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Abstract— Several bio-inspired representations

have been applied to artificial systems for speech pro-

cessing. In this work, an auditory signal representa-

tion is used to obtain bio-inspired features of emo-

tional speech signals. These features, together with

other spectral and prosodic features, is used for emo-

tion recognition under noise conditions. Multilayer

perceptrons were trained as classifiers and results

were compared to the well-known mel frequency cep-

stral coefficients with the same type of classifiers. Re-

sults show that using the proposed representations, it

is possible to significantly improve the robustness of

an emotion recognition system.

Keywords— Emotion recognition, bio-inspired

representations, multilayer perceptrons.

1 Introduction

Emotion recognition is a multi-disciplinary research area

because the emotions are motivated by social and psy-

chological facts and these can be perceived in speech sig-

nals, in facial expressions, in body posture, in biosignal as

electrocardiograph, blood pressure and electroencephalo-

gram, among others. Real-life applications have moti-

vated the researchers. For example in detection of fear in

abnormal situations (for security applications) [1], sup-

port of semi-automatic diagnosis of psychiatric diseases

[2] and detection of emotional attitudes of children in di-

alog interactions with computers [3].

Emotions are expressed in more than one modal-

ity and several studies have explored multimodal sys-

tems in the context of emotion recognition [4, 5]. In

spite of their good results, the use of speech signals

remains the most feasible option because the methods

to record and use these signals are simple, not inva-

sive and possible in most real applications. The prob-

lem of feature extraction of speech could be focussed on

different aspects: speech production, characteristics of

speech signals, speech perception, etc. However, most

of the researchers have addressed their analysis to speech

prosodic features and spectral information: Mel fre-

quency cepstral coefficients (MFCCs), linear prediction

cepstral coefficients (LPCCs), perceptual linear predic-

tion coefficients (PLPCs), and formant measures, among

others [6, 7, 8].

For classification stage, several standard techniques

have been explored: Gaussian Mixture Models (GMM),

Hidden Markov Models (HMM), Multilayer Percep-

tron (MLP), Support Vector Machines (SVM), k-nearest

neighbor (k-NN), Bayesian classifiers [7, 9, 10]. At

present, the combination of standard methods have be-

come the focus of state-of-the-art studies [7, 11]. Mor-

rison et al. [12] applied stacked generalization and un-

weighted vote to emotion recognition. In [13], a two-

stage classifier using SVM and HMM was proposed.

Schuller et al. [14] presented a multiple stage classifier

using SVM. A hierarchical model and a binary multi-

stage classifier guided by the dimensional emotion model

were proposed in [15]. Albornoz et al. [16] developed a

hierarchical classifier using clusters of emotions defined

by spectral and prosodic features.

A current challenge that has not received enough at-

tention is the robust emotion recognition [11, 17]. Some

previous works have used databases recorded in real en-

vironments [18, 19] and other researchers have explored

the controlled noise addition [20, 21]. Sztahó et al. [18]

proposed some acoustical features and a SVM classifier

for emotion classification using a database with sponta-

neous telephone conversations played by actors, but they

did not perform an objective evaluation of noise level. In

[19], the emotion recognizer is preceded by a module for

adaptive noise cancellation. They evaluated the perfor-

mance with white Gaussian noise and noises in a car for

different scenarios. White noise addition was explored

for two acted and one spontaneous databases in [21]. For

each database, they extracted 4000 acoustic features, and

25 additional suprasegmental prosodic features for spon-

taneous database. Using random forests as classifier, all

features and the best features computed with Sequential

Forward Floating Selection (SFFS) were explored. In

[20], prosodic and quality features with a MLP classi-

fier were used. Authors performed the Canonical Cor-

relation Based on Compensation, after feature extraction

stage. Classification shows a good performance under 10
dB SNR, although they did not indicate the noise type.

In our work, a new set of bio-inspired features is pro-

posed for emotion recognition which are computed us-

ing the auditory model proposed by Shamma et al. [22].

This and another set of features based on spectral anal-

ysis [16] are used for emotion recognition under severalsi
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noise conditions. Prosodic information is also used and

the classifiers are developed using a standard MLP.

In the next section the proposed methods for feature

extraction and classification are presented. Section 3

explains the emotional speech database and the experi-

ments. Furthermore, it describes the performance results

and presents the discussion. Finally, conclusions and fu-

ture works are presented.

2 Proposed method

In this work, we propose and evaluate different features

for emotion recognition under noise conditions. These

features are novel in robust emotion recognition [6, 7].

A classifier based on neural networks was used in all the

experiments because our objective is to compare the fea-

tures.

Mean of the log-auditory spectrum

In this work, a set of features based in the auditory spec-

trogram is proposed for emotion recognition. Yang et al.

proposed a model based on neurophysiological investiga-

tions at various stages of the auditory system [23]. This

model consists of two stages, the first allows to obtain an

early auditory spectrogram of the temporal signal at the

level of auditory nerve fibers. The second stage mimics a

model of primary auditory cortex in mammalian to pro-

cess the spectrogram.

The first part of the model is composed of a bank of

cochlear filters that process the signal and obtains 128

coefficients representing the range of 0 to 4000 Hz. This

analysis stage is implemented by a bank of 128 over-

lapping constant-Q (QERB = 5.88) bandpass filters with

center frequencies (CF) that are uniformly distributed

along a logarithmic frequency axis, over 5.3 octaves (24

filters/octave). The CF of the filter at location x on the

logarithmic frequency axis (in octaves) is defined as

fx = f02
x(Hz) (1)

where f0 is a reference frequency of 1 kHz. This quan-

tity and frequency distribution of the filters proved to be

satisfactory for the discrimination of important acoustic

clues and for an appropriate reconstruction of speech sig-

nals [24]. As can be seen, these filters are not equally dis-

tributed in frequencies. Thus, for example, the first 71 co-

efficients correspond to the [0− 1200] Hz interval. Given

that for the present task the most useful information was

found in this frequency interval [16], only this range is

considered in this work. After applying this filter, the

outputs are transduced into auditory-nerve patterns using

a high-pass filter that represents the fluid-cilia coupling.

Then, it uses a sigmoid function of the channel activations

that represents the non-linear compression in the ionic

channels, and a low-pass filter that represents hair-cell

membrane leakage. Finally, the lateral inhibitory network

is approximated by a first-order derivative with respect to

the tonotopic (frequency) axis, which is then half-wave

rectified. The output at each frequency band is then ob-

tained by integrating this signal over a short window [25].

We propose a new set of features using this informa-

tion: the mean of the log-spectrum using the auditory

spectrogram (MLSa), defined as

Sa(k) =
1

N

N∑

n=1

log |a(n, k)|, (2)

where k is a frequency band, N is the number of frames

in the utterance and a(n, k) is the k-th coefficient ob-

tained by applying the auditory filter bank to the signal

in the frame n. The MLSa were computed using auditory

spectrograms calculated for windows of 25 ms without

overlapping.

Mean of the log-spectrum

The mean of the log-spectrum (MLS) coefficients were

used for comparison purposes and to evaluate its be-

haviour under noise conditions. These are defined using

the signal spectrogram as follow

S(k) =
1

N

N∑

n=1

log |v(n, k)|, (3)

where k is a frequency band, N is the number of frames

in the utterance and v(n, k) is the discrete Fourier trans-

form of the signal in the frame n. These were computed

using spectrograms from Hamming windows of 25 ms

with a 10 ms frame shift. The first 30 MLS coefficients,

corresponding to lower frequencies (0 − 1200 Hz), were

considered as in [16].

The principal component analysis (PCA) is a widely-

known technique for dimensionality reduction [26] and it

was used in the context of emotion recognition [7]. This

analysis allows to obtain vectors linearly uncorrelated,

using an orthogonal transformation. These orthogonal

vectors, called principal components, are oriented sub-

sequently in the directions where the variance is greater.

In this work, PCA is used to reduce the dimensionality of

the data extracted from MLS and MLSa.

Mel frequency cepstral coefficients

This parameterisation, widely-known in emotion recog-

nition, is included as baseline [7, 6, 11]. For every emo-

tional utterance, the first 12 MFCC were calculated us-

ing Hamming windows of 25 ms with a 10 ms frame

shift. The parameterisation was calculated using the Hid-

den Markov Models Toolkit [27]. After that, similarly to

(2) and (3), the mean of each MFCC coefficient was com-

puted along the utterance.

Incorporation of prosodic features

The use of prosodic features in emotion recognition has

already been studied and discussed extensively [8, 14,

28]. As in almost all works, here the classic methods to

calculate Energy and pitch (F0) along the sentence were

used [29]. In this work, the mean and standard deviation

of pitch and energy over the whole utterances were used,

because they were the most useful in previous work [16].si
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Table 1: Classification rate for clean signals. Accuracy is computed with validation data.

Feature Vector 12MFCC 30MLS 12PCA-MLS 71MLSa 12PCA-MLSa

N
∗

H 70 60 45 20 100

Acc [%] 63.17 56.83 56.51 48.89 48.73

Feature Vector 12MFCC+P 30MLS+P 12PCA-MLS+P 71MLSa+P 12PCA-MLSa+P

N
∗

H 90 65 65 55 40

Acc [%] 65.71 59.37 59.21 56.35 66.19

Neural classifier

In this work, the standard MLP is used as classifier in all

the experiments because this is widely known technique

in emotion recognition [7, 14]. MLP is a class of arti-

ficial neural network and it consists of a set of process

units (simple perceptrons) arranged in layers [30]. In the

MLP, the nodes are fully connected between layers with-

out connections in the same layer. The input vector (fea-

ture vector) feeds into each of the first layer perceptrons,

the outputs of this layer feed into each of the second layer

perceptrons, and so on. The output of the neuron is the

weighted sum of the inputs plus the bias term, and its acti-

vation is a function (linear or nonlinear). For MLP classi-

fication experiments, Stuttgart Neural Network Simulator

[31] was used.

For every feature vector, a preliminar exploration to

reach the best configuration was performed. The ini-

tial network had one hidden layer and the exploration

(changing the number of neuronsNH in the hidden layer)

looked for the best number of neurons in the hidden layer

N∗

H
. In all cases, the output layer has seven neurons.

Network training was stopped when it reached the gen-

eralization point with test data [30], and so, its test rate

and trained network were kept. The trained network that

achieved the best test results (average over all partitions)

was evaluated on clean and noisy validation data.

3 Experiments and results

In this section, the robustness of the proposed feature ex-

traction methods is evaluated. Firstly, the experiments

with clean signals are presented. Then, the experiments

with noisy signals are discussed. The MLP classifiers

trained with clean signals were evaluated considering sig-

nals artificially contaminated with additive white noise1.

Noisy signals were generated using several signal-to-

noise ratios (SNR).

Features were arranged in vectors with and without

prosodic information. In order to present the experiments

and results in a more readable form, the following nota-

tion is introduced:

• 12MFCC: 12 mean MFCC coefficients;

• 30MLS: 30 MLS coefficients;

• 12PCA-MLS: 12 PCA coefficients extracted from

the 30 MLS coefficients;

• 71MLSa: 71 MLSa coefficients;

• 12PCA-MLSa: 12 PCA coefficients extracted from

the 71 MLSa coefficients.

1Using Matlab 7.8.0.347.

The aim of selecting 12 PCA coefficients was to keep the

same dimensionality that MFCC coefficients. The fea-

tures with prosodic values are pointed out using “+ P” in

notation.

For all the experiments, all the vectors were nor-

malised. Firstly, the maximum and the minimum values

(for each dimension) from the training set were extracted.

After that, these values were used to normalise the train-

ing vectors, clean validation vectors and all sets of noisy

validation vectors.

In order to avoid biased estimates of recognition error,

a cross-validation method was performed. In the classifi-

cation experiments, ten data partitions were generated by

randomly pick 80% for training. The remaining 20% was

left for validation. The training data in turn was randomly

separated in 60% for training and 20% for the generaliza-

tion test. This is the same setup defined in [16] and thus,

the results are directly comparable.

Emotional Speech Corpus

In this work we used a well-known acted database, the

EmoDB, [32] because it is freely accessible2 and it was

used in several studies [8, 16, 33]. The corpus, consist-

ing of 535 utterances, includes sentences performed un-

der six plain emotions, and sentences in neutral emotional

state. The distribution by emotion class is: Anger (127

utterances); Boredom (81 utterances); Disgust (46 utter-

ances); Fear (69 utterances); Joy (71 utterances); Sadness

(62 utterances); Neutral (79 utterances). The unbalanced

distribution of classes is important (24% of the set is rep-

resented by anger class). Almost all works did not ad-

dress this issue, obtaining biased and hardly comparable

results. In the same way as in [16], the dataset was bal-

anced by equalizing the size of the classes. The same

number of samples for all classes in each partition were

randomly selected (46 x 7 = 322 utterances). Each utter-

ance is an unique training or test pattern in a data parti-

tion, its transcription is ignored and its label is the name

of the emotional class to which it belongs.

3.1 Experiments without noise

The different features without noise were evaluated to set

up a reference. We decided to evaluate the different fea-

ture vectors with and without prosodic values, then their

usefulness in complementing the other features can be

analised. Table 1 shows the classification accuracy for

all considered features, while the rows N∗

H
exhibit the

2http://pascal.kgw.tu-berlin.de/emodb/.
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Table 2: Performance of features under noise conditions. Accuracy in [%].

SNR ∞ dB 40 dB 35 dB 30 dB 25 dB 20 dB 15 dB 10 dB 5 dB 0 dB

12MFCC 63.17 34.29 30.16 28.41 24.60 23.02 20.00 17.62 16.51 16.03

30MLS 56.83 57.94 57.46 53.02 47.30 36.19 30.32 23.65 18.89 16.03

12PCA-MLS 56.51 56.03 54.60 53.81 50.79 44.60 33.49 26.19 20.48 16.51

71MLSa 48.89 49.05 47.30 45.08 41.59 34.92 28.09 23.81 20.79 16.99

12PCA-MLSa 48.73 49.68 49.52 47.94 45.40 41.75 34.13 29.84 26.03 20.79

Table 3: Robust classification for features with prosody. Accuracy in [%].

SNR ∞ dB 40 dB 35 dB 30 dB 25 dB 20 dB 15 dB 10 dB 5 dB 0 dB

12MFCC+P 65.71 39.68 36.35 33.49 30.00 26.35 25.08 22.54 20.00 18.57

30MLS+P 59.37 58.89 58.89 52.07 46.67 40.00 30.63 23.18 20.16 18.41

12PCA-MLS+P 59.21 56.67 57.14 53.81 49.05 43.97 34.13 26.51 23.33 19.84

71MLSa+P 56.35 53.97 51.90 50.32 46.98 41.43 33.18 26.51 22.07 20.48

12PCA-MLSa+P 66.19 42.06 42.06 42.22 40.64 38.41 32.06 26.35 24.60 22.70

number of neurons in the hidden layer for the best con-

figuration. As can be seen, results for 12MFCC are good,

showing a significant improvement when prosodic values

are used. For vectors based on MLS a satisfactory per-

formance is obtained, and better results are reached when

prosodic information is added. In these results can be no-

ticed that the PCA is very useful for dimensional reduc-

tion of MLS features. The 30MLS and the 12PCA-MLS

achieve a similar result (with and without prosody). Bio-

inspired features (MLSa), as much 71MLSa as 12PCA-

MLSa, exhibit a poorer and similar behaviour. However,

once more the PCA was good to reduce dimensionality

retaining discriminative information. Moreover, when

prosodic information was used, the accuracy was im-

proved more than 8 % (71MLSa+P). The best accuracy

is reached with 12PCA-MLSa+P, improving almost 18

% (absolute) the classification rate achieved with 12PCA-

MLSa. It points out promising results when the novel

MLSa information and prosodic values are used together

for the emotion recognition task. Furthermore, similar re-

sults were reached using PCA for dimensional reduction,

keeping (at the most) the same dimensionality of MFCC.

3.2 Experiments with noise

For experiments with noise, we used the MLPs trained

with clean signals. We selected the MLPs that have ob-

tained the highest scores (in each case, with and without

prosody).

In Table 2, the classification results using noisy sig-

nals are presented. In the first row, signal-to-noise ratios

are indicated and the remaining rows show the perfor-

mance of every feature vector. The best performances

are emphasized in bold. Similar to previous works, the

12MFCC works fine with clean signals but its behaviour

degrades abruptly in noise presence, approximately 29 %

from ∞ dB to 40 dB. As can be observed in the table,

the sets of proposed features reached a noticeable im-

provement in classification rates, respect to MFCC. For

example, it can be perceived an increment of more than

23 % (from 34.29 to 57.94) with 40 dB and an increment

of more than 27 % (from 30.16 to 57.46) with 35 dB.

In 20 − 30 dB range, the PCA extracted from MLS is

the best to reduce noise effects, whereas it allows a di-

mensional reduction of 60 % (from 30 to 12 coefficients).

Therefore, the improvement is greater than 21% (from

23.02 to 44.60, from 24.60 to 50.79 and from 28.41 to

53.81) in 20− 30 dB range. For low signal-to-noise ratio

([5 − 15] dB), the PCA extracted from MLSa obtained a

classification enhancement about 10 % and more (from

16.51 to 26.03, from 17.62 to 29.84, and from 20.00 to

34.13). Meanwhile its improvement for 0 dB is 4.73 %.

The proposed features based on MLS exhibit the best

performances in conditions of high SNR (up to 20 dB)

whereas the bio-inspired parameterisation shows a robust

behaviour against high presence of noise. It can be ob-

served significant improvements when the dimensional-

ity of features is reduced using PCA. These results would

suggest that these representations allow to keep in a sep-

arate manner the signal information and the noise. More-

over, the relevant information can be obtained even in the

presence of higher levels of noise using the nonlinear fil-

ter bank of the auditory model.

In Table 3, the results for the feature vectors with

prosodic information are presented. As it can be observed

in the second column, prosodic information improves the

classification for all representations using clean signals

(more than 17% in 12PCA-MLSa case). However, this

is not always true under noisy conditions and it could be

attributable to the non-robust method used for prosodic

computation. In spite of this, a similar analysis to the

previous cases can be done and results show an equiva-

lent behaviour. In this way, the parameterisations based

on MLS obtained the best performances for high SNR

whereas the parameterisations extracted from the bio-

inspired information presents a robust behaviour against

high presence of noise. Once again, the PCA represents

an important alternative to provide robust behaviour and

a lower dimensionality in the input vectors for the clas-si
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(a) Improvements relative to 12MFCC, without prosody.
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Figure 1: Improvement of classification rate.

sifier. Here, it can be noticed an absolute improvement

about 20 % in 25− 40 dB range and a relative classifica-

tion improvement about 22 % for 0 dB.

Additional information is showed graphically in Fig-

ures 1(a) and 1(b). In both can be observed the rel-

ative improvement of classification rate with regard to

12MFCC and 12MFCC + P, respectively. As can be no-

ticed in Figure 1(a), there are significant improvements

in almost all cases. For example, the proposed features

improved the 12MFCC more than 40 % up to 15 dB,

reaching a maximum over 100 % of relative improve-

ment. For low signal-to-noise ratios ([5 − 15] dB), a rel-

ative classification enhancement about 60 − 70 % is ob-

tained. Although performance for all features decay to 0
dB, 12PCA-MLSa obtains 30 % of relative improvement

(from 16.03 to 20.79) with 0 dB SNR. As was mentioned

above, Figure 1(b) presents the results for feature vectors

with prosody. It is important to note that the incorpora-

tion of prosodic information is more beneficial to the ref-

erence features (12MFCC + P). The proposed features

show a superior performance, although the gap of rela-

tive improvement decreases with respect to the previous

figure. In both figures can be observed that proposed pa-

rameterisations have evidenced a good performance un-

der noisy conditions.

As discussed in previous work, the most relevant infor-

mation for emotion recognition was found between 0 and

1200 Hz. Given the new results, the good behaviour can

be attributable to the better resolution of the filter bank

of the bio-inspired model in this frequency range, that

imitates frequency selectivity of the basilar membrane.

On the other hand, it also may be due to the filters and

approximations that simulate the remainder behaviour of

the early auditory system. Moreover, the PCA keeps rele-

vant characteristics of emotional signals disregarding the

noise information while it perform a dimensional reduc-

tion of the input vector.

4 Conclusions

In this paper we introduced a new set of bio-inspired fea-

tures (MLSa) based on a time-frequency analysis com-

puted with an auditory model. The MLSa, MLS and

others lower dimensional vectors (computing through the

PCA) from the proposed features have been used in emo-

tion classification with noisy signals using MLP.

The MLS and MLSa features, and these combined with

prosody, improved the accuracy under additive white

noise conditions. Furthermore, PCA coefficients ex-

tracted from MLS and MLSa allowed to improve the re-

sults while low dimensional data is used. As in previous

works, the MFCC showed a good performance with clean

signals but the proposed features always improved the ac-

curacy under noise conditions. Features based on spectral

information were very good for high SNR, whereas fea-

tures computed using the auditory model were more ro-

bust for low SNR.

In future work the method will be tested under

noise condition using matched/mismatched/multi condi-

tion training. In addition, the proposed parameterisation

could be used to improve the performance of hierarchical

classifiers. Furthermore, we will explore the performance

of classifiers with another type of non-stationary noises.
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