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Abstract—Active shape models is an adaptive shape-matching
technique that has been used for locating facial features in images.
However, when a number of features is extracted for each land-
mark point, distortions caused by noise or illumination, and the
dimensionality of the final representation, have a negative impact
in the performance of a classifier. In this paper, an evolutionary
wrapper for selection of the most relevant set of features for
face recognition is presented. The proposed strategy explores
the space of multiple feasible selections using genetic algorithms.
Experimental results show that the proposed approach allows
to improve the classification performance in comparison with
another enhanced method and a state of the art face recognition
approach.

Index Terms—wrappers, evolutionary algorithms, feature se-
lection, face recognition.

I. INTRODUCTION

The purpose of a face recognition system is to auto-

matically identify or verify an individual identity using a

digital image [1]. Face recognition has received significant

attention in biometrics, motivating important developments in

several research areas such as image processing and artificial

intelligence. In face recognition we classify a given face in

K different face classes. This is usually done by comparing

the features extracted from the image with those extracted

from a database of face images [2]. This task remains a

challenge because the unavoidable changes in expression, pose,

and illumination, which introduce variability in the extracted

features with respect to the training data [3].

In face modeling with Active Shape Models (ASM), a

number of facial points are selected from an input image,

but only some of these points are useful for characterizing

the face, while the others have small contributions or are

noisy. As the training of ASM converges towards salient

edges, if these edges are distorted by noise or illumination,

erroneous feature matchings might arise [4]. Despite recent

improvements made to the ASM techniques, the matching

errors are usually high at some face locations [5], [6]. Even

after some new implementations that improve the landmark

location accuracy, the detection of facial features with varying

pose and illumination is still a challenge [7], [3]. Moreover,

once a set of face points is selected by the ASM method,

a number of features describing each face location need to

be extracted. Then, the resulting feature vectors representing

the faces are usually of high dimensionality, which makes the

task of the classifier more difficult [8]. Also, large feature

sets are prone to overfitting and, hence, to achieve poor

generalization performance [9]. In [4], the performance of

ASM was improved by weighting the features according to a

method based on adjusted mutual information. As the authors

shown, this criterion allowed the selection of the more relevant

landmark points, in order to improve the face classification

results. However, the flexibility provided by the full set of

features obtained with ASM has not yet been fully exploited

by means of feature selection techniques, in order to reduce the

dimensionality of the representation while improving classifi-

cation results. On the other hand, significant progress has been

made with the application of different artificial intelligence

techniques for feature selection. In particular, many works rely

on evolutionary algorithms for feature subset optimization [10],

[11], and for the search of optimal representations [12], [13],

[14].

This work presents a wrapper for selecting the most relevant

features for face recognition. In order to explore the space

of feasible solutions we use a genetic algorithm, which is

guided by the accuracy obtained in a face classification task.

Two different strategies for the representation of the candidate

solutions are proposed and compared, and the generalization

performance of the feature subset selection is assessed by an

independent data set.

The organization of this paper is as follows. First a brief

description of the ASM is given in Section II-1, and next

our wrapper method for the selection of relevant features for

face images is presented in Section II-A. Section III describes

the experiments and discuss the results on face classification.

Finally, the general conclusions and future work proposal are

presented.

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. D

. V
ig

no
lo

, D
. H

. M
ilo

ne
, J

. S
ch

ar
ca

ns
ki

 &
 C

. B
eh

ai
ne

; "
A

n 
E

vo
lu

tio
na

ry
 W

ra
pp

er
 f

or
 F

ea
tu

re
 S

el
ec

tio
n 

in
 F

ac
e 

R
ec

og
ni

tio
n 

A
pp

lic
at

io
ns

"
20

12
 I

E
E

E
 I

nt
er

na
tio

na
l C

on
fe

re
nc

e 
on

 S
ys

te
m

s,
 M

an
, a

nd
 C

yb
er

ne
tic

s 
(I

E
E

E
 S

M
C

 2
01

2)
, 2

01
2.



Fig. 1. Illustration of the landmark points used to model a face (a) and their
location on an image (b) [4].

II. WRAPPER FOR THE SELECTION OF FEATURES IN FACE

IMAGES

1) Facial features based on Active Shape Models: ASMs

are point distribution models which iteratively deform to fit

the shape of an example of the object [5]. The shapes are

constrained by these point distribution models (PDM) to vary

only according to a training set of examples. The shape of

an object is represented by a set of points and the algorithm

matches the model to a new image. In the case of face

recognition, the ASM is trained on a set of training face

images and N PDM points are used to represent the shape

of each face within a face class (Fig. 1(a)). However, the

location of the points of a PDM, the landmark points, on face

images can have location or matching errors (Fig. 1(b)) [4].

Then, the faces of each class k = 1, ..., K will be represented

by N landmark points Sk,ǫ = pi(xi + ǫxi
, yi + ǫyi

)
k
, where

i = 1, ..., N , (xi, yi) are the coordinates of the landmark

point pi and (ǫxi
, ǫyi

) are the respective location errors. Each

facial characteristic that is considered relevant (e.g. eye centers,

mouth contours, etc.) is represented by a landmark pi, and

the particularities of that point in the image are described by

Q features (e.g. chrominance, texture, etc.). The features for

landmark pi will be denoted {Fj,i}, with j = 1, ..., Q.

Each one of the N landmark points pi, is described by the

mean and the variance of the measurements of every feature

j, µFj,i
and σ2

Fj,i
, respectively. These are computed for all

features Fm
j,i, with m = 1, . . . , M , where M is the number of

training image samples:

µFj,i
=

1

w2

w
∑

r=1

w
∑

q=1

µj,i(r, q), (1)

σ2

Fj,i
= max

r,q∈W

{

σ2

j,i(r, q)
}

. (2)

Here µj,i(r, q) = 1

M

∑M

m=1
Fm

j,i(r, q), σ2

j,i(r, q) =
1

M

∑M

m=1

(

Fm
j,i(r, q) − µj,i(r, q)

)2

and (r, q) are the pixel

coordinates within the window W = w × w, centered at the

landmark point pi, and calculated for the jth image feature [4].

In order to consider the feature variability within the w × w

vicinity of landmark pi, the window variance was used in

Eq. 2. We assume that the probability density of the location

Fig. 2. General scheme of the proposed wrapper method.

errors is approximately Gaussian [15]. Here w = 2 max {σǫ}
is adopted, where σǫ is the standard deviation of the landmark

location errors, measured during ASM training.

Note that the face detector by Demirel et al. [16] is used in

this work. Further details about the location of landmark points

in face images and the set of features used can be found in

[4].

A. Evolutionary Wrapper

Genetic algorithms (GA) are meta-heuristic optimization

methods inspired by the process of natural evolution [17]. A

typical GA consists of three different operators: selection, vari-

ation and replacement [18]. Selection simulates the advantage

of the fittest individuals in nature, giving them more chance to

reproduce. The variation operators combine information from

different individuals and also maintain population diversity.

The chromosome of an individual within the population, stores

the information of a possible solution, and its fitness is mea-

sured by a problem specific objective function. The selected

parents are mated to generate the offspring, which replaces the

population, and the cycle is repeated until a desired termination

criterion is reached [19].

The proposed wrapper consists on a classical GA with

binary chromosomes, in which every individual represents a

different selection of the facial features extracted from an input

image by means of ASM. In this GA, the objective function

needs to evaluate the image feature set suggested by a given

chromosome, providing a measure of the separability obtained

for the face classes. Therefore, a classifier algorithm is used

as fitness function, so that the success classification rate is

assigned as fitness value for each evaluated individual. The

scheme of the proposed wrapper method is shown in Fig. 2.

The selection of individuals is done considering the set

of coefficients represented by each chromosome, using the

roulette wheel selection scheme. The chromosomes which al-

low better classification results are assigned higher probability.

When a particular individual is evaluated, a set of images is

classified in order to estimate the discrimination capability of

the given configuration. In order to do this, each feature vector

is first reduced to the subset of coefficients indicated by the

chromosome.

For guiding the search of the GA, maintaining a low com-

putational cost, a simple classifier algorithm was considered as

objective function. This classifier assigns the class to which its

mean is closer to the feature vector of test image. The mean
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is first computed from the feature vectors of the images in the

tranning set, and the distance used is based on the Euclidean

norm. Then, once an optimized solution was found, a classifier

based on the k-nearest neighbors (KNN) rule [8] was used in

order to evaluate its classification performance on the test set.

The GA uses the classic mutation and one-point crossover,

and an elitist replacement strategy was applied in order to

maintain the best individual to the next generation. As the

stopping criteria for the optimization, we considered that

the GA had converged after 100 generations without fitness

improvement, or when the maximum of 500 generations was

reached.

Based on [4], 68 ASM landmark points were considered,

and the two color chrominance channels Cr and Cb from the

YCbCr color space were used as the features for describing

each landmark point. This means, that the dimensionality of

a complete feature vector is N × Q = 136. Regarding the

codification of every individual within the GA, we considered

two different alternatives, involving search spaces of signifi-

cantly different sizes. In the first case, each gene represents a

particular feature, independently from the landmark associated

to it. Thus, in this approach the chromosome size is 136,
and the two features associated to a given landmark point

can be selected independently of one another. In the second

alternative, each gene in a chromosome represents one of

the ASM landmark points, so its value indicates whether the

corresponding pair of coefficients is selected or not (the chro-

mosome size in this case is reduced to 68). As no restriction

applies for the combinations of coefficients, in both alternatives

the GA initialization consists on a random settling of the genes

in the chromosomes.

III. RESULTS AND DISCUSSION

For the experiments, a set of images from the Essex

Face Database was used [20], containing significant individual

diversity and considerable expression changes. In order to

compare results with previous works, 100 face classes were

used, 5 images per class were randomly selected for training

and other 15 images per class were separated for the test set.

As mentioned in Section II-A, the ASM algorithm was applied

to obtain 68 landmark points, using a window of 11 pixels.

In order to estimate the generalization performance of the

optimized feature subsets, the data from the test set was not

used for the evaluation of the fitness during the optimization. In

this manner, after the optimized feature subsets were obtained,

their classification performance was evaluated with a different

data set that was not involved in the feature selection process.

This final evaluation was performed with the described test

data set and employing a KNN classifier (with k = 1). We

ran many optimization experiments considering different al-

ternatives and combination of parameters, and here we discuss

those that we found most relevant.

In the first experiment, referred to as GA-136+MEAN,

we used a chromosome size 136 (as described before). We

used the classifier based on the distances to the mean of

each class, which was evaluated on the training data set

in order to compute the fitness of every candidate solution.

For the GA, the population size was set on 30 individuals

while crossover and mutation probabilities were set to 0.8 and

0.025, respectively. The optimization converged to a set of

62 features, which achieved a performance of 97.2% with the

KNN classifier on the test data set. Fig. 3 shows a plot of

the fitness value against the number of generations for this

experiment, allowing to appreciate the fast convergence of the

GA.

For further analysis, in order to obtain better generalization

capability, we decided to enlarge the training data set using

the Smoothed Bootstrap Resampling (SBR) method [21]. This

method is used when data is not enough to ensure statistically

significance, and the new samples are created by adding

noise to their feature values. Specifically, we used zero mean

Gaussian noise with σ = 0.1, since this value allowed to

preserve the variance of the original tranning data. Therefore,

in the second experiment (GA-136+MEAN+SBR), we used 20
examples for each class in order to evaluate the classification

performance during the optimization. The GA converged to a

solution consisting of 68 features, which achieved 97.4% suc-

cess rate on the test data. As it can be noticed, the resampling

of the training data allowed to achieve better generalization.

Despite that, in this case, a larger number of features were

selected. In Fig. 4 the fitness value against the number of

generations is shown, where it can be noticed that the GA took

much more generations (220) to converge in this experiment.

As stated in Section II-A, in the third experiment we

reduced the length of the chromosomes to the number of

landmark points (68). So that, within the chromosome, the

selection of a given landmark point implies that the two

corresponding features are used. In this experiment, labeled

GA-68+MEAN+SBR, the GA converged to a more reduced

feature set of length 56, which allowed to obtain a classification
accuracy of 98.0% on the test data. This result suggests that

the reduction of the chromosome size produced a simpler

search space, allowing the GA to find a better solution. Fig.

5 shows a plot of the fitness value against the number of

generations for this experiment, where it can be appreciated

that the best solution was found after only 63 generations.

Also, by comparing to Fig. 4, it can be noticed that the

codification strategy with reduced chromosome size allowed

a faster convergence when using a resampled training data set.

Table I summarizes the results of the experiments described

above and compares the performances obtained by the opti-

mized subsets of features, with two different state of the art

approaches. The second column exhibit the classification accu-

racy achieved by the different methods on the test data set, the

third column shows the number of features involved, and the

last column displays the error reduction percent with respect

to the Enhanced ASM [4]. As it can be seen, all the optimized

representations obtained by means of the evolutionary wrapper

allowed better classification performance. It should be noticed

that they provided larger feature sets when compared to the

Enhanced ASM. However, the feature set provided by GA-
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Fig. 3. Convergence of experiment GA-136+MEAN.
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Fig. 4. Convergence of experiment GA-136+MEAN+SBR.

68+MEAN+SBR improves the accuracy of the enhanced ASM

in more than 4%, with only two more features.

In order to perform further performance analyses we

changed the 100-classes task into a binary classification task

and computed the ROC curve, following the methodology

presented in [22]. For this binary classification task we took

the 15 test patterns of a given class and labeled them as the

registered user class, and other 15 test patterns were taken

randomly from the other 99 classes in order to compose the

unregistered user class. This was repeated for each of the 100
classes and the classification results obtained were averaged.

As the unregistered users are unknown, the tranning patterns

corresponding to this class were not used in the classification,

but only the patterns corresponding to the registered user

class. Then, the rule used to classify the test samples was

based on the euclidean distance to the tranning samples of the

registered user class. The rule was as follows: if the distance

from the test pattern to the tranning patterns was less than the

threshold, δ, it was labeled as registered; otherwise, the sample

was classified as unregistered. Fig. 6 shows the ROC curves

constructed with the true positive rate (TPR) and false positive

rate (FPR) indexes obtained from the average of the results for

the 100 binary classifications. The classification performance

obtained with feature set GA-68+MEAN+SBR (solid line), and

20 40 60 80 100 120 140 160 180 200
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Fig. 5. Convergence of experiment GA-68+MEAN+SBR.

TABLE I
CLASSIFICATION RESULTS OBTAINED FOR THE TEST DATA

Method Accuracy # of features Error reduction

DFBFR [16] 93.73% 2× 1002 -
Enhanced ASM [4] 95.33% 54 (reference)

GA-136+MEAN 96.93% 62 34.26%
GA-136+MEAN+SBR 97.40% 68 44.33%
GA-68+MEAN+SBR 98.00% 56 57.17%

the complete feature set (dashed line), for different values of

threshold δ (varying from 0 to 120) is shown. High values

of TPR indicate that most of the test samples that belong

to the registered class are classified as such. Besides, high

values of FPR occur when unregistered samples are labeled as

registered. As can be seen from the figure, the highest TPR

implies that a FPR different from zero needs to be tolerated.

It is important to note that our optimized feature set allows

to improve the results of the complete feature set, obtaining

higher TPR values without increase of the FPR.

IV. CONCLUSIONS AND FUTURE WORK

In this work, two different wrapper optimization strate-

gies have been proposed, exploiting the benefits provided by

evolutionary computation techniques, in order to search for

an optimal feature set with application to face recognition.

The results, obtained in a classification task using a well

known data set, shown that the optimized feature set provides

improved accuracy in comparison to other state of the art

approaches. This means that the task of a classifier is simplified

when using the optimized representation, due to a better class

separation in the space of selected features. Therefore, the

proposed strategy provides a valid alternative for the selection

of relevant features for face recognition.

In future work we would consider the use of a multi-

objective GA [23], in order to minimize the number of relevant

features while maximizing the classification rate. Also, we

would consider the use of other heuristic search methods, such

as particle swarm [24], [25] and scatter search [26]. Besides,

the use of a larger data set with increased variability would

be considered for future experiments in order to prove the

robustness of the method.
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Fig. 6. ROC curve generated by varying the threshold in the binary
classification task. The solid line corresponds to the optimized feature set
and the dashed line to the complete feature set.
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