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Abstract

Mel-frequency cepstral coefficients have long been the most widely used
type of speech representation. They were introduced to incorporate bio-
logically inspired characteristics into artificial speech recognizers. Recently,
the introduction of new alternatives to the classic mel-scaled filterbank have
led to improvements in the performance of phoneme recognition in adverse
conditions. In this work we propose a new bioinspired approach for the op-
timization of the filterbanks, in order to find a robust speech representation.
Our approach -which relies on evolutionary algorithms- reduces the number
of parameters to optimize by using spline functions to shape the filterbanks.
The success rates of a phoneme classifier based on hidden Markov models are
used as the fitness measure, evaluated over the well-known TIMIT database.
The results show that the proposed method is able to find optimized filter-
banks for phoneme recognition, which significantly increases the robustness
in adverse conditions.

∗Corresponding author.
Centro de Investigación y Desarrollo en Señales, Sistemas e Inteligencia Computacional,
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1. Introduction

Most current speech recognizers rely on the traditional mel-frequency
cepstral coefficients (MFCC) [1] for the feature extraction phase. This repre-
sentation is biologically motivated and introduces the use of a psychoacoustic
scale to mimic the frequency response in the human ear.

However, as the entire auditory system is complex and not yet fully un-
derstood, the shape of the true optimal filterbank for automatic recognition
is not known. Moreover, the recognition performance of automatic systems
degrades when speech signals are contaminated with noise. This has mo-
tivated the development of alternative speech representations, and many of
them consist in modifications to the mel-scaled filterbank, for which the num-
ber of filters has been empirically set to different values [2]. For example,
Skowronski and Harris [3, 4] proposed a novel scheme for determining filter
bandwidth and reported significant recognition improvements compared to
those using the MFCC traditional features. Other approaches follow a com-
mon strategy which consists in optimizing a speech representation so that
phoneme discrimination is maximized for a given corpus. In this sense, the
weighting of MFCC according to the signal-to-noise ratio (SNR) in each mel
band was proposed in [5]. Similarly, [6] proposed a compression of filterbank
energies according to the presence of noise in each mel sub-band. Other
modifications to the classical representation were introduced in recent years
[7, 8, 9]. Further, in [10], linear discriminant analysis was studied in order
to optimize a filterbank. In a different approach, the use of evolutionary
algorithms has been proposed in [11] to evolve speech features. An evolution
strategy was also proposed in [12], but in this case for the optimization of
a wavelet packet based representation. In another evolutionary approach,
for the task of speaker verification, polynomial functions were used to en-
code the parameters of the filterbanks, reducing the number of optimization
parameters [13]. However, a complex relation between the polynomial coef-
ficients and the filterbank parameters was proposed, and the combination of
multiple optimized filterbanks and classifiers requires important changes in
a standard ASR system.
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Although these alternative features improve recognition results in con-
trolled experimental conditions, the quest for an optimal speech representa-
tion is still incomplete. We continue this search in the present paper using
a biologically motivated technique based on evolutionary algorithms (EA),
which have proven to be effective in complex optimization problems [14]. Our
approach, called evolutionary splines cepstral coefficients (ESCC), makes use
of an EA to optimize a filterbank, which is used to calculate scaled cepstral
coefficients.

This novel approach improves the traditional signal processing technique
by the use of an evolutionary optimization method, therefore, the ESCC can
also be considered as a bioinspired signal representation. Moreover, one can
think about this strategy as related to the evolution of the animal’s auditory
systems. The center frequencies and bandwidths, of the bands by which a
signal is decomposed in the ear, are thought to result from the adaptation of
cochlear mechanisms to the animal’s auditory environment [15]. From this
point of view, the filterbank optimization that we address in this work is
inspired by natural evolution. Finally, this novel approach should be seen
as a biologically motivated technique that is useful for filterbank design, and
can be applied in different applications.

In order to reduce the number of parameters, the filterbanks are tuned
by smooth functions which are encoded by individuals in the EA population.
Nature seems to use “tricks” like this to reduce the number of parameters to
be encoded in our genes. It is interesting to note some recent findings that
suggest a significant reduction in the estimated number of human genes that
encode proteins [16]. Therefore, the idea of using splines in order to codify
several optimization parameters with a few genes is also inspired by nature.

A classifier employing a hidden Markov model (HMM) is used to eval-
uate the individuals, and the fitness is given by the phoneme classification
result. The ESCC approach is schematically outlined in Figure 1. The pro-
posed method attempts to find an optimal filterbank, which in turn provides
a suitable signal representation that improves on the standard MFCC for
phoneme classification.

In a previous work, we proposed a strategy in which different param-
eters of each filter in the filterbank were optimized, and these parameters
were directly coded by the chromosomes [17]. In this way, the size of the
chromosomes was proportional to the number of filters and the number of
parameters, resulting in a large and complex search space. Although the op-
timized filterbanks produced some phoneme recognition improvements, the
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Figure 1: General scheme of the proposed method.

fact that very different filterbanks also gave similar results suggested that the
search space should be reduced. That is why our new approach differs from
the previous one in that the filter parameters are no longer directly coded
by the chromosomes. More precisely, the filterbanks are defined by spline
functions whose parameters are optimized by the EA. In this way, with only
a few parameters coded by the chromosomes, we can optimize several fil-
terbank characteristics. This means that the search space is significantly
reduced whilst still keeping a wide range of potential solutions.

This paper is organized as follows. In the following section, some basic
concepts about EAs are given and the steps for computing traditional MFCC
are explained. Also, a description of the phoneme corpus used for the exper-
iments is provided. Subsequently, the details of the proposed method and its
implementation are described. In the last sections, the results of phoneme
recognition experiments are provided and discussed. Finally, some general
conclusions and proposals for future work are given.

2. Preliminaries

2.1. Evolutionary algorithms

Evolutionary algorithms are meta-heuristic optimization methods moti-
vated by the process of natural evolution [18]. A classic EA consists of three
kinds of operators: selection, variation and replacement [19]. Selection mim-
ics the natural advantage of the fittest individuals, giving them more chance
to reproduce. The purpose of the variation operators is to combine informa-
tion from different individuals and also to maintain population diversity, by
randomly modifying chromosomes. Whether all the members of the current
population are replaced by the offspring is determined by the replacement
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strategy. The information of a possible solution is coded by the chromosome
of an individual in the population, and its fitness is measured by an objec-
tive function which is specific to a given problem. Parents, selected from the
population, are mated to generate the offspring by means of the variation
operators. The population is then replaced and the cycle is repeated until a
desired termination criterion is reached. Once the evolution is finished the
best individual in the population is taken as the solution for the problem
[20]. Evolutionary algorithms are inherently parallel, and one can benefit
from this in a number of ways to increase the computational speed [12].

2.2. Mel-frequency cepstral coefficients

The most popular features for speech recognition are the mel-frequency
cepstral coefficients, which provide greater noise robustness in comparison to
the linear-prediction based feature extraction techniques, but even so they
are highly affected by environmental noise [21].

Cepstral analysis assumes that the speech signal is produced by a linear
system. This means that the magnitude spectrum of a speech signal Y (f)
can be formulated as the product Y (f) = X(f)H(f), of the excitation spec-
trum X(f) and the frequency response of the vocal tract H(f). The speech
signal spectrum Y (f) can be transformed by computing the logarithm to get
an additive combination C(f) = loge |X(f)| + loge |H(f)|, and the cepstral
coefficients c(n) are obtained by taking the inverse Fourier transform (IFT)
of C(f).

Due to the fact that H(f) varies more slowly than X(f), in the cepstral
domain the information corresponding to the response of the vocal tract is
not mixed with the information from the excitation signal, and is represented
by a few coefficients. This is why the cepstral coefficients are useful for
speech recognition, as the information that is useful to distinguish different
phonemes is given by the impulse response of the vocal tract.

In order to incorporate findings about the critical bands in the human au-
ditory system into the cepstral features, Davis and Mermelstein [1] proposed
decomposing the log magnitude spectrum of the speech signal into bands ac-
cording to the mel-scaled filterbank. Mel is a perceptual scale of fundamental
frequencies judged by listeners to be equal in distance from one another [22],
and the mel filterbank (MFB) consists of triangular overlapping windows. If
the M filters of a filterbank are given by Hm(f), then the log-energy output
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Figure 2: A mel filterbank in which the gain of each filter is scaled by its bandwidth to
equalize filter output energies.

of each filter m is computed by:

S[m] = ln

[
∫

|X(f)|2Hm(f)df

]

. (1)

Then, the mel-frequency cepstrum is obtained by applying the discrete cosine
transform to the discrete sequence of filter outputs:

c[n] =
M−1
∑

m=0

S[m] cos(πn(m − 1/2)/M), 0 ≤ n < M. (2)

These coefficients are the so called mel frequency cepstral coefficients (MFCC)
[23].

Figure 2 shows a MFB made up of 23 equal-area filters in the frequency
range from 0 to 8 kHz. The bandwidth of each filter is determined by the
spacing of central frequencies, which is in turn determined by the sampling
rate and the number of filters [24]. This means that, given the sampling
rate, if the number of filters increases, bandwidths decrease and the number
of MFCC increases. For both MFCC and ESCC, every energy coefficient
resulting from band integration is scaled, by the inverse of the filter area for
MFCC, and by optimized weight parameters in the case of ESCC.

3. Evolutionary splines cepstral coefficients

The search for an optimal filterbank could involve the adjustment of sev-
eral parameters, such as the number of filters, and the shape, amplitude,
position and width of each filter. The optimization of all these parameters
together is extremely complex, so in previous work we decided to maintain
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some of the parameters fixed [17]. However, when considering triangular fil-
ters, each of which was defined by three parameters, the results showed that
we were dealing with an ill-conditioned problem.

In order to reduce the chromosome size and the search space, here we pro-
pose the codification of the filterbanks by means of spline functions. We chose
splines because they allow us to easily restrict the starting and end points of
the functions’ domain, and this was necessary because we wanted all possible
filterbanks to cover the frequency range of interest. This restriction benefits
the regularity of the candidate filterbanks. We denote the curve defined by
a spline as y = c(x), where the variable x takes nf equidistant values in the
range (0, 1) and these points are mapped to the range [0, 1]. Here, nf stands
for the number of filters in a filterbank, so every value x[i] is assigned to a
filter i, for i = 1, ..., nf . The frequency positions, determined in this way,
set the frequency values where the triangular filters reach their maximum,
which will be in the range from 0 Hz to half the sampling frequency. As can
be seen on Figure 3(b), the starting and ending frequencies of each filter are
set to the points where its adjacent filters reach their maximum. Therefore,
the filter overlapping is restricted. Here we propose the optimization of two
splines. The first one to arrange the frequency positions of a fixed number
of filters and the second one to set the filters amplitude.

Splines for optimizing the frequency position of the filters: in this
case the splines are monotonically increasing and constrained such that c(0) =
1 and c(1) = 1, while the free parameters are composed of the y values for
two fixed values of x, and the derivatives at the points x = 0 and x = 1.
These four optimization parameters are schematized in Figure 3(a) and called
y1 = c(x1), y2 = c(x2), σ and ρ respectively. As the splines are intended to
be monotonically increasing, parameter y2 is restricted to be equal to or
greater than y1. Then, parameter y2 is obtained as y2 = y1 + δy2

, and the
parameters which are coded in the chromosomes are y1, δy2

, σ and ρ. Given
a particular chromosome, which sets the values of these parameters, the y[i]
corresponding to the x[i] ∀ i = 1, ..., nf are obtained by spline interpolation,
using [25]:

y[i] = P [i]y1 + Q[i]y2 + R[i]y′′

1 + S[i]y′′

2 , (3)

where y′′

1 and y′′

2 are the second derivatives at points y1 and y2 respectively.
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a)

b)

Figure 3: Schemes illustrating the use of splines to optimize the filterbanks. a) A spline
being optimized to determine the frequency position of filters, and b) a spline being opti-
mized to determine the amplitude of the filters.

P [i], Q[i], R[i] and S[i] are defined by:

P [i] ,
x2 − x[i]

x2 − x1

, R[i] ,
1

6
((P [i])3 − P [i])(x2 − x1)

2, (4)

Q[i] , 1 − P [i], S[i] ,
1

6
((Q[i])3 − Q[i])(x2 − x1)

2. (5)

However, the second derivatives y′′

1 and y′′

2 , which are generally unknown,
are required in order to obtain the interpolated values y[i] using (3). In
the case of cubic splines the first derivative is required to be continuous
across the boundary of two intervals, and this requirement allows to obtain
the equations for the second derivatives [25]. The required equations are
obtained by setting the first derivative of (3) evaluated for xj in the interval
(xj−1, xj) equal to the same derivative evaluated for xj but in the interval
(xj , xj+1). This way a set of linear equations is obtained, for which it is
necesary to set boundary conditions for x = 0 and x = 1 in order to obtain
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Figure 4: Mel scale and spline scale examples comparison.

a unique solution. These boundary conditions may be set by fixing the y
values for x = 0 and x = 1, or the values for the derivative σ and ρ.

All the y[i] are then linearly mapped to the frequency range of interest,
namely from 0 Hz to half sampling frequency (fs), in order to adjust the
frequency values where the nf filters reach their maximum, f c

i :

f c
i =

(y[i] − ymin)fs

ymax − ymin

, (6)

where ymin and ymax are the spline minimum and maximum values respec-
tively. As can be seen in Figure 3(a), for segments where y increases fast the
filters are far from each other, and for segments where y increases slowly the
filters are closer together. Parameter a in Figure 3(a) controls the range of
y1 and y2 (and δy2

), and it is set in order to reduce the number of splines
with y values outside of [0, 1]. The chromosomes which produce splines that
go beyond the boundaries are penalized, and the corresponding curves are
modified so that y values lower than 0 are set to 0 while values greater than
1 are set to 1. Figure 4 shows some examples of splines that meet the restric-
tions and they are compared with the classical mel mapping. Note that on
the x-axis, nf equidistant points are considered, and the y-axis is mapped to
frequency in hertz, from zero to the Nyquist frequency.

Splines for optimizing the amplitude of the filters: the only restriction
for these splines is that y varies in the range [0, 1], and the values at x = 0 and
x = 1 are not fixed. So, in this case the optimization parameters are the four
corresponding values y1, y2, y3 and y4 for the fixed values x1, x2, x3 and x4.
These four yj parameters vary in the range [0, 1]. Here, the interpolated y[i]
values directly determine the gain of each of the nf filters. This is outlined in
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Figure 3(b), where the gain of each filter is weighted according to the spline.
Thus, it is expected to enhance the frequency bands which are relevant for
classification, while disregarding those that are noise-corrupted.

Note that, as will be explained in Section 3.2, using this codification the
chromosome size is reduced from nf to 4. For instance, for a typical num-
ber of filters the chromosome size is reduced from 30 to 4. Moreover, for the
complete scheme in which both filter positions and amplitudes are optimized,
the chromosome size is reduced from 60 to 8 genes. Indeed, with the splines
codification the chromosome size is independent of the number of filters.

3.1. Adaptive training and test subset selection

In order to avoid the problem of overfitting during the optimization, we
incorporate an adaptation of the training subset selection method similar to
the one proposed in [26]. The filterbank parameters are evolved on selected
subsets of training and test patterns, which are modified throughout the
optimization. In every EA generation, training and test subsets are randomly
selected for the fitness calculation, giving more chance to the test cases that
were previously misclassified and to those that have not been selected for
several generations. This strategy enables us to evolve filterbanks with more
variety, giving generalization without increasing computational cost.

This is implemented by assigning a probability to each training/test case.
In the first generation, the probabilities are initialized to the same value for all
cases. For the training set, the probabilities are fixed during the optimization,
while the probabilities for the test cases are updated every generation. In
this case, for generation g the probability of selection for test case k is given
by:

Pk(g) =
Wk(g) S
∑

j Wj(g)
, (7)

where Wk(g) is the weight assigned to test case k in generation g, and S is
the size of the subset selected. The weight for a test case k is obtained by:

Wk(g) = Dk(g) + Ak(g), (8)

where Dk(g) (difficulty of test case k) counts the number of times that test
case k is misclassified, and Ak(g) (age of test case k) counts the number gen-
erations since test case k was selected for the last time. For every generation,
the age of every unselected case is incremented by 1, and the age of every
selected case is set to 1.
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3.2. Description of the optimization process

In the EA population, every individual encodes the parameters of the
splines that represent the different filterbanks, giving a particular formula
for the ESCC. A chromosome is coded as a string of real numbers, its size
is given by the number of optimized splines multiplied by the number of
spline parameters, and they are initialized by means of a random uniform
distribution. In the following section we show optimized filterbanks obtained
by means of one and two splines. In the case of one spline we optimized
only the frequency position of the filters and in the case of two splines we
optimized both the frequency position and the filter amplitudes. For these
cases, the chromosomes were of size 4 and 8 respectively.

The EA uses the roulette wheel selection method [27], and elitism is
incorporated into the search due to its proven capabilities to enforce the
algorithm convergence under certain conditions [18]. The elitist strategy
consists in maintaining the best individual from one generation to the next.
The variation operators used in this EA are mutation and crossover, and they
were implemented as follows. Mutation consists in the random modification
of a random spline parameter, using a uniform distribution. The classical
one-point crossover operator interchanges spline parameters between different
chromosomes. The selection process should assign greater probability to the
chromosomes providing the best filterbanks, and these will be the ones that
facilitate the classification task. The fitness function consists of a phoneme
classifier, and the fitness value of an individual is its success rate.

The steps for the filterbank optimization are summarized in Algorithm 1,
and the details for the population evaluation are shown in Algorithm 2.

4. Results and discussion

Many different experiments were carried out in order to find an optimal
filterbank for the task of phoneme recognition. In this section we discuss
the EA runs which produced the most interesting results and compare the
obtained ESCC to the classic MFCC on the same classification tasks.

4.1. Speech data

Phonetic data was extracted from the TIMIT speech database [28] and
selected randomly from all dialect regions, including both male and female
speakers. Utterances were phonetically segmented to obtain individual files
with the temporal signal of every phoneme occurrence. White noise was
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Algorithm 1: Optimization for ESCC.

Initialize random EA population
Initialize Pk(g) = 1 for all k

Select subsets and update Ak(g)
Evaluate population

Update Dk(g) based on classification results
repeat

Parent selection (roulette wheel)
Create new population from selected parents
Replace population
Given Ak(g) and Dk(g) obtain Pk(g) using (7) and (8)
Select subsets and update Ak(g)
Evaluate population

Update Dk(g) based on classification results

until stopping criteria is met

also added at different SNR levels. The sampling frequency was 16 kHz and
the frames were extracted using a Hamming window of 25 milliseconds (400
samples) and a step-size of 200 samples. All possible frames within a phoneme
occurrence were extracted and padded with zeros where necessary. The set of
English phonemes /b/, /d/, /eh/, /ih/ and /jh/ was considered. Occlusive
consonants /b/ and /d/ were included because they are very difficult to
distinguish in different contexts. Phoneme /jh/ presents special features of
the fricative sounds. Vowels /eh/ and /ih/ are commonly chosen because
they are close in the formant space. As a consequence, this phoneme set
consists of a group of classes which is difficult for automatic recognition [29].

4.2. Experimental setup

Our phoneme classifier is based on continuous HMM, using Gaussian
mixtures with diagonal co-variance matrices for the observation densities
[30]. For the experiments, we used a three state HMM and mixtures of four
gaussians. This fitness function uses tools from the HMM Toolkit (HTK) [31]
for building and manipulating hidden Markov models. These tools implement
the Baum-Welch algorithm [32] which is used to train the HMM parameters,
and the Viterbi algorithm [33] which is used to search for the most likely
state sequence, given the observed events, in the recognition process.

In all the EA runs the population size was set to 30 individuals, crossover
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Algorithm 2: Evaluate population.

for each individual in the population do

Obtain 1 spline y[i] (3) given y1, y2, σ and ρ (genes 1 to 4)
Given y[i], obtain filter frequency positions f c

i using (6)
Obtain 2 spline y[i] (3) given y1, y2, y3 and y4 (genes 5 to 8)
Set filter i amplitude to y[i]
Build M filterbank filters Hm(f)
Given Hm(f), compute filter outputs S[m] for each X(f) using (1)
Given the sequence S[m], compute ESCC using (2)
Train the HMM based classifier on the selected training subset
Test the HMM based classifier on the selected test subset
Assign classification rate as the current individual’s fitness

Table 1: Averaged validation results for phoneme recognition (shown in percent). Filter-
banks obtained from the optimization of filter center frequency values, while filter gains
scaled according to bandwidths, and using clean signals.

Match training validation Mismatch training validation
FB nf nc 0 dB 10 dB 20 dB 30 dB clean 0 dB 10 dB 20 dB 30 dB
EFB-A1 30 16 73.14 78.06 73.54 70.74 70.94 23.86 44.06 69.66 70.54

EFB-A2 30 16 73.36 77.94 73.52 71.60 71.16 22.98 43.14 70.52 71.40

EFB-A3 30 16 73.60 78.08 73.36 71.14 71.00 23.62 44.14 69.94 71.28

EFB-A4 30 16 72.88 78.04 73.56 71.46 71.92 23.68 43.80 70.06 71.28

MFB 30 16 73.44 77.88 71.22 70.20 69.94 23.72 44.74 66.60 70.38

rate was set to 0.9 and the mutation rate was set to 0.07. Parameter a,
discussed in the previous section, was set to 0.1. For the optimization, a
changing set of 1000 signals (phoneme examples) was used for training and a
changing set of 400 signals was used for testing. Both sets were class-balanced
and resampled every generation. The resampling of the training set was made
randomly from a set of 5000 signals, and the resampling of the testing set
was made taking into account previous misclassifications and the age of each
of 1500 signals. The age of a signal was defined as the number of generations
since it was included in the test set. The termination criteria for an EA run
was to stop the optimization after 2500 generations. At termination, the
filterbanks with the best fitness values were chosen.

Further cross validation tests with ten different data partitions, consist-
ing of 2500 training signals and 500 test signals each, were conducted with
selected filterbanks. Two different validation tests were employed: match
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Figure 5: Evolved filterbanks obtained in the optimization of filter center positions only
(filter gains normalized according to bandwidths) using clean signals. a) EFB-A1, b)
EFB-A2, c) EFB-A3 and d) EFB-A4.

training (MT), where the SNR was the same in both training and test sets,
and mismatch training (MMT), which means testing with noisy signals (at
different SNR levels) using a classifier that was trained with clean signals.
From these validation tests we selected the best filterbanks, discarding those
that were over-optimized (i.e. those with higher fitness but with lower vali-
dation result). Averaged validation results for the best optimized filterbanks
were compared with the results achieved with the standard MFB on the same
ten data partitions and training conditions. Note that, in all these experi-
ments, the classifier was evaluated in MT conditions during the evolution.

4.3. Optimization of central frequencies

In the first experiment only the frequency positions of the filters were op-
timized, with chromosomes of length 4 (as explained in the previous section).
The gain of each filter was not optimized, so, as in the case of the MFCC,
every filter amplitude was scaled according to its bandwidth. Note that the
number of filters in the filterbanks is not related to the size of the chromo-
somes. We considered filterbanks composed of 30 filters, while the feature
vectors consisted of the first 16 cepstral coefficients. In this case, clean signals
were used to train and test the classifier during the optimization.

Table 1 summarizes the validation results for evolved filterbanks (EFB)
EFB-A1, EFB-A2, EFB-A3 and EFB-A4, which are the best from the first
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Figure 6: Evolved filterbanks obtained in the optimization of filter center positions and
amplitudes simultaneously and using clean signals. a) EFB-B1, b) EFB-B2, c) EFB-B3
and d) EFB-B4.

experiment. Their performance is compared with that of the classic filterbank
on different noise and training conditions. As can be seen, in most test
cases the optimized filterbanks perform better than MFB, specially for match
training tests. Figure 5 shows these four EFBs, which exhibit little difference
between them. Moreover, their frequency distributions are similar to that of
the classical MFB. However, the resolution that these filterbanks provide
below 2 kHz is higher, probably because this is the place for the two first
formant frequencies. In contrast, when polynomial functions were used to
encode the parameters [13], the obtained filterbanks were not regular and
did not always cover most of the frequency band of interest. This may be
attributed to the complex relation between filterbank parameters and the
optimized polynomials.

4.4. Optimization of filter gain and center frequency

The second experiment differs only in that the filters’ amplitude were
also optimized, coding the parameters of two splines in each chromosome
of length 8. Validation results for EFB-B1, EFB-B2, EFB-B3 and EFB-B4
are shown in Table 2, from which important improvements over the classical
filterbank can be appreciated. Each of the optimized filterbanks perform
better than MFB in most of the test conditions. For the MT cases of 20 dB,
30 dB and clean, and for the MMT case of 10 dB the improvements are most
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Table 2: Averaged validation results for phoneme recognition (shown in percent). Filter-
banks obtained from the optimization of filter center frequency and filter gain values, and
using clean signals.

Match training validation Mismatch training validation
FB nf nc 0 dB 10 dB 20 dB 30 dB clean 0 dB 10 dB 20 dB 30 dB
EFB-B1 30 16 73.06 78.40 78.56 75.52 74.16 22.94 45.70 55.44 71.80

EFB-B2 30 16 73.76 78.38 79.08 76.26 74.84 24.26 50.16 64.84 73.10

EFB-B3 30 16 73.54 77.60 78.04 76.02 74.28 22.56 47.32 63.82 70.60

EFB-B4 30 16 73.74 78.74 79.18 75.66 75.40 23.22 51.46 66.58 72.96

MFB 30 16 73.44 77.88 71.22 70.20 69.94 23.72 44.74 66.60 70.38

significant. These four EFBs, which can be observed in Figure 6, differ from
MFB (shown in Figure 2) in the scaling of the filters at higher frequencies.
Moreover, these filterbanks emphasize the high frequency components. As
in the case of those in Figure 5, these EFBs show more filter density before
2 kHz, compared to MFB.

In the third experiment both the frequency positions and amplitude of
the filters was optimized (as in the previous case). However, in this case
noisy signals at 0 dB SNR were used to train and test the classifier during
the evolution. Validation results from Table 3 reveal that for the case of 0
dB SNR, in both MT and MMT conditions, these EFBs improve the ones
in Tables 1 and 2. The filterbanks optimized on clean signals perform better
for most of the noise contaminated conditions.

These EFBs are more regular compared to those obtained in previous
works, where the optimization considered three parameters for each filter
[17]. These parameters were the frequency positions at the initial, top and
end points of the triangular filters, while size and overlap were left un-
restricted. Results showed some phoneme classification improvements, al-
though the shapes of optimized filterbanks were not easy to explain. More-
over, dissimilar filterbanks gave comparable results, showing that we were
dealing with an ill-conditioned problem. This was particularly true when the
optimization was made using noisy signals, as the solution does not continu-
ously depends on data. In this work, dissimilarities between EFBs are only
noticeable for those filterbanks that were optimized using noisy signals.

From Figure 7 we can observe that the filterbanks evolved on noisy signals
differ widely from MFB and the ones evolved on clean signals. For example,
the filter density is greater in different frequency ranges, and these ranges are
centered in higher frequencies. Moreover, this amplitude scaling, in contrast
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Figure 7: Evolved filterbanks obtained in the optimization of filter center positions and
amplitudes simultaneously, and using signals with noise at 0 dB SNR. a) EFB-C1, b)
EFB-C2, c) EFB-C3 and d) EFB-C4.

Table 3: Averaged validation results for phoneme recognition (shown in percent). Filter-
banks obtained from the optimization of filter center frequency and filter gain values, and
using noisy signals.

Match training validation Mismatch training validation
FB nf nc 0 dB 10 dB 20 dB 30 dB clean 0 dB 10 dB 20 dB 30 dB
EFB-C1 30 16 73.88 76.50 76.24 70.78 69.14 31.76 44.46 49.16 67.20
EFB-C2 30 16 74.66 78.60 78.96 73.78 70.76 25.74 46.68 49.76 66.88
EFB-C3 30 16 74.90 77.18 76.10 70.56 69.48 29.70 44.50 49.40 68.06
EFB-C4 30 16 74.76 78.16 78.54 75.36 71.04 24.80 46.08 52.12 66.36
MFB 30 16 73.44 77.88 71.22 70.20 69.94 23.72 44.74 66.60 70.38

to the preceding filterbanks, depreciate the lower frequency bands. This fea-
ture is present in all these filterbanks, giving attention to high frequencies,
as opposed to MFB, and taking higher formants into account. However, the
noticeable dissimilarities in these four filterbanks suggest that the optimiza-
tion with noisy signals is much more complex, preventing the EA to converge
to similar solutions.

4.5. Analysis and discussion

Figure 8 summarizes some results shown in Tables 1, 2 and 3 for EFB-
A4, EFB-B2, EFB-C4 and compares them with MFB on different noise and
training conditions. From Figure 8(a) we can observe that, in MT conditions,
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a)

b)

Figure 8: Averaged validation results for phoneme classification comparing MFB with
EFB-A4, EFB-B2 and EFB-C4 at different training conditions. a) Validation in match
training conditions, and b) validation in mismatch training conditions.

the EFBs outperform MFB in almost all the noise conditions considered.
Figure 8(b) shows some improvements of EFB-A4 and EFB-B2, over MFB,
in MMT conditions.

Table 4 shows confusion matrices for phoneme classification with MFB
and EFB-B2, from validation at various SNR levels in the MT case. From
these matrices, one can notice that phonemes /b/, /eh/ and /ih/ are fre-
quently misclassified using MFB and they are significantly better classified
with EFB-B2. Moreover, with EFB-B2 the variance between the classifi-
cation rates of individual phonemes is smaller. It can also be noticed that
phoneme /b/ is mostly confused with phoneme /d/ and vice versa, and the
same happens with vowels /eh/ and /ih/. This occurs with both filterbanks
MFB and EFB-B4, though, the optimized filterbank reduces these confusions
considerably.

As these filterbanks were optimized for a reduced set of phonemes, one
cannot a priori expect continuous speech recognition results to be improved.
Thus, some preliminary tests were made and promising results were obtained.
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Table 4: Confusion matrices showing percents of average classification rates from ten data
partitions in MT conditions, for both MFB and EFB-B2.

MFB (30/16) EFB-B2
/b/ /d/ /eh/ /ih/ /jh/ /b/ /d/ /eh/ /ih/ /jh/

1
0

d
B

/b/ 80.0 15.1 01.1 02.9 00.9 81.3 15.2 00.5 02.2 00.8
/d/ 20.1 72.2 00.2 02.0 05.5 20.4 71.0 00.6 01.9 06.1
/eh/ 03.0 01.0 78.4 17.6 00.0 02.2 01.2 81.6 15.0 00.0
/ih/ 02.0 03.2 21.3 73.2 00.3 01.5 01.1 23.9 73.1 00.4
/jh/ 00.0 14.3 00.0 00.1 85.6 00.5 14.5 00.0 00.1 84.9

Avg: 77.88 Avg: 78.38

2
0

d
B

/b/ 74.1 21.5 02.2 10.7 00.5 79.8 16.7 00.7 02.1 00.7
/d/ 15.0 78.8 00.9 10.4 03.9 17.9 74.8 00.6 02.8 03.9
/eh/ 12.7 04.9 55.6 26.5 00.3 00.7 01.0 76.6 21.7 00.0
/ih/ 06.3 03.9 27.1 62.4 00.3 00.4 00.5 24.0 75.1 00.0
/jh/ 00.7 13.6 00.0 00.5 85.2 00.5 09.9 00.1 00.4 89.1

Avg: 71.22 Avg: 79.08

3
0

d
B

/b/ 53.2 32.2 06.9 07.0 00.7 78.9 18.6 01.0 01.0 00.5
/d/ 11.0 77.0 02.7 04.4 04.9 17.1 76.5 00.8 01.3 04.3
/eh/ 01.3 02.3 68.9 27.4 00.1 02.3 01.0 72.1 24.6 00.0
/ih/ 00.9 01.9 30.2 66.9 00.1 01.8 01.3 26.3 70.6 00.0
/jh/ 01.5 12.1 00.5 00.9 85.0 00.7 14.8 00.2 01.1 83.2

Avg: 70.2 Avg: 76.26

cl
ea

n

/b/ 54.4 28.9 07.9 07.8 01.0 74.9 18.9 02.4 03.3 00.5
/d/ 12.2 76.3 01.9 04.8 04.8 15.5 78.1 00.9 01.0 04.5
/eh/ 02.2 02.1 69.4 26.0 00.3 01.4 01.3 67.9 29.3 00.1
/ih/ 02.4 01.5 31.8 64.2 00.1 03.1 01.3 26.7 68.9 00.0
/jh/ 02.1 11.7 00.2 00.6 85.4 01.1 13.2 00.9 00.4 84.4

Avg: 69.94 Avg: 74.84

A recognition system was built using tools from HTK and the performance
of the ESCC was compared to that of the classical MFCC representation, us-
ing sentences from dialect region one in TIMIT database with additive white
noise at different SNR (in MMT conditions). Preemphasis was applied to sig-
nal frames and the feature vectors were composed of the MFCC, or ESCC,
plus delta and acceleration coefficients. The sentence and word recognition
rates were close for MFCC and ESCC in almost all cases. At 15 dB the word
recognition rates were 15.83% and 31.98% for MFB and EFB-B4, respec-
tively. This suggests that even if the optimization is made over a small set
of phonemes, the resulting feature set still allows us to better discriminate
between other phoneme classes. Moreover, it is important to note that the
five phonemes selected for the filterbank optimization represent only 9.38%
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Figure 9: Spectrograms for a fragment of sentence SI648 from TIMIT corpus with additive
white noise at 20 dB SNR. Computed from the original signal (top), reconstructed from
MFCC (middle) and reconstructed from EFB-B4 (bottom).

(b: 1.49% , d: 2.28%, eh: 2.35%, ih: 2.76%, jh: 0.51%) of the total number
of phonemes in the test utterances. That is, from a total of 3956 phonemes
in the test utterances, only 371 correspond to the phoneme set considered in
the optimization.

In order to understand the information that these filterbanks retain, an es-
timate of the short-time magnitude spectrum was recovered using the method
proposed in [34]. This method scales the spectrogram of a white noise signal
by the short-time magnitude spectrum recovered from the cepstral coeffi-
cients. The spectrograms for a fragment of sentence SI648 from TIMIT
corpus with additive white noise at 20 dB SNR is shown in Figure 9. The
spectrogram on top is the one corresponding to the original signal, in the
middle the reconstructed spectrogram from MFCC is shown, and the one at
the bottom was reconstructed from the ESCC obtained by means of EFB-B4.
It can be observed that the spectrogram reconstructed from ESCC is less af-
fected by noise than the other two. Moreover, the information from formant
frequencies is enhanced and made easier to detect in the spectrogram corre-
sponding to ESCC, which makes phoneme classification easier. This means
that, in comparison to the MFB, the filter distribution and bandwidths of
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Figure 10: Squared Pearson’s correlation between MFCC and ESCC obtained with EFB-
B1, EFB-B2 and EFB-B3 (top left, top right and bottom left respectively). Normalized
sum of the correlation coefficients outside the diagonal (bottom right).

EFB-B4 allow more relevant information to be preserved.
In order to evaluate the relation of the MFCC and the ESCC we com-

pared them using Pearson’s correlation coefficient r. Figure 10 shows squared
correlation matrices comparing the MFCC with the ESCC (obtained using
EFB-B1, EFB-B1 and EFB-B3) over 17846 phoneme frames with additive
noise at 0 dB SNR. We observe that approximately the first half of the coeffi-
cients are quite highly correlated between the filterbanks under comparison.
Moreover, in the case of EFB-B2 there are more correlation coefficients out-
side the diagonal which are different from zero. This means that the ESCC
obtained with EFB-B2 are the least related to the MFCC, in the sense that
the information is distributed differently between all the cepstral coefficients.
This can be better appreciated in the bar plot, giving the normalized sum
of all the correlation coefficients outside the diagonal. Note that EFB-B2 is
the one which gives the best validation results.

A similar comparison was made between the cepstral coefficients from a
single filterbank, in order to evaluate how they are correlated. In Figure 11
the squared correlation matrices of the MFCC, and the ESCC from EFB-B1,
EFB-B2 and EFB-B3 are shown. It can be noticed that the matrix for EFB-
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Figure 11: Squared Pearson’s correlation of MFCC and ESCC obtained with EFB-B1,
EFB-B2 and EFB-B3 (top left, top center, top right and bottom left respectively). Nor-
malized sum of the correlation coefficients outside the diagonal (bottom right).

B2 is the one with the least number of coefficients different from zero outside
the diagonal. Moreover, the normalized sum of the correlation coefficients
outside the diagonal is smaller for EFB-B2, meaning that the ESCC from
EFB-B2 are less correlated than MFCC. For this reason the ESCC from
EFB-B2 better satisfy the assumptions for HMM based speech recognizers
using GM observation densities with diagonal covariance matrices (a common
practice in speech recognition) [30].

Another subject to consider is the computational load of the optimiza-
tions detailed in the previous section. An EA run of 2500 generations (which
is the number of generations used in this work for the experiments) takes ap-
proximately 84 hours (about 2 minutes for each generation) on a computer
cluster consisting of eleven processors of 3 GHz clock speed. It is interesting
to note that the most expensive computation in the optimization is the fit-
ness evaluation, that is, the training and test of the HMM based classifier.
In comparison to the approach [17] (in which the filterbank parameters were
directly coded in the chromosomes), the reduced chromosome size allowed
the EA to converge to better solutions taking almost the same processing

22

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. D

. V
ig

no
lo

, H
. L

. R
uf

in
er

, D
. H

. M
ilo

ne
 &

 J
. G

od
da

rd
; "

E
vo

lu
tio

na
ry

 s
pl

in
es

 f
or

 c
ep

st
ra

l f
ilt

er
ba

nk
 o

pt
im

iz
at

io
n 

in
 p

ho
ne

m
e 

cl
as

si
fi

ca
tio

n"
E

U
R

A
SI

P 
Jo

ur
na

l o
n 

A
dv

an
ce

s 
in

 S
ig

na
l P

ro
ce

ss
in

g.
 B

io
lo

gi
ca

lly
 I

ns
pi

re
d 

Si
gn

al
 P

ro
ce

ss
in

g:
 A

na
ly

si
s,

 A
lg

or
ith

m
s 

an
d 

A
pp

lic
at

io
ns

, V
ol

. 2
01

1,
 p

p.
 1

-1
4,

 2
01

1.



time. It is important to note that this approach does not imply additional
load to the standard speech recognition procedure. The optimization step
is previous to the recognition, and the filterbank is fixed during the entire
recognition. Moreover, the MFCC and the ESCC feature extraction tech-
niques are similar, and the optimization can be considered as part of the
training.

5. Conclusions

In this work an evolutionary method has been proposed for the opti-
mization of a filterbank, in order to obtain a new cepstral representation for
phoneme classification. We introduced the use of a spline interpolation which
reduces the number of parameters in the optimization, providing an adequate
search space. The advantages of evolutionary computation are successfully
exploited in the search for an optimal filterbank. The encoding of parame-
ters by means of spline functions significantly reduced the chromosome size
and search space, while preserving a broad variety of candidate solutions.
Moreover, the suitable variation operators allowed the algorithm to explore
a large pool of potential filterbanks.

Experimental results show that the proposed method is able to find a
robust signal representation, which allows us to improve the classification
rate for a given set of phonemes at different noise conditions. Furthermore,
this strategy can provide alternative speech representations that improve the
results of the classical approaches for specific conditions. These results also
suggest that there is further room for improvement over the classical filter-
bank. On the other hand, with the use of these optimized filterbanks the
robustness of an ASR system can be improved with no additional compu-
tational cost, and without modifications in the HMM structure or training
algorithm.

Further work will include the utilization of other search methods, such
as particle swarm optimization and scatter search [35]. In addition, different
variation operators can be evaluated and other filter parameters such as
bandwidth could also be optimized. The possibility of replacing the HMM
based classifier by another objective function of lower computational cost,
such as a measure of class separability, will also be studied. Finally, future
experiments will include the optimization using a bigger set of phonemes
and further comparisons of the ESCC to classical features in the continuous
speech recognition task.
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Universidad Autónoma Metropolitana, Iztapalapa, México D.F., 2010.
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