows

the position of the quartile Q2 (median). As it can be observed in the figure,

DFS found pathways in times close to 1 s, but the length of the pathways

was biased to the maximum allowed value. Because metabolic pathways
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relating only two compounds and containing 100 transformations have no

biological interest (high energetic inefficiency), results obtained with this

algorithm were excluded from subsequent analyses.

Figure 4 shows similar values for searching time, with mean values

slightly lower for BFS (45.2 s) than for EAMP (51.2 s). This result is

mainly due to a few cases where EAMP used searching times higher than

500 s. For practical purposes, they could be considered equivalents. EAMP

found metabolic pathways with intermediate lengths to those of BFS and

DFS. This result is interesting because, apart from finding the shortest path-

ways between compounds, it also found pathways with more diversity of

sizes, offering alternatives that might be of interest for a biological analysis.

For example, if the shortest pathway has 5 reactions, pathways with greater

length could incorporate additional compounds of interest to produce the

desired final compound through alternative pathways.

In order to analyze the results generated by EAMP and BFS in more

detail, Table 2 shows measures obtained with each algorithm for each pair

of compounds. The rows in the table correspond to the median of the search

time (t̂); the maximum, minimum, and median number of transformations

(LM , Lm and L̂ respectively); the maximum and mean number of cluster

compounds incorporated into the pathway (ψM and ψ respectively); and

the explanation rate of the cluster (Λ). Columns indicate different pairs of

compounds numbered from 1 to 6; the number of compounds in each one of

the clusters previously found; and the compounds used in every run.

Table 2 shows that BFS uses similar or higher times than EAMP. Only

for Searches 2, 3 and 4 these differences were significant (p < 0.05). The min-

imum pathways size was similar for BFS and EAMP showing that both al-

gorithms can find the shortest pathways. Besides, EAMP found larger path-
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ways than BFS, leading to the median be significantly greater (p < 0.001).

This is desirable because indicates that EAMP finds metabolic pathways

with reactions not included in the shortest pathways, providing information

about alternative mechanisms to synthesize a metabolite. Measures related

to the number of cluster compounds included into the pathways were simi-

lar for both algorithms, differing only in the Search 1 where EAMP related

more cluster compounds than BFS (p < 0.01). The explanation rate of

the clusters reflects that none of the algorithms presented a preference for

incorporating cluster compounds into the solutions. However, EAMP pre-

sented slightly higher values for some cases as a result of the variability in

the number of transformations of the solutions.

For a preliminary biological evaluation of the algorithms, the search

of a metabolic pathway linking compounds C00103 (α-D-glucose-1P) and

C00631 (glycerate-2P), both characteristic of glycolysis, was performed. Fig-

ure 5 shows the classical glycolysis pathway and those found by EAMP (short

dashed lines) and BFS (long dashed lines). Initial and final compounds are

drawn as bold hexagons. Large gray rectangles indicate different pathways.

Compounds (circles) and reactions (arrows) are shown with the KEGG cod-

ification. Dotted circles indicate compounds that are present in more than

one pathway.

The pathway found by BFS employs five reactions, one less than the

standard pathway of glycolysis, by taking a shortcut through the pentose

pathway. The glycolysis and the pathway found with EAMP use six reac-

tions for linking the compounds of interest. However, reactions for this last

one belong to two different known pathways. Furthermore, only one reac-

tion belonging to the glycolysis pathway (not participating in the sequence

linking the desired compounds) is used by EAMP. When comparing both
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Figure 5: Metabolic pathways linking compounds C00103 and C00631 found using EAMP

(short dashed line) and BFS (long dashed line). Initial and final compounds are drawn

as bold hexagons. Large gray rectangles indicate different pathways and their compounds

(circles) and reactions (arrows), shown with the KEGG codification.
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pathways found, it can be seen that although the pathway found by BFS con-

tains fewer steps, it just replaces three of the six original reactions belonging

to glycolysis. Instead, the pathway found with EAMP replaces all reactions

from the standard pathway by reactions belonging to alternative routes, and

uses only one reaction from glycolysis. The last one is very interesting be-

cause it provides a novel pathway employing a set of reactions different to

the well-known glycolysis. Furthermore, this result indicates that the pro-

duction of a compound may occur through different mechanisms than those

already known.

Although solutions found by EAMP are biologically possible, the incor-

poration of additional information would lead the search towards solutions

of particular interest. For example, the use of “atom tracking” as presented

in [17] would allow to find metabolic pathways where a predefined fraction

of the substrate has to be conserved into the product.

Finally, given that the fitness function and many parts of the algorithm

can be easily modified, it could be applied to a wide range of applications.

For example, it could be used to eliminate gaps in metabolic pathways [26,

34, 35] or the construction of heterologous pathways in metabolic engineering

[36, 37, 38].

4. Conclusions and future work

This paper proposed an evolutionary algorithm for searching metabolic

pathways between two compounds. The structure of the chromosomes was

defined as a sequence of chemical transformations. Specific operators of

crossover and mutation for the application domain were defined, to favor

concatenation of related transformations. Different metrics were also pro-
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posed to compare the performance of the algorithms and assess the features

of pathways found. It was noted that the use of a valid initialization reduces

the search time, and that mutation rates lower than 0.05 favor this decrease.

In the comparison of EAMP with BFS and DFS it was noted that the pro-

posed algorithm used similar times to BFS. Although DFS is the fastest, as

it would be expected, in most cases this algorithm founds pathways with

the maximum allowed length, which strongly influences their usefulness. It

must be highlighted that the EAMP generated a higher dispersion of lengths

in the pathways, with intermediate values to those of the solutions found

by the other two algorithms. From a biological point of view, this result

is interesting because it shows that our algorithm can explore alternative

mechanisms for the production of compounds. These alternatives include

reactions belonging to different metabolic pathways, which is well-known

that could be involved in the metabolism.

As future work, we are considering the use of an initialization strategy

that builds the chromosome starting from both compounds to relate. Fur-

thermore, next steps will involve finding metabolic pathways linking more

than two compounds, also incorporating information of enzymes and taking

into account non-trivial cycles. In addition, other multi-objective evolution-

ary strategies will be considered.
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[31] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the

use of nonparametric statistical tests as a methology for comparing evo-

lutionary and swarm intelligence algorithms, Swarm and Evolutionary

Computation 1 (2011) 3–18.

[32] D. Ruppert, Statistics and Data Analysis for Financial Engineering,

Springer, 2011.

[33] B. Efron, R. Tibshirani, An introduction to the bootstrap, Chapman

& Hall, 1993.

[34] J. Orth, B. Palsson, Systematizing the Generation of Missing Metabolic

Knowledge, Biotechnology and Bioengineering 107 (2010) 403–412.

[35] L. Liu, R. Agren, S. Bordel, J. Nielsen, Use of genome-scale metabolic

models for understanding microbial physiology, FEBS Letters 584

(2010) 2256–2264.

32

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. G

er
ar

d,
 G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

A
n 

ev
ol

ut
io

na
ry

 a
pp

ro
ac

h 
fo

r 
se

ar
ch

in
g 

m
et

ab
ol

ic
 p

at
hw

ay
s"

C
om

pu
te

rs
 in

 B
io

lo
gy

 a
nd

 M
ed

ic
in

e,
 V

ol
. 4

3,
 N

o.
 1

1,
 p

p.
 1

70
4-

17
12

, n
ov

, 2
01

3.



[36] D. Na, T. Kim, S. Lee, Construction and optimization of synthetic

pathways in metabolic engineering, Current Opinion in Microbiology

13 (2010) 363–370.

[37] J. Blazeck, H. Alper, Systems metabolic engineering: Genome-scale

models and beyond, Biotechnology Journal 5 (2010) 647–659.

[38] T. Osterlund, I. Nookaew, J. Nielsen, Fifteen years of large scale

metabolic modeling of yeast: Developments and impacts, Biotechnol-

ogy Advances 30 (2012) 979–988.

33

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. G

er
ar

d,
 G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

A
n 

ev
ol

ut
io

na
ry

 a
pp

ro
ac

h 
fo

r 
se

ar
ch

in
g 

m
et

ab
ol

ic
 p

at
hw

ay
s"

C
om

pu
te

rs
 in

 B
io

lo
gy

 a
nd

 M
ed

ic
in

e,
 V

ol
. 4

3,
 N

o.
 1

1,
 p

p.
 1

70
4-

17
12

, n
ov

, 2
01

3.


