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Abstract

In the biological domain, clustering is based on the assumption that genes
or metabolites involved in a common biological process are co-expressed / co-
accumulated under the control of the same regulatory network. Thus, a detailed
inspection of the grouped patterns to verify their memberships to well-known
metabolic pathways could be very useful for the evaluation of clusters from a bi-
ological perspective. The aim of this work is to propose a novel approach for the
comparison of clustering methods over metabolic datasets, including prior biolog-
ical knowledge about the relation among elements that constitute the clusters. A
way of measuring the biological significance of clustering solutions is proposed.
This is addressed from the perspective of the usefulness of the clusters to iden-
tify those patterns that change in coordination and belong to common pathways
of metabolic regulation. The measure summarizes in a compact way the objective
analysis of clustering methods, which respects coherence and clusters distribution.
It also evaluates the biological internal connections of such clusters considering
common pathways. The proposed measure was tested in two biological databases
using three clustering methods.

1 Introduction
A systems biology approach needs the integration and mining of large biological datasets
to discover hidden relationships in such data. Starting from the analysis of post-
genomic data, the discovery of novel biological knowledge relies mainly on the use of
unsupervised data mining methods, in particular clustering techniques. In fact, much
of the recent research in bioinformatics has been focused on the adaptation and appli-
cation of classical clustering algorithms, such as hierarchical clustering and k-means
[1, 2, 3], as well as on more recent approaches based on computational intelligence
models [4, 5, 6, 7].

To avoid inconsistencies in the results, any clustering solution should be validated.
However, after the application of an unsupervised mining technique, it is rather difficult
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to validate the results obtained. A set of objective measures can be used to quantify the
quality of the clusters obtained by the different available methods [8]. Nevertheless, it
is very difficult to clearly indicate one as providing interesting clusters to be analyzed
by biologists in order to discover new relationships among data. It is common practice
to validate the returned groupings by a clustering algorithm through manual analysis
and visual inspection, according to a-priori biological knowledge.

In the biological domain, clustering is implemented under the guilt-by-association
principle [9], that is to say, the assumption that genes involved in a biological process
are co-expressed ( behave similarly) under the control of the same regulatory network
[10]. If an unknown gene is co-expressed with well-known genes in a biological pro-
cess, it is assumed that this unknown gene might be involved in the same metabolic
pathway. Similar reasoning can be applied to metabolites. Thus, from this perspec-
tive, it could be useful to perform a detailed inspection of the patterns inside a cluster
to determine their membership to well-known metabolic pathways. Those clusters that
group metabolites and transcripts provide evidence about the metabolic pathways asso-
ciated with certain transcripts. That is to say, in the same analysis, the genes of interest,
as well as their effect on the metabolites, are determined. This pathway-based approach
to identify metabolic traits results in more biological information (hypothesis) that has
to be tested through the design of biological experiments to confirm the results [11].

Looking at the analysis made by biologists when they evaluate the elements that
are part of a cluster, coherent groupings are verified, as well as their belonging to well-
known metabolic pathways. Those elements are important to qualify a cluster. There-
fore, this work presents a new approach for evaluating both coherence and biological
significance of the clusters found by clustering methods over a biological dataset. A
new measure, which assesses, in a compact way, the kind of cluster analysis often made
by biologists, is here proposed.

Several computational cluster validation techniques are available in the general data
mining literature, but they have not been widely used in bioinformatics [12]. In order to
choose an adequate clustering technique for a biological dataset, it is common practice
to compare several methods through objective clustering measurements, which indicate
the quality of the clusters found. A good clustering solution should tend to perform
reasonably well under multiple measures. Also, functional coherence of clusters can
be used to identify biologically meaningful clusters, compare clustering algorithms and
identify biological pathways associated with the biological process under investigation
[13].

In fact, there are several recent proposals in the literature for clustering validation
obtained from biological datasets [14]. The work reported in [15], for example, pro-
poses a statistical method for assessing a clustering solution according to prior biolog-
ical knowledge. The method is based on projecting vectors of biological attributes of
the clustered elements, such that the ratio of between-groups and within-group variance
estimators is maximum. The work reported in [13] presents a framework for integrat-
ing knowledge-based functional categories into the cluster analysis of gene expression
data. Given a hierarchical clustering of genes based on their expression profiles and a
set of functional categories (for example, gene ontologies), a score for a gene is calcu-
lated by correlating the clustering structure with functional categories of interest. The
proposal in [16] consists of two validation measures: one measuring the statistical sta-
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bility of the clusters produced and the other one representing their biological functional
consistency.

The incorporation of well-known gene functions into a new distance metric to form
the clusters with the aim of reducing the distance between genes if both share a com-
mon function is proposed in [17]. This is based on the fact that co-expressed genes are
likely to share the same biological function. Similarly, a very interesting figure of merit
(z-score), based on the information jointly held by the functional annotation and cluster
membership of genes, is proposed in [18]. This score is based on the premise that a
good clustering algorithm tends to bring genes of similar function together, where the
function is known. The clustering results are evaluated by examining the relationship
between the clusters produced and the known attributes (annotations) of the genes in
those clusters.

All of these proposals, however, mostly concentrate on enriching or evaluating clus-
ters according to well-known gene functions only. Since the datasets evaluated in this
study also have metabolites, they will not be included in the evaluation because it would
not be a fair comparison. Instead, in our work, the use of pathway information for as-
sessing the clusters allows the integration of both transcriptional data and metabolic
profiles for a more general evaluation. Furthermore, our approach takes into account
an analysis of the clustering methods regarding coherence and cluster distribution.

This paper is organized as follows. Section 2 provides a description of the dataset
used, the clustering methods and the standard measures used for unsupervised cluster-
ing comparison. Section 3 explains the new biologically inspired measure proposed
for the assessment of clusters. Section 4 presents a comparison of clustering meth-
ods through validity and biological analysis. Experimental results regarding the new
biologically inspired validity measure and their discussion can be found in Section 5.
Finally, the conclusions are presented in Section 6.

2 Material and methods

2.1 Datasets
In this work, the measures for the comparison of clustering methods were calculated
over two metabolic datasets described in this subsection. For the calculation of the
biological connectivity in the proposed new measure, we used the Kyoto Encyclopedia
of Genes and Genomes (KEGG)1 pathway database [19].

2.1.1 Solanum lycopersicum dataset

The first case study presented in this paper involves the analysis of metabolic and tran-
scriptional profiles from Introgression2 Lines (ILs) of Solanum lycopersicum. The ILs
harbor, in certain chromosome segments, introgressed portions of the wild Solanum

1http://www.genome.jp/kegg/pathway.html/
2Introgression: Infiltration of the genes of one species into the gene pool of another through the repeated

backcrossing of an interspecific hybrid with one of its parents.
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species (Solanum pennelli). The use of ILs allows the study and creation of new va-
rieties of such species by introducing exotic traits and thus constitutes a useful tool
in crop domestication and breeding [20, 21]. The interest in comparing the cultivated
Solanum lycopersicum with the different ILs lies on the fact that some wild Solanum
lycopersicum fruits have proven to be the source of several specific agronomic traits,
which could be used for the improvement of Solanum lycopersicum commercial lines.
After log-transforming the green/red ratio values over the entire dataset, genes whose
expression did not change significantly were discarded from further analysis. As a
result of the pre-processing and selection steps, 70 metabolites and 1159 genes were
selected [22]. Before the integration of these two datasets, the plus/minus sign of each
transcript/metabolite was reversed to obtain items negatively correlated to each other,
as suggested in [23, 24]. To find all possible relations3, the training set considered here
includes the original one as well as the inverted-sign versions of all the data samples.
Therefore, the final number of data patterns used to feed the clustering methods was
2458.

2.1.2 Arabidopsis thaliana dataset

The second biological dataset comprises primary metabolites and transcripts measured
in Arabidopsis thaliana leaves. The integrated analysis of these data is aimed to study
the effects of cold temperatures on circadian-regulated genes in this plant [25]. In
this study, we included metabolites and transcripts under light-dark cycles at two con-
trol temperatures (20◦C and 4◦C). Genes involved in diurnal cycle and cold-stress re-
sponses were selected for further studies. More details on how the data were processed,
filtered and normalized can be found in [25]. A total of 1549 genes and 51 metabolites
were used in the integrated analysis. As in the previous dataset, the plus/minus sign of
each data point was reversed and the inverted patterns were added to the training set,
resulting in a total of 3200 data patterns.

2.2 Clustering methods
This subsection presents the clustering methods used for the comparison. In this study,
we included a comprehensive evaluation of the clustering methods most widely and
most commonly used in computational biology research nowadays [3, 7, 26]. For all
the methods, we used the Euclidean distance to measure the distance between patterns
because it is the most available and widely used metric in most bioinformatics studies
[12, 16, 7].

The use of another distance/similarity could be possible; in fact, there are several
available measures [26]. For example, the correlation coefficient has been established
to be a suitable quantifier of pairwise gene coexpression. However, the correlation co-
efficient is good for linear dependence but not for nonlinear one. In fact, alternatives
such as that in [26] are being proposed nowadays to better capture the degree of co-
expression between a pair of genes with a similar temporal pattern. Nevertheless, it

3Direct relations between transcripts (t) and metabolites (m): ↑ t ↔↑ m (inverted-sign ↓ t ↔↓ m),
↑ t ↔↑ t (inverted-sign ↓ t ↔↓ t) and ↑m ↔↑m (inverted-sign ↓m ↔↓m). Cross relations: ↑ t ↔↓m
(inverted-sign ↓ t ↔↑m), ↑ t ↔↓ t (inverted-sign ↓ t ↔↑ t) and ↑m ↔↓m (inverted-sign ↓m ↔↑m).
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has been shown that no method can outperform the Euclidean distance for ratio-based
measurements (such as the ones involved in the datasets evaluated in this study) since
these types of data are log-transformed before clustering, which compresses the scale
of variation, and Euclidean distance has proven to be more robust than other metrics to
such processing [18].

The Gap Statistic [27] was used to select an appropriate number of clusters for the
comparisons among methods to show the application and use of the proposed mea-
sure. As stated in literature [7], this statistic is intended to estimate adequate cluster
numbers from a dataset. The Gap Statistic was calculated for k-means in a range that
varied between 2 and 600 clusters. These three top gap scores were selected for the
comparisons: k1 = 50, k2 = 200 and k3 = 450.

2.2.1 Hierarchical clustering (HC)

Hierarchical clustering (HC) is one of the simplest and most popular unsupervised
methods in post-genomic data analyses. It clusters data by forming a tree diagram or
dendrogram, which shows the relationships between samples according to proximity
matrices. The root node of the dendrogram represents the whole dataset, and each leaf
is regarded as a data point. The clusters are obtained by cutting the dendrogram at
different levels [8]. HC has three main variants: i) single linkage, also called nearest
neighbor, which uses the smallest distance between objects in two clusters to further
group them; ii) complete linkage, which uses the largest distance between objects; and
ii) average linkage, called un-weighted average distance, which uses the average dis-
tance between all pairs of objects in a pair of clusters. The HC algorithm was used in
this study in its popular average distance variant (named here HCa), since average link-
age is generally considered to be better than both single and complete linkage [18]. In
fact, the complete linkage version of HC has been tested as well, but due to the fact that
results are very similar to those obtained with average linkage, complete linkage was
not included in the comparisons. The single linkage version of HC was not included in
the study either, because 95% of the data were grouped in only one cluster. In fact, the
shortcomings and poor results of this method have been well-known for long [18].

2.2.2 K-means (KM)

K-means (KM) is one of the best-known and most popular clustering algorithms [28,
29, 30]. KM begins by selecting the desired number of k clusters and assigning cen-
troids to data points randomly chosen from the training set. At every iteration, data
points are classified by assigning them to the cluster with the closest centroid and then,
new cluster centroids are computed as the average of all the points belonging to each
cluster. This process continues until both the cluster centroids and the class assign-
ments no longer change. This technique inherently looks for compact and spherical
clusters. Due to the random initialization, 100 iterations of this algorithm were per-
formed and average results are reported.
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2.2.3 Self-organizing map (SOM)

Self-organizing maps (SOMs) were introduced by Kohonen [31]. They represent a spe-
cial class of neural networks that use competitive learning. They can represent com-
plex high-dimensional input patterns into a simpler low-dimensional discrete map with
prototype vectors that can be visualized in a two-dimensional lattice structure, while
preserving the proximity relationships of the original data as much as possible. Thus,
SOMs can be appropriate for cluster analysis when looking for underlying hidden pat-
terns in data. They have been recently proposed for the integration and visualization of
coordinated variations in transcriptomics and metabolomics data [22]. In this study, for
all configurations tested, the SOM map has been trained 100 epochs with the standard
batch training algorithm by using gaussian neighborhood functions, and it has been
initialized using the Principal Component Analysis [32].

2.3 Validation measures
In this subsection, the following notation is used: X is the dataset formed by xi data
samples; Ω is the set of samples that have been grouped in a cluster; and W is the set
of wj centroids of the clusters in Ω. We will call node to each of the k elements of the
clustering method. The term integration node will be used to refer to a node containing
different kinds of patterns: metabolites and transcripts.

A survey of computational cluster validation techniques and measures for biologi-
cal data is provided in [12], in which the following classification of internal4 objective
measures is proposed:

Type I: Compactness

It comprises validation measures assessing cluster compactness or homogeneity. Intr-
acluster variance is their most popular representative:

Cj =
1

|Ωj |
∑
∀xi∈Ωj

‖xi − wj‖2, (1)

where |.| stands for set cardinality. As a global measure of compactness, the average
of all clusters is calculated C = 1

k

∑
j Cj , where k is the number of clusters. Values

of C close to 0 indicate more compact clusters.

Type II: Separation

This group includes all those measures that quantify the degree of separation between
individual clusters. Such separation can be evaluated by measuring mean, minimum

4Internal measures evaluate the clustering solutions based on clustering results and the classified dataset.
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and maximum Euclidean distance among cluster centroids

S =
2

k2 − k

k∑
i=1

k∑
j=i+1

‖wi − wj‖2, (2)

Sm = min
0<i6=j≤k

{‖wi − wj‖2} , (3)

SM = max
0<i6=j≤k

{‖wi − wj‖2} , (4)

where S close to 0 indicates closer clusters.

Type III: Combined

They are a combination of the two previous types of measures. They combine the
effects of opposing trends. For example, while compactness improves according to the
number of clusters, the distance between them tends to deteriorate.

The first combined measurement used in this work is the internal cluster dispersion
rate of the final partition, defined as

Υ = 1−

∑k
j=1

∥∥∥wj −
(

1
N

∑N
`=1 x`

)∥∥∥
2∑N

i=1

∥∥∥xi −
(

1
N

∑N
`=1 x`

)∥∥∥
2

 . (5)

In this equation, the numerator corresponds to the sum of the distances among the cen-
troids and the overall sample mean vector; the denominator is the sum of the distances
between each pattern and the overall sample mean vector. The smaller the value of Υ,
the smaller the intraclass cluster dispersion [33].

The Davies-Bouldin index [34] is a popular metric for evaluating clustering algo-
rithms. It is defined as

DB =
1

k

k∑
i=1

max
j 6=i

(
Ci + Cj

‖wi − wj‖2

)
. (6)

This index is a function of the ratio of the sum of within-cluster scatter to between-
cluster separation. This is an indication of cluster overlap; therefore, DB close to 0
indicates that the clusters are compact and far from each other.

The Dunn Validity Index [35] combines dissimilarity between clusters and their
diameters. It is based on the idea of identifying cluster sets that are compact and well
separated. It measures inter-cluster distances (separation) over intra-cluster distances
(compactness). This index is defined as:

D =

min
0<m6=n≤k

 min
∀xi∈Ωm
∀xj∈Ωn

{
‖xi − xj‖2

}
max

0<m≤k
max

∀xi,xj∈Ωm

{
‖xi − xj‖2

} . (7)
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If a dataset contains well-separated clusters, the distances among them are usually large
and their diameter is expected to be small. Therefore, a larger D value means better
cluster configuration.

It should be noticed that due to the fact that the last combined measures are not
linear, they are very sensitive to outliers. If a data point is located farther away from
the dataset center due to the non-linear max/min selection, it will have a large impact
on the measurement result.

3 Global measure for linked clustering
Each of the validation measures presented above evaluates different aspects of a clus-
tering solution separately, and based only on the raw data. None of them uses explicit
information from the domain of application to evaluate the clusters found. For exam-
ple, for the data used in this study, the internal measures presented do not evaluate the
differences among the solutions found from a biological point of view. Therefore, a
way of measuring the biological relevance of the clusters found might be useful, since
unsupervised clustering may produce clusters that are useless.

On the one hand, once clusters are found on a dataset, biologists perform a manual
examination of the clusters obtained searching for groups that would be useful for
inferring new biological knowledge [36]. If the number and size of the clusters is high,
this task might be very difficult and time-consuming. Thus, a solution that provides
small and cohesive groupings should be more desirable. On the other hand, a cluster
solution should be robust and stable to, for example, data perturbation or the number
of clusters used [8]. A particular kind of data perturbation is the change of sign of the
data samples, as explained at the end of Section 2.1.1, which could give biologists more
clues for the identification of new functions from inverse correlations. If an object is
clustered together with other similar objects, when the sign of all of these objects is
changed they should continue being grouped together. In other words, the normal
and inverted-sign versions of a data point should have the same behavior. A coherent
grouping of these original and inverted-sign data is to be expected for a good clustering
solution.

Moreover, and as stated before, it is common practice in biology to validate a
clustering solution obtained by a clustering algorithm according to a-priori biological
knowledge. For example, it is an established fact that two genes expressed simultane-
ously have a high chance of sharing common biological pathways. Therefore, under
the assumption that genes involved in a biological process behave in a similar way un-
der the same biological process, each of the objects that are part of a cluster have to be
analyzed in detail to determine their membership to well-known metabolic pathways.
In fact, the study of such similarity patterns is a significant problem to be dealt with
nowadays [26]. This way, this pathway-based approach may help in the elucidation of
the functions of new genes.

All of these elements are important to qualify a cluster. This work presents a new
measure that assesses, in a compact way, the elements aforementioned. Furthermore, it
includes an evaluation of clusters from the viewpoint of their biological meaning. The
new type of measure is defined in the following way:
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Type IV: Combined biological assessment

To define it, we need the following three factors:

1. Clustering homogeneity:

Ȟ =
1 + medm {|Ωm|}

maxm {|Ωm|}
,

where the numerator counts the median of the number of elements in the clusters
and the denominator is the maximum number of elements in the clusters. The
constant value 1 is added to the numerator because this factor will be added along
with the others in logarithmic scale, and this avoids having log(0) when there is
an empty cluster.

Ȟ is a measure of the flatness of the distribution of patterns along clusters. For
the analysis of their possible biological relations, it is preferable to have many
small clusters than few large ones (with many data points). See Section 4.1 for a
discussion of this point.

2. Grouping coherence:

Γ =
1

|X|
∑
i

ε(−xi)

( |Ω(i)| −Θ(−i)

|Ω(i)|

)
,

where Ω(i) is the node in which the pattern i is grouped; Θ(−i) is the number of
misplaced inverted-patterns grouped in the node where −xi is grouped; and the
indicator ε(−xi) is 1 only when −xi /∈ Ω(i).

This factor indicates if the data sample xi has been coherently grouped when
having an inverted value. That is to say, the normal and inverted-sign versions
of a data point should have the same behavior. For example, let us suppose xi

has been grouped together with xj and xk. If the sign of each data point in the
dataset is changed, one should expect that −xi would be grouped together with
−xj and −xk. If this is the case, Θ(−i) = 0. If not, Θ(−i) counts how many of
the original data points that were grouped together with xi are not grouped now
with −xi. See Section 4.2.1 for an example of a detailed analysis of coherence
in a real dataset.

3. Internal connectivity:

P =
1

k

∑
m

pm
pm∗

,

where
pm = 1 +

∑
i∈Ωm

∑
j∈Ωm,j 6=i

ρij

is the number of common pathways among patterns grouped in cluster m, with
ρij the number of pathways that contain patterns i and j, and

pm∗ = 1 +
∑
i∈Ωm

∑
j 6=i

ρij
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is the number of all the possible shared pathways among patterns grouped in
cluster m and any other pattern in the dataset.

The new Global Measure for Linked Clustering (GMLC) is defined as a weighted
combination

G = γH log(Ȟ) + γΓ log(Γ) + γΓ log(P ), (8)

where the γ parameters are empirically determined.
A simple criterion to set them, according to their distribution in a given dataset,

could be to define γp = −1 and calculate the other weights as the ratio of averages

γH = −E`
[
logP `

]
/E`
[
logH`

]
,

and
γΓ = −E`

[
logP `

]
/E`
[
log Γ`

]
.

Here, E` is the average over all the cluster methods and configurations evaluated with
the dataset. Thus, in order to equate the influence of all three terms on the final GMLC
score, one of the γ parameters can be taken as a reference (any of them) and the others
scaled accordingly.

4 Analysis of clustering methods
This Section presents, first of all, a comparison of the clustering solutions with re-
spect to cluster validity and distribution. After that, the methods are analyzed from a
biological perspective.

4.1 Validity comparison and cluster distribution
The application of standard measures to the clusters obtained from both datasets Solanum
lycopersicum and Arabidopsis thaliana are presented in Table 1 and 2, respectively.
The best value for each measure in each of the three k columns is underlined. As an
additional reference for the comparison, we calculated the Gap Statistic for k1, k2 and
k3 in both datasets: 0.697, 0.688 and 0.707 (Solanum lycopersicum); 0.797, 0.784 and
0.793 (Arabidopsis thaliana). It can be seen that the values are high and extremely
close. In fact, as stated at the end of Section 2.2., the three best gap scores were chosen
for the comparisons among clustering methods.

To disregard the influence of the distance measure used for clustering, we per-
formed a one-way analysis of variance (ANOVA). The null hypothesis states that the
difference between Euclidean distance and correlation coefficient is not significant.
The p-values obtained for the means of the validation scores were p > 0.01. Thus
the null hypothesis was accepted and only the results with Euclidean distance were
reported in the tables. This is shown graphically for k1 and KM with the Solanum ly-
copersicum dataset in the boxplot of Figure 1. For each measure in the axis, the results
obtained using the Euclidean distance (left box) vs correlation coefficient (right box)
are presented.

10

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, D
. H

. M
ilo

ne
, L

. K
am

en
et

zk
y,

 M
. G

. L
óp

ez
 &

 F
. C

ar
ra

ri
; "

A
 b

io
lo

gi
ca

lly
-i

ns
pi

re
d 

va
lid

ity
 m

ea
su

re
 f

or
 c

om
pa

ri
so

n 
of

 c
lu

st
er

in
g 

 m
et

ho
ds

 o
ve

r 
m

et
ab

ol
ic

 d
at

as
et

s"
IE

E
E

 A
C

M
 T

ra
ns

ac
tio

ns
 in

 C
om

pu
ta

tio
na

l B
io

lo
gy

 a
nd

 B
io

in
fo

rm
at

ic
s,

 V
ol

. 9
, N

o.
 3

, p
p.

 7
06

-7
16

, m
ay

, 2
01

2.



C S Sm SM ICD DB Dunn
0

0.5

1

1.5

2

2.5

Figure 1: Boxplot showing, for each validation measure, the results obtained using
Euclidean distance (left box) vs correlation coefficient (right box), for k1 and KM in
the Solanum lycopersicum dataset.

Considering only Type I measure (cluster compactness) from the Solanum lycop-
ersicum dataset, it could be stated that HCa is the best clustering method in any of its
tested configurations. However, for the Arabidopsis thaliana dataset the best results
are rather distributed along the HCa and KM methods, depending on the number of
clusters tested. According to Type II measures, contradictory results with respect to
the compactness measure were obtained. In the first dataset, while HCa was clearly in-
dicated as a good method according to the compactness of its clusters, now separation
indicated SOM as the best candidate in all its variants. The same happened in the case
of the second dataset. However, a close look at the values obtained by Type II mea-
sures showed that they are actually quite similar to all the methods and configurations
evaluated. All clusters are almost equally separated from each other in all cases.

Since these two types of measures evaluate opposite aspects of a clustering solu-
tion, Type III measures were calculated because they combine those two types into one
single index. Due to this fact one would expect a better discerning capacity. In the case
of Υ, the internal cluster dispersion is always close to the optimum for all methods.
This measure is not useful for choosing one method among all the possibilities avail-
able. Interestingly, while the Dunn measure qualifies clusters taking into account the
same general criteria as DB (high compactness and separation), it has clearly favored
HCa over KM in the Solanum lycopersicum dataset for all the configurations tested.
This result is different from the DB index indication for two configurations over the
Solanum lycopersicum dataset. In the Arabidopsis thaliana dataset, a similar situation
occured since there was a lack of concordance. Moreover, both DB and Dunn indexes
reflect dissimilar results with respect to Type I and Type II measures. These contradic-
tory results can be very confusing. As it can be seen, it is also difficult here to indicate
a solution and configuration as the most adequate.

Another way of evaluating clustering methods in a dataset is by using histograms
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Table 1: Solanum lycopersicum dataset. Comparison of validation measures for clustering
methods. The best value of each k for each measure is underlined.

HCa KM SOM
k1 k2 k3 k1 k2 k3 k1 k2 k3

C 0.69 0.55 0.47 0.74 0.63 0.53 0.81 0.71 0.64
S 1.00 1.20 1.31 0.94 1.08 1.18 0.59 0.77 0.87
Sm 0.63 0.47 0.52 0.46 0.47 0.48 0.13 0.11 0.10
SM 1.37 1.68 1.79 1.47 1.73 1.80 1.16 1.34 1.44
Υ 0.99 0.93 0.83 0.99 0.94 0.93 0.99 0.95 0.88
DB 3.09 3.18 3.13 2.17 1.87 3.32 8.65 10.5 11.7
D 0.37 0.46 0.56 0.31 0.41 0.55 0.32 0.41 0.47

Table 2: Arabidopsis thaliana dataset. Comparison of validation measures for clustering meth-
ods. The best value of each k for each measure is underlined.

HCa KM SOM
k1 k2 k3 k1 k2 k3 k1 k2 k3

C 2.87 2.31 1.90 2.80 2.43 2.10 2.94 2.52 2.31
S 7.03 7.34 7.47 6.35 6.70 6.99 4.95 5.50 5.75
Sm 2.91 2.16 2.01 1.78 1.31 1.34 0.59 0.40 0.27
SM 9.80 10.3 10.6 10.3 10.7 10.94 9.68 10.1 10.4
Υ 0.99 0.94 0.86 0.99 0.94 0.94 0.99 0.95 0.88
DB 3.16 3.91 4.37 2.08 5.24 5.45 10.05 16.5 19.7
D 0.50 0.48 0.52 0.19 0.29 0.44 0.17 0.18 0.24

of pattern distribution. The histograms of patterns for each cluster, for each method,
and with k2, were also calculated for the Solanum lycopersicum dataset (Figure 2).
As it can be seen, HCa comprises the vast majority of the patterns in a few branches.
When comparing the histograms of KM and SOM, it can be seen that their distribution
is quite similar and uniform. On the one hand, a recent study of clustering methods in
biological datasets has shown that there is a relationship between reduced coverage5

and an increase in the ability of a clustering algorithm to group the samples correctly
[37]. On the other hand, since unsupervised clustering groups data without any biolog-
ical constraints, it may not produce clusters that are useful to discover new biological
knowledge. Thus, biologists have to manually examine the clustering solutions to in-
terpret the results and draw conclusions, which might be very difficult when a cluster is
very large. Therefore, it can be stated that a uniform distribution of patterns may give
biologists more confidence in finding interesting relationships among data.

Besides, we statistically tested the significance of all the results obtained by per-
forming 100 resamplings of 80% of the transcripts and metabolites in each dataset,
for all the methods in each k. The ANOVA was performed to test the null hypothe-
sis in which, for each partition k, the difference among the clustering methods, in a
given combined measure, is not significant. The analysis revealed that all the com-
bined measures show significant differences (p < 0.01) among the methods in each

5Reduced coverage: in the partition obtained there are more clusters than actually exist in the underlying
data.
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Figure 2: Pattern distribution histograms by clustering method for size k2 for the
Solanum lycopersicum dataset.

partition, which validates the conclusions obtained from the detailed analysis of each
of the measures in the tables.

A good clustering solution should perform well under multiple evaluation points.
However, as it can be seen from this subsection, it is very difficult to indicate one of
the evaluated methods as the clear winner according to all the measures applied.

4.2 Biological clusters analysis
In this subsection, the clustering methods are analyzed from a biological perspective.
Some examples are presented to show the two typical tasks that biologist generally
perform over the clusters found by a clustering algorithm. These illustrative examples
will be developed in two sections by using the same Solanum lycopersicum dataset in
different ways. In Section 4.2.1 coherence will be checked. Then, in Section 4.2.2, a
well-known pathway for validation will be used with the aim to figure out if compounds
clustered together are connected under the guilt-by-association principle. The ultimate
objective is to show how these biological analyses are not reflected in the objective
measures presented in the previous subsection.

4.2.1 Coherence

Table 3 shows an example of a coherent grouping analysis that can be performed, for
instance, by looking at some metabolites of the Solanum lycopersicum training set.
These metabolites are the main intermediates in the well-known metabolic pathway
of Citrate cycle (TCA or Krebs cycle6) and closely related pathways such as alanine

6http://www.genome.jp/kegg/pathway/map/map00020.html
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metabolism7.
The left part of the table shows the direct values of each metabolite. The right part

has the same metabolites with inverted values (changed sign) and their corresponding
clustering locations. In order to better highlight the incoherence of the clusters ob-
tained, some numbers are colored. When a metabolite is grouped in a node together
with other elements, but the inverted version of this metabolite does not group with
those inverted elements as well, the numbers are painted black. On the contrary, when
an inverted metabolite is clustered with other inverted metabolites, but their direct ver-
sions are not, dark-gray color is used.

In the analyzed example, HCa and SOM consistently grouped all the compounds
for all cluster numbers and, therefore, they were not included in the table. For exam-
ple, for HCa with k1, the direct compounds alanine and GABA clustered in node 41 and
were also grouped together in node 42 when their sign was inverted. However, in the
case of KM with k2, the metabolites citrate, glutamate and 2-oxoglutarate fitted into
node 109 and their inverted patterns citrate(inv), glutamate(inv) and 2-oxoglutarate(inv)
were split into three different clusters 115, 191 and 16, respectively. This case is
marked in Table 3 with black background. An example of the opposite kind of inco-
herence happens in KM with k1, where alanine(inv), asparagine(inv) and GABA(inv)
grouped together in cluster 50, but alanine was assigned to cluster 42 while asparagine
and GABA were put together in cluster 17. In this case, the cluster numbers were
painted dark-gray. These inconsistencies (found in all the KM repetitions for all the
numbers of clusters tested) are certainly a limitation of KM and throw doubts on its
applicability to these kinds of biological data. However, as shown in the previous
subsection, this aspect has no impact on any of the standard measures when they are
applied to qualify a clustering solution.

4.2.2 Assessment regarding a metabolic pathway

The choice of biological processes common to the vast majority of organisms is an
important starting point for a comparison between clustering algorithms, because it is
assumed that any method used to analyze biological data should be able to find such
relations in a few nodes. For this purpose, the aforementioned metabolic pathways
were used. In this part of the analysis, a detailed inspection was performed to verify
the membership of the patterns in each cluster to a well-known metabolic pathway.

Figure 3 shows the glycolytic and TCA cycle intermediates and enzymes encoding
genes connecting these pathways with amino acid metabolism. Those measured com-
pounds that belong to the training set are marked with a rectangle. For each marked
metabolite, the three numbers above the rectangle indicate the cluster number where
the metabolite was grouped in HCa, KM and SOM, respectively, for size k2. It can
be noticed that most of the marked compounds grouped together in a few SOM nodes.
Meanwhile, in the case of HCa and KM, the data points are spread over a large number
of different nodes.

7http://www.genome.jp/kegg/pathway/map/map00250.html
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Table 3: Biological analysis of cluster coherence for KM over the Solanum lycopersicum
dataset. Black background: clusters with metabolites whose inverted versions were not grouped
coherently. Dark-gray background: clusters with inverted metabolites whose direct versions
were not grouped coherently.

direct inverted
k1 k2 k3 k1 k2 k3

alanine 42 78 78 50 127 72
asparagine 17 105 159 50 99 161
aspartate 9 140 438 42 138 423
citrate 32 109 186 49 115 424
fumarate 3 92 15 24 194 64
GABA 17 105 261 50 43 130
glutamate 1 109 349 20 191 424
malate 5 83 167 13 156 199
2-oxoglutarate 4 109 113 21 16 379
succinate 38 95 178 22 177 270

5 Biologically inspired measure: results and discussion
To be able to show the new Type IV measure together with Type I, II and III, Table 4
shows the results obtained in the comparison of the measures to discern among several
clustering methods, considering in this case only integration nodes in the Solanum
lycopersicum dataset. A similar analysis for the Arabidopsis thaliana data is shown in
Table 5.

The interest in this particular analysis lies on the fact that the enzymes and metabo-
lites grouped together into integration nodes may be part of the same metabolic path-
way according to the guilt-by-association principle. Five rows were added to these
tables with respect to Table 1 and 2: the second row shows now the percentage of
integration nodes found by each technique in relation to the total number of clusters
(int%), whereas the last four rows show the new GMLC and the three factors involved
in its computation. We have statistically analyzed the significance of the obtained re-
sults using an ANOVA. The null hypothesis states that for each k the difference among
the clustering methods is not significant. The test showed that are significant differ-
ences among the methods in each partition (p < 0.001) for all the combined measures,
including the new GMLC.

Although Table 4 shows that similar results to Table 1 for the Solanum lycoper-
sicum dataset were obtained with respect to Type II measures, SOM showed now the
best cohesion rate. A similar reasoning can be applied to Table 5 for the Arabidopsis
thaliana case. The internal cluster dispersion results do not vary with respect to the
previous tables. In the case of the DB and Dunn indexes, they also highlight HCa and
KM here, since they favor compact clusters well separated from each other. However,
for being measures that summarize compactness and separation, they contradict Type I
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Table 4: Solanum lycopersicum dataset. Comparison of validation measures for the clustering
methods, considering only integration nodes. The best value of each k for each measure is
underlined.

HCa KM SOM
k1 k2 k3 k1 k2 k3 k1 k2 k3

int.%→ 50 18 6 58 32 17 56 20 8
C 1.20 1.26 1.32 1.17 1.25 1.30 1.01 1.10 1.12
S 1.00 1.19 1.28 0.94 1.08 1.18 0.54 0.67 0.79
Sm 0.65 0.65 0.56 0.50 0.53 0.55 0.13 0.12 0.11
SM 1.34 1.61 1.71 1.43 1.63 1.73 0.91 1.08 1.19
Υ 0.99 0.93 0.83 0.99 0.94 0.93 0.99 0.95 0.88
DB 2.97 2.82 2.62 3.38 3.36 3.21 10.5 12.8 11.2
D 0.38 0.55 0.54 0.32 0.47 0.61 0.47 0.50 0.66

γH log(Ȟ) 6.78 6.47 3.74 1.42 5.51 4.32 2.39 4.60 3.92
γΓ log(Γ) 0.00 0.00 0.00 12.8 14.9 11.3 0.00 0.00 0.00
γP log(P ) 3.89 4.23 5.36 3.54 4.15 4.71 4.10 4.56 4.61

G 10.67 10.70 9.10 17.76 24.56 20.33 6.49 9.16 8.53

and II indications in both tables. Moreover, the results are contradictory with respect to
all the previous analyses. For example, in the case of the Solanum lycopersicum data,
the Dunn index in Table 1 indicated HCa as the most suitable method for all k parti-
tions. However, when looking at the integration nodes only in Table 4, SOM is better
than the others in two cases. There are also opposite and inconsistent indications for
the Arabidopsis thaliana data. In general, SOM always obtains the highest DB scores
because the distances between centroids are always the smallest since these centroids
are better distributed and are not associated with remote and isolated patterns. Since
farther away patterns (probably outliers) have to be associated with any centroid, clus-
ter compactness also decreases. However, from a biological point of view, it would be
useful to have clusters with a high DB index because there are patterns that should be
close to many other patterns, if we think that the groupings reflect components of com-
mon metabolic pathways and that there are patterns that certainly participate in several
pathways simultaneously.

This detailed analysis of the measures over integration clusters shows contradictory
results with respect to the all-cluster analysis. Again, although objective measures
should give an indication of which clustering technique would be more appropriate
for the dataset under study, it is very difficult to clearly select a method as the one
providing more interesting clusters to be analyzed by biologists in order to discover
new relationships among data. Furthermore, this analysis does not provide a clear
clue regarding the connection or the reason why the integrated data clusters have been
found, from the viewpoint of their involvement in a common metabolic pathway.
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Table 5: Arabidopsis thaliana dataset. Comparison of validation measures for the clustering
methods, considering only integration nodes. The best value of each k for each measure is
underlined.

HCa KM SOM
k1 k2 k3 k1 k2 k3 k1 k2 k3

int.%→ 16 6 2 62 23 10 48 15 6
C 7.06 7.21 8.66 6.85 7.11 7.19 6.55 6.33 6.29
S 7.09 7.36 7.06 6.35 6.69 6.99 4.58 4.55 5.40
Sm 3.08 3.09 3.47 1.97 1.86 1.87 0.59 0.59 0.72
SM 9.08 9.61 10.2 10.1 10.3 10.5 9.02 8.52 9.22
Υ 0.99 0.94 0.86 0.99 0.94 0.94 0.99 0.95 0.88
DB 2.67 2.89 3.63 5.12 4.93 4.52 14.9 15.7 13.0
D 0.18 0.43 0.70 0.21 0.31 0.47 0.17 0.25 0.33

γH log(Ȟ) 6.97 6.33 5.32 1.38 4.11 3.29 4.68 3.22 2.09
γΓ log(Γ) 0.00 0.00 0.00 12.1 13.4 11.9 0.00 0.00 0.00
γP log(P ) 3.11 3.99 4.23 3.63 4.26 4.63 4.04 5.05 4.40

G 10.08 10.32 9.55 17.1 21.7 19.8 8.72 8.27 6.49

A Gene Ontology (GO) based analysis [38] was performed for further valida-
tion of the results using the widely available biological annotations for Arabidopsis
thaliana. The GO-based score measures how biologically homogeneous are the clus-
ters by checking whether grouped genes also belong to the same functional classes. In
the case of k1, the score was 0.10, 0.12 and 0.12 for HCa, KM and SOM, respectively.
In particular, for the KM method, the values obtained for k1, k2 and k3 were 0.12, 0.14
and 0.13, respectively. It should be noticed that this GO-based measure evaluates clus-
ters according only to transcripts (derived from genes) and their functions. However,
the datasets evaluated in this study involve not only transcripts but also metabolites, and
the GMLC uses information (metabolic pathways) integrating both molecular entities.

It can be observed that the points addressed in Sections 4.1, 4.2.1 and 4.2.2 are con-
templated in the values of the proposed GMLC. Thus, the three parts of this measure
assess the three parts of the analysis of clusters that biologists often make, which is
summarized into a single and compact measure. The first and second parts evaluate the
homogeneity and coherence of a solution, while the third part is a pathway-related met-
ric that evaluates internal connectivity. This is clearly reflected in the results obtained
when the new Type IV measure is applied to the integration clusters of the methods
here evaluated, as shown in the last rows of Table 4 and 5. Moreover, the proposed
GMLC is consistent with the results obtained from the application of Type I and II
measures for the integration nodes as well as for most of the all-node analyses in both
databases. Furthermore, it includes a biological point of view in the evaluation of clus-
tering solutions.

The Ȟ values are a measure of the homogeneity of the solutions. For both datasets
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analyzed, KM and SOM have similar Ȟ scores. The distribution patterns of HCa are
clearly non-uniform, which is reflected by its high Ȟ values. In fact, this was shown
above in the histogram of Figure 2 for the first dataset with k2 and is now reflected in
this part of the GMLC measure with the highest Ȟ value for this partition with respect
to KM and SOM.

The Γ value highlights whether there are patterns that were grouped coherently or
not. Its value equal to 0 for HCa and SOM in all cases and for both datasets is a clear
sign that these methods coherently group the data points. KM, instead, obtained a high
value for this score. In fact, a detailed analysis of the clusters provided by this method
in one dataset indicates that patterns were not grouped coherently in all cases. It was
shown above that there are clusters that group non-inverted versions of patterns, but
their inverted versions were dispersed along several nodes, even mixing non-inverted
and inverted versions of data in some cases (which is also inconsistent). This fact is
shown by a Γ value higher than 0.

TheP score evaluates elements grouped together and belonging to the same metabolic
pathway. It shows that there are differences among the methods tested, according to
each partition, for both datasets. In fact, the detailed analysis of the clusters found in
each method, counting the elements that were grouped together and that belong to the
same metabolic pathway, showed several differences among them. It can be noticed,
for example, that for the Solanum lycopersicum dataset and the k3 case, SOM is better
than HCa and KM for obtaining nodes with interrelated patterns by pathways. While
for the Arabidopsis thaliana dataset and k3, the most suited method under this point of
view would be HCa.

6 Conclusions
This work proposes a new approach for evaluating both coherence and biological sig-
nificance of clusters found by unsupervised clustering methods over biological datasets.
Looking at the analysis made by biologists when they evaluate the elements that are part
of a cluster, coherent grouping of the measured components, as well as their relative
belonging to well-known metabolic pathways, were evaluated.

A novel validity measure for the biological significance of clustering solutions is
proposed. This is addressed from the perspective of the usefulness of clusters to iden-
tify those patterns that change in coordination and belong to common pathways of
metabolic regulation. The proposed Global Measure for Linked Clustering reflects, in
a compact way, the objective analysis of the clustering methods regarding coherence
and cluster distribution. Moreover, it also evaluates their biological internal connec-
tions considering common pathways.

The application of the GMLC to two biological datasets presented consistent results
for several unsupervised clustering methods and cluster numbers tested. The GMLC
could aid in deciding which clustering solution to use in order to obtain a coherent and a
biologically significant solution for a particular biological experiment. Furthermore, it
could be used as an optimization criterion during cluster formation in order to guide the
clustering process towards better and biologically interpretable meaningful solutions.
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Figure 3: Simplified representation of the primary carbon metabolic pathways (mainly
glycolysis and TCA) in Solanum lycopersicum fruits. Pathways are represented. Full
arrows indicate single reactions and dotted arrows represent multiple chemical reac-
tions. Associated biological pathways are highlighted in gray boxes. Compounds mea-
sured and belonging to the training set are marked with a rectangle. The three numbers
above the rectangle indicate the cluster number for size k2 in HCa, KM and SOM,
respectively.
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