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Abstract. When large models are used for a classification task, model compression is necessary because
there are transmission, space, time or computing constraints that have to be fulfilled. Multilayer Percep-
tron (MLP) models are traditionally used as a classifier, but depending on the problem, they may need
a large number of parameters (neuron functions, weights and bias) to obtain an acceptable performance.
This work extends the evaluation of a technique to compress an array of MLPs, through the outputs of
a Volterra-Neural Network (Volterra-NN), maintaining its classification performance. The obtained re-
sults show that these outputs can be used to build an array of (Volterra-NN) that needs significantly less
parameters than the original array of MLPs, furthermore having the same high accuracy in most of the
cases. The Volterra-NN compression capabilities have been tested by solving several kind of classifica-
tion problems. Experimental results are presented on three well-known databases: Letter Recognition,
Pen-Based Recognition of Handwritten Digits, and Face recognition databases.

1 Introduction

Model compression aims to find a fast and compact model to approximate a function learned by, for example,
a classifier, preferably without significant loss in performance [2]. Complex and large classifiers are often
needed to obtain the best performing models when supervised learning is used. In some situations, however,
a classifier not only has to be highly accurate but also has to meet some requirements regarding on-line
execution time, storage space and limited computational power [3].

Multilayer Perceptron (MLP) models are usually considered as a powerful classification model, but they
easily become large models, which has a direct effect over the number of model weights. The increment
of the model complexity can be caused by introducing more information to the model. That is to say, the
introduction of more input variables in order to better learn the training data and to improve its classification
ability, or the addition of hidden neuron in order to improve the learning process.

From the parameters of a trained Neural Network (NN) it is possible to extract a Volterra model [1],
which is formed by Volterra kernels associated with these parameters, being useful for reproducing the
nonlinear and dynamic behavior of new wireless communications devices [4], for instance. Moreover, in
[5] the Volterra kernels extraction procedure has been used to build a Volterra-Neural Network (Volterra-
NN) model, which is a compressed version of a trained MLP model over a very simple classification task,
maintaining the same recognition rate than the original MLP model but with fewer parameters.

Often, better results can be reached by using arrays or ensembles of neural classifiers than single models
[6][7]. For instance, an array of Multi Layer Perceptrons (aMLP) model was proposed in [8] for a complex
classification task, consisting of one MLP for each class, with a final decision made over the network outputs
of the complete array. The classification was performed by the maximum output calculation among all the
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Fig. 1. Array of MLPs (aMLP) model for classification.

networks outputs. This configuration has achieved significant improvements over the performance of a clas-
sic MLP. However, the use of this new neural configuration implies much more parameters, and therefore, a
larger and more complex classification system.

Since it is possible to obtain a Volterra-NN model from a single trained MLP model, this work show that
it is also feasible to compress an aMLP using Volterra-NNs. Thus, the same methodology applied to build
a Volterra-NN model from a single MLP can be used to obtain an array of Volterra-NN models (aV-NN)
from an aMLP. Extending the evaluation of the method for compressing a classification model based on the
application of the Volterra-NN method to an array of multilayer perceptrons, it will be shown how an aMLP
model that has learnt a classification problem with a certain (high) accuracy can be compressed into a more
compact representation using an array of Volterra-NN model. This representation involves less parameters,
maintaining however a high recognition accuracy. Three different databases have been used to show the
effectiveness of the proposed method in several classification problems of different level of complexity,
number of classes and types of applications.

The paper is organized as follows. Section 2 explains in detail the proposed Volterra-NN model and its
use as a classifier. The materials and methods used in the study are presented on Section 3. Results of the
model evaluation through three public databases as well as a discussion of the experiments are shown in
Section 4. Finally, Section 5 presents the conclusions and future work.

2 Model compression by using Volterra-Neural Network

The Volterra series and Volterra theorem was developed in 1887 by Vito Volterra. It is a model for represent-
ing nonlinear dynamic behavior frequently used in system identification [9]. The formulas for the extraction
of Volterra weights, independently of the neural model topology, number of variables involved in the prob-
lem and nonlinearity of the system have been presented in [1]. Those equations are based on architectures
having an hyperbolic tangent activation functions in the hidden nodes, trained with a classical backpropa-
gation algorithm [10], for multi-input, multi-output systems. The MLP model is trained using the available
training data and, after that, the Volterra weights are obtained from the trained network parameters.

This section presents the aV-NN model for an aMLP model compression, extending the simple algorithm
for classification proposed in [5]. The following subsection presents the neural model used; after that, some
basics concepts on Volterra models necessary to understand the proposed approach are explained. Finally, it
is shown how the aV-NN can perform as a classifier when an aMLP is used.
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Algorithm 1: Volterra weights extraction, based on formulas presented in [1], in which Ny is the
number of hidden neurons, N7 is the number of input neurons, wy, and b;, are the weight and the bias
associated with a hidden sigmoidal neuron.

Data:
D: training data
Results:
v(®): 0-order Volterra weight

v 15 -order Volterra weigths
v(2): 274 order Volterra weigths
v(®): 37 order Volterra weigths

1 begin

2 M < train MLP model with D

3 v(9) < calculate zero-order Volterra weight from M using the formula: hg = b, + Zf:rf{l wi ﬁ

- e h
4 for1 <i< Nrdo
—b
5 L 1)51) < calculate first-order Volterra weight from M using the formula: b1 (-) = Zthl wiw}l i ﬁ
T ’ e v

6 Assign each v?l) extracted to v(!)

7 for1 <i < Nrdo

8 forl < 5 < Njydo

e h (e~ Ph 1)
e~ bh)3

9 L vl(zj < calculate second-order Volterra weight from M using the formula: ho(-) = Zf:ffl wf/w}l'iw}l’j %
10 Assign each v,§2j) extracted to v(?)
11 for1 < i< Nrdo
12 forl < j < Njydo
13 forl < k < Njydo
14 vi37.)_ i < calculate third-order Volterra weight from M using the formula:

—e bh(—e=2Ph p4e—1 1)
N —bpH4d
hs(+) = hfl wiwi,,iwi,,jwi,,k (H—es! !

15 Assign each ’UESJ.) & extracted to v®)
16 end

2.1 Neural model for classification

It has been proved that arrays and ensembles of single multilayer perceptron networks can reach significant
better results in classification problems than single models [11][12][8]. The final classifier model is an array
of MLPs where there is one MLP model for each class k to be identified, with k=1..K, being K the total
number of classes. Therefore, as it is shown in Figure 1, the aMLP model is formed by K networks, whose
outputs takes a value of 1 if the class is identified or O otherwise. The first layer of each MLP in the aMLP
is a set of Ny input neurons and there are Ny hidden neurons. When a class has to be determined, its input
is presented to all the k networks defined for the aMLP model, and the maximum output obtained among
all network outputs is assigned as class label. If a pattern of the kth-class has been presented to the model, a
value of (near) 1 is expected at the kth network.

In [5] was presented the application of the Volterra weights extraction method for model compression of
a classical multilayer perceptron classifier. It was shown how a MLP model which has learnt a classification
problem with a certain (high) accuracy, can be compressed into a more compact representation using a
Volterra model and its parameters, named Volterra weights. Several MLP topologies can be well-compressed
into the first, second and third order Volterra weights, which can be used to build a Volterra model that needs
less parameters than the original MLP model and, at the same time, has a similar high accuracy. This work
proposes to apply and extend the compression procedure based on Volterra models to an array of MLPs to
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Algorithm 2: 3"%-order Volterra-NN outputs forward computation.
Data:
2: input point to classify
K: number of elements in the array
v(9): 0-order Volterra weights for the array

vM: array 1°f-order Volterra weights
v array 279 _order Volterra weights

v®): array 37%-order Volterra weights
Results:
s v _ NN outputs for the array

s®. v _ NN outputs for the array

s®.v®) _ NN outputs for the array

1 begin

2 for each element in the array do

3 PIEIPRIC

4 forl1 <i < Nydo

5 L s(1> =M + v,<1) T;

6 s s

7 forl1 <i < Nydo

8 for1 < j < Nrdo

9 L s = ¢ 4 1)5,2]‘) Tz

10 sG) s
11 forl1 < i < Njydo

12 forl1 < j < Njydo

13 for1 <k < N;do

14 L 5(3) = s<3) + ufgj)k TiT;Tk
15 Assign each s(1) calculated to s(V)

16 Assign each 5(2) calculated to s(2)

17 | Assigneach s calculated to s(3)

18 Determine upper and lower thresholds for each array element (class)
19 end

solve many kind of different classification problems. The next subsection presents the details of the algorithm
proposed for the procedure of obtaining different order Volterra-NN outputs from an array of MLPs used for
classification.

2.2 Volterra-NN model forward computation

Volterra weights extraction procedure is shown in detail in Algorithm 1. The input are the training data
and the outputs are the Volterra weights. The first step consists in training a MLP classifier model with the
training data D as it is possible to see in line 2. From the trained neural model M, the Volterra weights can
be calculated: the zero-order Volterra weight is obtained in line 3, as well as the first (line 5), second (line
9) and third-order (line 14) Volterra weights. The formulas that allow to compute the zero, first, second and
third order Volterra weights were defined in [1] to calculate the zero, first, second and third-order Volterra
kernel from a trained MLP having sigmoidal hidden units.

In the same way, higher order V-NN outputs can be calculated. As can be seen, each high order Volterra
model includes its own parameters (Volterra weights) plus the lower order ones. The new algorithm for an
array of V-NN models forward computation is presented in detail in Algorithm 2. It receives a point from
where the number of input variables /Ny is determined, the number of elements in the array and the Volterra
weights for each element in the array, obtained by using Algorithm 1. The output of this algorithm is an array
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Fig. 2. Model output signal analysis for classification. Full and dotted lines: output signal corresponding to the MLP and
V-NN models, respectively, for training data. Dashed lines: class thresholds.

of third-order (V' (3) — N'N') Volterra outputs, but it is also possible to obtain only the first-order (V1) — N V')
(lines 3 to 5) and second-order (V) — N'N) outputs (lines 7 to 10), thus providing different compressed
versions of the original aMLP classifier. The next subsection shows how the compressed model can be used
as a classifier.

2.3 Classifying by using Volterra-NN.

Different classes can be recognized from the output signal by applying the Volterra-NN model. After the
compression of an array of MLP models by using V-NN, each V-NN model is specialized on a class and
the output signal analysis determines if the pattern is part of the class. That is, it is possible to identify
only a class from each of the output signals. During the training phase, those patterns beloging to the class
associated to the model are shown first. In this way, the model output can be considered as a signal having
two levels, with a bound between levels corresponding to the class limit [13]. For instance, if we have a three
classes problem, the first model is trained with data where the patterns corresponding to the first-class are
activated (they have a 1 as target) and other patterns, which do not represent the first class, are not activated
(they have a O as target). Similarly, training data for learning the second and third classes are presented to
their corresponding models.

Output signal analysis that has to be performed for determining upper and lower thresholds for each
class is shown in Figure 2. It is possible to see the output signal corresponding to the MLP (full line) and
V-NN (dotted line) models, both for the training data. The lower and the upper threshold (dashed lines) of
the class are measured in order to determine the output-signal level change for the V-NN model, considering
the values obtained for the training set. These changes (thresholds) will allow us to identify a new data point
received for classification as belonging (or not) to the class. The membership of a new pattern (test point) to
the class is identified by analyzing if the output associated to this pattern has a value between the lower and
upper class thresholds.

Since we are analyzing the output of an aMLP model, a different signals, each one corresponding to a
class, must be considered in order to identify which class is activated as a result. First of all, each individual
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Table 1. Datasets.

Dataset k p train test
Pendigits 10 16 8400 2100
Letters 26 16 15184 3796
Feret 40 37 24 66

signal must be evaluated as it was presented in the above paragraph. Secondly, it is necessary to discover if
more than one class model was activated for each pattern. If this situation occurs, a max criteria is applied.
That is to say, the higher value of the activated classes for each pattern will be determined as the winner
class.

3 Materials and Methods

3.1 Databases and aMLP architecture

Three independent classification databases have been used in this study: Letter Recognition' (Letters), Pen-
Based Recognition of Handwritten Digits? (Pendigits), and Face recognition database FERET ). These well
known databases provide typical experimental setups for classification problems.

Table 1 presents the three databases mentioned before in detail. The name of the databases are shown
in the first column, meanwhile in the second and third column the number of classes (k) and the number of
variables (p) of the databases are presented, respectively. The number of patterns in the training dataset are
shown in the fourth column (train), as well as the number of patterns in testing dataset is presented in the
fifth column.

In letter recognition problem, the training and test datasets have 16 variables representing the attributes
information of a determine capital letter. Therefore, each MLP model associated with each class consists of
16 input neurons (attributes) and only 1 output neuron (capital letter). As regards hidden neurons number,
from now on, a simple heuristic will be adopted in which the number of hidden neurons N are the same
number, the double and the triple of the number of inputs N;. So, Ny will be 16, 32 and 48. In the case of
the data in the Pen-Based Recognition of Handwritten Digits database, the datasets consist of 16 attributes
representing each class. Therefore, each MLP model havs 16 input neurons and only 1 output. The hidden
neurons numbers are 16, 32 and 48.

As regards the face recognition problem database, the training and test datasets are the result of a dimen-
sionality reduction proccess of the FERET dataset. Considering that 37 attributes represent the 85% of the
variance of the whole data information, each MLP model consist of 37 input neurons, a number of hidden
neuron that can be 37, 74 or 11, and also only one output.

To avoid overfitting, a k-fold cross-validation procedure [14] has been used, using the standard setup of
splitting the available patterns into 80% of each class for training and 20% for testing. The complete dataset
has been randomly split into £ = 3 mutually exclusive subsets of equal size, repeating the experiments three
times in each fold. The cross validation estimate of the overall accuracy of a model has been calculated by
simply averaging the accuracy measures over the test datasets. In each experiment and repetition, MLP and

! http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
2 http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
3 http://www.itl.nist.gov/iad/humanid/feret
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Fig. 3. Array of V-NN for classification problems.

V-NN models having less than 95% classification rate for each class of the training dataset have not been
considered in this study. This restriction was imposed to the classifier performance in order to be able to
measure precisely any loss of accuracy originated by the proposed Volterra-NN compression method.

Figure 3 shows the neural network topology used in this study, an array of MLP models, each one asso-
ciated with a class to recognize. Several MLP topologies have been evaluated from where the corresponding
Volterra weights have been extracted after training, in order to build the V-NN models. For each input signal
arriving at the array, a V-NN output of a certain order can be obtained. For example, to obtain a first order
V() — NN output, the maximum s(!) from the array is selected. The model parameters (weights and biases)
are initialized with random values uniformly distributed between 0 and 1. Neurons in the hidden and output
layers have sigmoid activation functions. All the MLPs are trained with the Levenberg-Marquardt algorithm
[15] in order to guarantee a fast convergence.

3.2 Performance measures

For comparing each output from the proposed V-NN models against the corresponding original MLP clas-
sifier, two performance measures are used: recognition rate (RR) and data space savings (SS), adapted here
for an aMLP classifier. In classification problems, the primary source of performance measurements is the
overall accuracy of a classifier estimated through the classification or recognition rate [16]. For measuring
compression, data compression ratio can be used to quantify the reduction in data representation size pro-
duced by a compression algorithm. However, the space saving measure is given here instead, defined as the
reduction in size relative to the uncompressed space [17], often reported as a percentage, which gives a better
idea of compression power. For both cases, the greater the rate, the better the result.

To estimate how much is the compression level obtained, SS is calculated as the relation between the
number of parameters needed for a Volterra-NN output (the Volterra weights) and the number of parameters
of each corresponding MLP architecture (the weights and biases). It is well-known that for a MLP model,
the number of model parameters can be calculated as Py;r.p = Nt X Ng + Npg + Ny X No + Npo,
where N;, Ny and No are the number of neurons at input, hidden and output layers, respectively; and Ny
and Npo are the number of bias for each neuron in the hidden and output layers, respectively. In an array of
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MLP models, these measures are affected by the array length a. Hence, the number of model parameters for
an aMLP can be calculated as P,y;r.p =a X Pyrrp.

From each MLP that is part of the array of MLPs, a Volterra-NN output (of a particular order) can be
extracted: s!) includes only the zero and first-order Volterra weights; s(2) includes up to the second-order
Volterra weights; and s(®) corresponds to a third-order model output. The following equations show the
number of parameters necessary to build each of these outputs, for a given training set.

For the V(1) — N'N model output we have P,) = N;. In this case, the number of parameters necessary
to build s(!) are each first-order Volterra weight that multiplies each input variable.

For the second-order model V(2) — NN we have the following output P2 = P,y + N? — Ny EN’.
The number of parameters necessary to build s(*) are summed up together with the number of parameters
necessary for s(2) (the second-order Volterra weights). There is a second-order weight for each input variable
squared, plus the cross-products between each input variable. With respect to these last ones, since the
symmetrical weights are equivalent, they are considered only once. That is why half of the cross-product
weights are counted.

The number of parameters necessary to build VB — NN are P.s) = Py + NIQ, that is to say, the
number of weights associated with s(2) plus the product of each third-order weight corresponding to each
input variable, counting only once the symmetrical weights.

As Volterra-NN can be applied to the compression of an aMLP model, the output now will be an array
of V-NN outputs of different order. That is to say, for example, for each MLP inside the array three different
order V-NN outputs can be obtained. In this case, the number of V-NN models parameters has to be redefined
as P, ) =a X Py, where ¢ = 1,2,3. Therefore, the space saving measure SS is calculated as

P,
as( ) (1)

S§=1-— .
P.vrp

4 Results and discussion

The experimental results obtained on three well-known classification problems are shown in this section. For
simplicity in the analysis of the results, in particular which respects the performance of the V-NN compres-
sion capabilities, the tables show only global RR of each database (the average RR value over all classes)
and the space savings rate for the models discussed in this paper.

From each array of MLPs model, with I number of inputs neurons, H number of hidden neurons, and O
outpus neurons (aM LPr g o) considered in this study, their corresponding zero-order, first-order, second-
order and third-order Volterra weights have been extracted according to Algorithm 1 and their corresponding
array of Volterra-NN outputs s, s(2) and s have been obtained using Algorithm 2. Table 2 presents the
results to the global recognition rate (RR) and the space savings rate (SS), calculated over the Pen-Based
Recognition of Handwritten Digits test dataset; whereas Table 3 and 4 show similar results but calculated
over the Letter Recognition and FERET database, respectively.

The upper part of each table shows the number of parameters and global RR measure for the three aMLP
topologies. The second part of the table shows parameters and performance measure values related to the
Volterra-NN outputs. First of all, the number of parameters needed for each neural classifier architecture
(Parpp) involved in this study is shown at the first row, while the number of Volterra weights needed for
each Volterra-NN model (P, ) is shown in the first column. The values which fill the RR and SS columns
are the average recognition rate and space saving capabilities, respectively, for each combination between a
MLP classifier and the corresponding Volterra-NN output for all the 3 folds used.
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Table 2. Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=10) classifiers and their
corresponding first-order s, second-order s® and third-order s® outputs, for the Pen-Based Recognition of Hand-
written Digits Database.

10MLP16,16,1 ]0MLP16,32,1 IOMLP16,48,1
PP o — 3040 6080 9120
RR[%] — 08.47 98.61 08.58
10VNN_[P_ ;) [RRI%][ SS[%] [RR%][SS[%I[RR[%][SS[%]
TOV-NN_(1, | 160 [84.20] 94.74 |83.9297.37| 82.46 | 98.25
I0V-NN (5 | 1520 | 83.18 | 50.00 |84.0175.00|81.73 | 83.33
I0V-NN (5 | 4080 | 84.14 | —34.21| 84.56 | 32.89 | 84.35 | 55.26

Table 3. Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=26) classifiers and their
corresponding first-order s(*), second-order s®) and third-order s outputs, for the Letter Recognition Database

26MLP16_’16,1 26MLP1(3y3211 26MLP16748'1
PiriLr; ;o — 7904 15808 23712
RR[%] — 97.41 97.70 97.67
26VNN_[P_;) [RR[%][ SS[%] [RR[%][SS[%] [RRI%][SS[%]
26VNN_(;) | 416 [92.37| 94.74 [92.93|97.37|92.78 |98.25
26V-NN_(2) | 3952 | 92.81 | 50.00 |93.17 |75.00(93.25 |83.33
26V-NN (5, [10608| 92.83 | —34.21| 93.24 | 32.89 | 92.70 | 55.26

Table 4. Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=40) classifiers and their
corresponding first-order s second-order s® and third-order s outputs, for the Facial Recognition Technology
(FERET) Database.

40MLP37 37,1 |40MLP37 74,1 [40MLP37 1111
PaZvILPI Ho — 59200 118400 177600
RR[%] — 97.16 96.76 96.23
4OV-NN_ [P ;) [RR[%]] SS[%] [RR[%][SS[%] [RR[%]] SS[%]
40V—NNS(1) 1480 |1 96.69 | 97.50 [95.90|98.75(96.51| 99.17
40V—NNS<2) 29600(96.34 | 50.00 |96.49|75.00]|96.35| 83.33
40V-NN (3 |84360(96.19 | —42.50| 96.60 | 28.75| 96.29 | 52.50

As stated before (see subsection 3.2), the number of parameters required for the neural classifier depends
not only on N; but also on the number of neurons at the hidden layer Nz, as well as in the number of ele-
ments in the array. Therefore, considering the pendigits database the number of parameters for /OMLP1¢ 16,1
is 3040, for JOMLP1g 32 1 it is 6080, and the /OMLP1¢ 45,1 model has a total of 9120 parameters (see Table
2). Regarding the letters database, the number of parameters for 26MLP;¢ 16,1 is 7904, for 26MLP16 32 1
it is 15808, and the 26MLP1 43,1 model has a total of 23712 parameters (see Table 3). Finally, taking into
account the FERET database, the number of parameters are 59200 for the 40MLP37 37 1 model, 118400 for
40MLP37774’1, and 177600 for 40MLP377111,1 (see Table 4)

In the case of the different order Volterra-NN outputs, the number of parameters only depends on the
number of inputs, as it is possible to see in subsection 3.2. However, for an array, this number must be
multiplied by the array size. Therefore, the number of parameters for JOV-NN, () is 160 in the Pendigits
database model, and the number of parameters needed for JOV-NN,(2) and JO0V-NN_s) are 1520 and 4080,
respectively. Regarding Letters database, the number of parameters are 416, 3952 and 10608 for the 26 V-
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NN, ), 26V-NN,(2) and 26V-NN,s), respectively. In the FERET database, the number of parameters for
40V-NN, ) is 1480, for 40V-NN,(2) is 29600 and for 40V-NN ) is 84360.

Focusing on Table 2, it is possible to see that when using /OV-NN_q, instead of the JOMLP1¢ 16,1
classifier, a global recognition rate of 84.20% can be obtained and a compression or space saving rate of
94.74% can be achieved. Almost half of this space saving rate is obtained if the J0V-NN, ) output is used,
and there is no compression when using /0V-NN, ). For the JOMLP;¢ 32 1 model, the compression achieved
by the Volterra-NN models is higher because of the amount of parameters associated with this model; in this
case, the SS value achieves a maximum of 97.37% when the smallest possible number of parameters is
considered (a first-order Volterra-NN output). A similar case is related to /OMLP16 451 model, where this
trend is also verified.

From Table 3, it is possible to see that a global recognition rate of 92.37% can be obtained and a
compression or space saving rate of 94.74% can be achieved when the 26V-NN, ) is used instead of the
26MLP5. 16,1 classifier in the Letter Recognition case (see Table 3). Considering the 26MLP1 32 1 case, the
best RR value is associated with the 26V-NN,(2) output, which has only a SS of 75%. But if a better com-
pression is necessary for this topology, it is possible to choose the 26V-NN, 1, which has a SS of 97.37%
and preserves a very high RR value of 92.93%. The best RR value for the 26MLP1¢ 45 1 model is associated
with the 26V-NN,(2) Volterra-NN model and it is possible to achieve a SS of 83.33%. But, if 26V-NN (2
Volterra-NN model is chosen, the value of RR worsens just a few tenths, and a very high SS value of 98.25%
is obtained. This is a very interesting result, because with approximately less than 2% of the parameters
of the original aMLP classifier, the classification capacity of 26V-NN,«) is very high (92.78%) and very
close to the aMLP model. This particular case can be considered as the best overall result obtained in this
study, where the 26MLP; 45 1 classifier can be compressed in a 98% using the corresponding 26 V-NN 1)
Volterra-NN output without significantly loosing recognition capability

Taking into account Table 4, when the 40MLP37 37 1 is replaced by the 40V-NN, () classifier, a RR of
96.69% and a SS as high as 97.50% are achieved. If it is considered the model 4OMLP37 74 1, the best RR
(96.60%) is obtained if the 40V-NN s, is chosen, but having the worst SS value (28.75%). But if the best
SS value of 98.75% is selected, corresponding to the 40V-NN,«), a very high recognition of 95.90% is
preserved. As regards the 40MLP37 1111 classifier, it is possible to state that the best overall result obtained
in this case is related to the 40V-NN ) Volterra-NN output, in which the classifier can be compressed in a
99.17%, maintaining almost a 96.51% of recognition rate.

From the three tables analyzed above, it is possible to conclude that an array of MLPs for classification,
in several different tasks, can be well-compressed by using an array of Volterra-NN models; and this com-
pression rate can be, in some cases, even higher than 90%. Moreover, in most cases, very high recognition
rates are achieved. In fact, the aMLP model architecture can be more and more complex, can have many
more hidden units, but the number of weights needed to build each Volterra-NN output will remain the same
while the number of input variables of the problems are the same, and this will certainly be reflected in even
higher space saving rates.

As can be generally expected, in the case of the Pendigits database, high space savings value are achieved
but paying the cost of lower recognition rates. For example, for the three models shown in Table 2, SS values
between 95% and 98% aproximately, are related to RR values between 82.46% and 84.20%. Despite these
results, it is possible to see that the values of RR are still high. It is important to highlight that, in most of
the cases studied, these high compression rates have not to be payed by lower model classification rates. For
example, for the 26MLP;¢ 16,1 model in the Letters database, the best RR value is related to the 26 V-NN (2
output, achieving 92.81%, and having a space saving rate of 50%. But, if the best SS result (94.74%) is
chosen in the same model, a RR value of more than 92% is obtained (see Table 3). In the case of the FERET



sinc(i) Research Center for Signals, Systems and Computational Intelligence (fich.unl.edu.ar/sinc)
M. Rubiolo; "Extended evaluation of the Volterra-Neural Network for model compression”

Simposio Argentino de Inteligencia Artificial - 42° JAI1O, 2012.

Database, in Table 4, the 40MLP37 37,1 model acchieves an the best RR value of 97.16%, having a space
saving rate of 97.50% by selecting the 40V-NN, (1), which has an RR of 97% approximately.

It is important to clarify that there are same SS values for all of the cases in Tables 2 and 3. As was stated
in Subsection 3.2, the SS value is obtained from the number of parameters of each V-NN model, which is
based on the number of input parameters for the MLP model. As it is possible to see in Table 1, for both
Pendigits and Letters databases, the number of parameters (p) is 16. Thus, independently of the number of
classes present in both databases, the SS value is exactly the same when the number of input parameters is
the same.

After the analysis of the results, it is possible to think that the best overall results are always obtained
in models with high, and possibly innecesary, amount of hidden neurons. But undoubtedly, in the three
classification problems here studied, if the model aMLP with the same number of hidden neurons than the
inputs is replaced with the aV-NN, ) output, the RR values are closed to the original one, and the space
saving rates are definetly high.

5 Conclusions and future work

This paper has presented an extended evaluation of a method to obtain a compact representation of an
array of MLPs using different-order aV-NN model outputs. Three different and well known databases were
used to test the aV-NN model, proving that it is possible to apply this method to classification problems of
increasingly complexity, and covering a wide area of application.

Experimental results demonstrate the capabilities of the proposed aV-NN model to compress a solution
for different classification problems with very high recognition and space savings rates. It has been proved
that this model is capable of solving several classification problems, obtaining almost the same accuracy
than three different configurations of arrays of MLP classifiers. Furthermore, these arrays of MLP classifiers
have been significantly compressed into simpler models, allowing to use less parameters to obtain similar
results.

Future work involves further application of the proposed method to more complex problems, involving
data having an evolution on time. Besides, the V-NN compression capabilities could be tested on ensembles
of different kinds of neural network models. These different NN classifier topologies should be further
studied in order to establish their impact on the compression capabilities offered by the proposed Volterra-
NN model approach.
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