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Abstract— The sleep apnea-hipopnea syn-

drome is a common disorder which could be

detected by the decrease of the oxygen satu-

ration. In this work we propose the use of a

sparse representation of the SaO2 signal to help

in the detection of this pathology. For train

and test we used the SHHS Polysomnography

Database which include 1000 polysomnograms.

We show that the reconstruction of the SaO2

signal from an optimal estimated dictionary has

errors in the order 10−13. The activation coeffi-

cients obtained from this dictionary was used to

non-linearly regress the apnea-hipopnea marks

by training a multilayered perceptron. Then

we estimate the apnea-hipopnea marks from a

test dataset with very good results, with a cor-

relation coefficient of 81.74%.

Keywords— Sparse representation, Dictio-

nary, Neural network, Sleep apnea-hipopnea

syndrome.

1 INTRODUCTION

The American Academy of Sleep Medicine distin-
guishes more than 80 different sleep disorders [2].
Problems with falling asleep or daytime sleepiness af-
fect approximately 35 to 40% of the U.S. adult popula-
tion annually and are a significant cause of morbidity
and mortality [5].

One of the pathologies is the obstructive sleep
apnea-hipopnea (OSAH) syndrome. The syndrome is
characterized by repetitive episodes of airway narrow-
ing or collapse during sleep. The Argentine consensus
of respiratory disorder related to sleep shows that the
sleep apnea-hipopnea syndrome has a prevalence of 2%
to 4% in adults and increase in the elderly [3].

The gold standard diagnostic test for sleep apnea is
an overnight polysomnography in a sleep laboratory
which is costly in terms of time and money, and the
accessibility in some areas is limited. The pulse oxime-
try is attractive, for the measure of OSAH, because of
its availability and ease of application. A decrease of
oxygen saturation (SaO2) detected by pulse oximetry
could indicate respiratory events.
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Figure 1: Diagram of the proposed method for apnea-
hipopnea detection.

In the last years, several researchers have taken a
different approaches to traditional signal processing.
These new formulations give rise to techniques based
on non-linear systems and higher-order statistics, in-
cluding independent component analysis (ICA) and
methods to obtain sparse representations (SR) of a sig-
nal. They provide new ways of phrasing the solution
of the problem of signal modeling or representation.
One underlying idea is that of representing the signals
involved using only a few significant characteristics;
that is, as a SR of only a few basic waveforms. There
are applications of these techniques to different fields,
such as: natural image analysis [16, 15], audio and mu-
sic signals [17], general biomedical signals [6, 12, 13]
and automatic speech recognition [8, 7].

The aim of this work is to estimate a dictionary that
produce a SR of the SaO2 signal, i.e. the coefficients of
the representation have few active atoms that preserve
the most relevant information. After that, the activa-
tion coefficients are used as input of a multilayered per-
ceptron in order to regress the respiratory events from
the same dataset used to learn the dictionary. In Fig.
1 we show a block diagram of the proposed system to
evaluate the apneas-hipopneas detection. Here, Pre-P
is a pre-processing algorithm to denoise and window-
ing the signal, MP is the maching pursuit algorithm
which estimates the activation coefficients of the dic-
tionary of each frame signal, the neural network (NN)
previously trained try to estimate the apnea-hipopnea
marks by the activation coefficients, and the last block
is a post proccesing (Post-P) algorithm which elimi-
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nates spureous detections.
In the next section we describe the methods to ob-

tain the dictionary and the coefficients of a SR of sig-
nals. After that we present preliminary results, where
we show the sparsity of the dictionary and classifica-
tion results.

2 METHODS

2. 1 Sparse representation of signals

Given a signal s ∈ ℜN , we consider a representation
in terms of a dictionary Φ as a decomposition of the
form:

s =

M
∑

i=1

φjaj = Φa (1)

where a ∈ ℜM is the coefficients vector, Φ ∈ ℜN×M

with M ≥ N , is a collection of waveforms or atoms φj

and both (a and Φ) usually unknown.
Some authors use the term “basis” instead of “dic-

tionary”; however, as the set of atoms may not be
linearly independent and usually more atoms than the
space dimension are used, the last one is preferred.

When there are more waveforms in the dictionary
than samples s, i.e., M > N (referred to as an over-
complete dictionary), or when the waveforms do not
form a basis, then there will be non-unique representa-
tions of the signal. In this situation a suitable criterion
is required to select only one of them. In this con-
text, sparseness often refers to the criterion of choos-
ing a representation with “as few non-zero coefficients
as possible” (typically using the l0 norm), although
several other criteria have been introduced [4].

The problem of a SR of s with respect to l0 could
be stated as follows:

min ||a||0 subject to Φa = s (2)

It is important to note that in the overcomplete case
mentioned above, although Eq. 1 is linear, the coeffi-
cients aγ chosen as the solution correspond to a non-
linear function of the data s : s → {aγ}.

In order to solve the SR problem, it can be split
into two sub-problems: inference and learning. The
first one consists in finding the representation coeffi-
cients a which satisfy a given sparsity criterion. The
second one involves finding the optimal dictionary Φ

to represent the data. The last one is usually the most
complex of both.

2. 2 Inference of the activation coefficient

A more general framework is assumed, where Eq. 1 is
rewritten to include an additive Gaussian noise term
ε as follows:

s = Φa+ ε (3)

Following terminology used in ICA, Eq. 3 is referred
to as the generative model, to signify that one gener-
ates the signal s ∈ ℜN from a set of hidden sources aj ,

arranged as a state vector aM , using a mixing matrix
or dictionary Φ of size N ×M , with M ≥ N .

The aj are initially assumed to be statistically inde-
pendent, with a joint a priori distribution:

P (a) =

M
∏

j=1

P (aj) (4)

If Φ is known and s is given, the state vector a can
be estimated via the Bayes’s rule by considering the
posterior distribution:

P (a|Φ, s) =
P (s|Φ, a)P (a)

P (s|Φ)
(5)

A maximum a posterior estimation of a reads as
follows:

â = arg
a
max[log(P (s|Φ, a)) + log(P (a))] (6)

If the posterior is sufficiently smooth, the maximum
can be found applying gradient ascent. The solution
depends on the form of the distribution chosen for the
noise term ε and sources aj , giving rise to different
methods for finding the coefficients. Lewicki and Ol-
shausen [10] proposed an a priori distribution of Lapla-
cian type:

P (aj) = Neρj |aj | (7)

where ρj is given and, if the noise is Gaussian, this
leads to the following rule for updating a:

∆a = ΦTΛεε− ρT|a| (8)

where Λε is the inverse of the noise covariance matrix
E{εTε}, with E{.} denoting the expected value, and
ρ = {ρj}.

2. 3 Learning of the dictionary

Until now, a statistical method has been used to solve
the inference problem. In what follows the learning
problem is similarly solved. To estimate the atoms of
Φ, the following objective function can be maximized
[10]:

Φ̂ = argΦ max[L(s,Φ)] (9)

where L = E[logP (s,Φ)]P (s) is the likelihood of the
data. This likelihood can be found by marginalizing
the following product of the conditional distribution
of the data, given the dictionary, and the coefficients,
together with the coefficients a priori distribution:

P (s|Φ) =

∫

ℜM

P (s|Φ, a)P (a)da (10)

where the integral is over the M-dimensional state
space of a.
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The objective function Eq. 9 can be maximized us-
ing gradient ascent with the following update rule for
the matrix Φ [1]:

∆Φ = ηΛεE[εaT]P (a|Φ,s) (11)

where η is a learning coefficient (between 0 and 1).
The problem at this point is how to calculate this up-
date rule, given that it involves solving the following
integral:

E[εaT]P (a|Φ,s) =

∫

ℜM

(s−Φa)aTP (a|Φ, s)da (12)

As the dimension of a increases, the previous in-
tegral becomes analytically intractable and different
authors have proposed approximation methods in or-
der to compute it. Lewicki and Sejnowski [11] used a
multivariate Gaussian approximation to the posterior
distribution around its maximum â:

P (a|Φ, s) ≈

√

|H|

2πM
e−1/2(a−â)TH(a−â) (13)

where â is the mean value, and H−1 is the covariance,
being H the Hessian of the log-posterior evaluated in
â:

H = −▽▽
T logP (a|Φ, s) (14)

It provides a good approximation for a close to â. This
result provides a solution of Eq. 11 given by

∆Φ = ηΛε(ε̂â−ΦH−1) (15)

where ε = s−Φâ

In order to obtain the dictionary and the coefficients
(Eqs. (8) and (15)), in this paper we use the implemen-
tation proposed by Lewicki and Olshausen [10] (using
Lewicki’s noise overcomplete ICA code or NOCICA),
at the training of the dictionary.

2. 4 Maching pursuit

The solution of the problem given by Eq. 2 is in terms
of l0 norm, which turns it computationally intractable.
Eq. 8 solves a near problem that generally shares the
same global minimun. This solution is exact in terms
of l1 norm but is computationally very expensive. For
the dictionary training stage, we need the best infer-
ence of a to obtain an optimal estimation, so we use
that last one. But once the dictionary was estimated,
we could even approximate the inference solution to
obtain a faster algorithm.

Mallat and Zhang [14] proposed a general method to
approximate the solution of Eq. 2. Sparsity is directly
included by choosing an appropriate number of terms.
Given an initial approximation s(0) = 0 and an initial
residual R0 = s, a sequence of approximations is iter-
atively constructed. At step k the parameter γ = γ̂ is

selected, such that the atom φ
(k)
γ̂ best correlates with

the residual Rk, and a scalar multiple of this atom is
added to the approximation at step k − 1, obtaining:

s(k) = s(k−1) + a
(k)
γ̂ φ

(k)
γ̂ (16)

where a
(k)
γ̂ = 〈Rk−1, φ

(k)
γ̂ 〉 and Rk = s − s(k). After

m steps an approximation to Eq 1 is obtained, with
residue R = R(m).

2. 5 Classifier

After training the dictionary, a multilayered percep-
tron NN with 128 inputs is used to classify frames and
detect apnea events. We tried different structures, i.e.,
we used differents numbers of neurons (5-20) in the
hidden layer, always with sigmoidal activation func-
tions; also for the output, we used 3 outputs neurons,
to obtain in each neuron the normal, apnea or hipop-
nea respiration with sigmoid activation functions, or
in other experiment with one output neuron with a
linear activation function which resolved in three lev-
els all types of respiration. From now, when we said
the NN we talk about a multilayered perceptron with
128 inputs, 20 neurons in hidden layer and one output
neuron which regress the apnea-hipopnea marks, this
structure has the best results. The activation function
for all neurons is:

tansig(x) =
2

1 + e−2x
− 1. (17)

The Levenberg-Marquardt algorithm was used to train
network with the activation coefficients as input and
the apnea-hipopnea marks as target where “1” is a
apnea-hipopnea event and “-1” is a normal respiration.
The same train dataset used to learn the dictionary
was used as training set.

After the training stage, the dictionary and the NN
parameters are fixed. The test set is analyzed using
frames of 128 samples. With the trained dictionary,
we found the coefficients a by the maching pursuit
algorithm. After that, we use that activation vector
as input to the trained multilayered perceptron and
the output give us “-1” if the frame is classifield as
normal or “1” if it represents an apnea-hipopnea. At
last, we sum all the apnea-hipopneas and divide by the
sleep time (in hours) and obtain the oxigen desatura-
tion index (ODI), which is used as a predictor of the
apnea-hipopnea index (AHI) which is a parameter of
the degree of illness.

3 MATERIALS AND PRELIMINARY RE-

SULTS

For this preliminary work we used the Sleep Heart
Health Study Polysomnography Database. This
database include 1000 overnight polysomnograms to
study the relationship of sleep disordered breathing
and cardiovascular disease. Its has several biomedi-
cal signals for each study: EEG, EOG, EMG, ECG,
nasal airflow and respiratory effort signals, SaO2 and
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Figure 2: Some atoms of the dictionary estimated by
NOCICA.

heart rate, and annotations of: sleep stages, arousals
and respiratory events. The respiratory events of our
interest are defined as,

• apneas: if the amplitude of the airflow signal
decreases below at least 25% of the amplitude of
”baseline” breathing (identified during a period
of regular breathing with stable oxygen levels),
and is longer than 10 seconds.

• hypopneas: if the amplitude of any respiratory
signal decreases below 70% of the amplitude of
”baseline”, and is longer than 10 seconds and for
>2 breaths. These require at least a 2% desatu-
ration [18].

Both events are marked at the nasal airflow signal.
This signal has a different dynamic than the SaO2 sig-
nal, usually a desaturation occurs several seconds after
the apnea event. Moreover, the desaturation and the
flow reduction have different duration. In this work
we try to estimate the apnea-hipopnea event using the
SaO2 signal, so we measure the ODI to predict the
AHI.

We used segments of 128 samples of the SaO2 signal
of 84 studies to train the dictionary. The data set
has studies with different grades of illness, a balanced
train set was created by 21 studies with AHI <5, 21
with 5<AHI<10, 21 with 10<AHI<15, and 21 with
AHI>15. The rest of the data set is an unbalanced
test set with approximately 916 studies with different
degrees of illness.

We use the wavelet processing technique proposed
in [9] to denoise the SaO2 signal. The signal, sampled
at 1Hz, was denoised by zeroing the approximation
coefficients, at level 8, of the dyadic discrete wavelet
transform with mother wavelet Daubechies 2. This
procedure has the effect of a highpass filter to eliminate
the baseline wander and low frequency noise. From
now, when we talk about SaO2 signal is the denoised
one.

After that, we use all apnea-hipopnea segments and
randomize up to 200 frames of 128 samples of each
studies; so we train the dictionary with 16800 frames
of 2 minutes each one. In Fig. 2 we show an extract of
a complete 128×128 dictionary generated by NOCICA
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Figure 3: Top: in solid line a segment of SaO2 signal
which has marks of apneas, in dots the reconstruction
by all the atoms in the dictionary. Down: the instan-
taneous reconstruction error.
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Figure 4: Top: in solid line a segment of SaO2 signal
which has marks of apneas, in dots the reconstruction
by the 32 (25%) most important atoms of the dictio-
nary. Down: the instantaneous reconstruction error.

method. Observe that the dictionary capture different
specific waveforms, for example: the wave in the first
row and the fourth column takes low frequencies in-
formation, the one in the fourth row and the second
column looks like a linear function, and all over the
dictionary there are sawtooth patterns with different
numbers of peaks which are similar to the desaturation
patterns that can be observed in a SaO2 signal.

We show in Fig. 3 a frame of the SaO2 signal of
the test set with some desaturations, the reconstruc-
tion of that segment and the instantaneous errors; the
dictionary represents the desaturation with a little er-
ror (in order of 10−13). The same segment is shown
in Fig. 4 but the reconstruction was performed with
the 32 most important atoms, measured by their ab-
solute activation value (this represent the 25% of the
dictionary).
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Figure 5: SR Activation. Top: the airflow and the filtered SaO2 signal. Next the apnea-hipopnea marks where
“-1” is a normal and “1” is a apnea-hipopnea event. Down: the activation of the atoms.

On other hand in a more general example, we could
see in Fig. 5, 8000 seconds of the SaO2 signal,
the apnea-hipopnea reference marks and the absolute
value of the amplitude of the aj . It can be seen that
different atoms are activated for the areas of normal
breathing and apnea-hipopnea. This difference in the
activation patterns of some atoms for each class mo-
tivate us to, in future works, train the NN only with
the activation of the most discriminative ones.

At last we trained the multilayered perceptron, with
the same dataset used to learn the dictionary. We use
the maching pursuit algorithm and the trained dic-
tionary to obtain the coefficient of the atoms of each
frame, and we used that coefficients as the input of the
NN. The target output are the apnea-hipopnea marks;
we evaluate if there is a respiratory event of more than
10 seconds to label that segment as [-1,1], where “-1”
is a normal frame and “1” is a apnea-hipopnea frame.
For postprocessing we applied a simple threshold at
different levels and we check if the respiratory event
detected by the NN has more than 10 seconds; after
that we count all the checked respiratory events and
divide by the total time to measure the ODI.

In Fig. 6 we show a linear regression between the
AHI and the ODI that we predict from the NN output
using a threshold level of 0.8. It can be seen that the
AHI and ODI grows similarly, also we obtain a cor-
relation coefficient of 81.74% (p-value = 4.4335−13).
Finally we obtain a sensitivity of 84.27% and a speci-
ficity of 85.44% for the detection of patient with a
severe OSAH (AHI > 15), calculated as the minimun
distance to the point [0,1] at the ROC curve.
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Figure 6: A regression plot between AHI and ODI. In
circles the scatter plot of the studies. In solid line, the
linear regression between ODI and AHI, and in points
two times the standard deviation.

4 CONCLUSIONS

We applied the SR technique to segments of the SaO2

signals for the detection of OSAH. SR was never used
for this application. The advantages of the detection
of AHI by the SaO2 signal is that it is easy to adquire,
cheaper and do not annoy the patient as a polysomno-
gram.

We find a dictionary which can represent the de-
saturations of the SaO2 signal, and it is able to pro-
duce a SR of the SaO2 signal. We find that we could
reconstruct the signal from this dictionary with lit-
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tle error, moreover, if we only use the 32 most im-
portant coefficients the information is preserved. We
used a multilayered perceptron to non-linearly regress
the apnea-hipopnea marks by the desaturations at the
SaO2 signal and we obtain good results. Finally, a
linear regression between AHI and ODI show that this
procedure could be used to detect OSAH because there
is a high correlation between them.

For future works, we will select the atoms of the
dictionary which has the most discriminative informa-
tion to train the multilayered perceptron in order to
simplify the model. Also, to improve the results of
the NN, we could modify the topology, the activation
functions and the training method or use others type
of classiffiers. We are also interested in studying the
advantages of the overcomplete and subcomplete dic-
tionaries in the application of the apnea-hipopnea de-
tection. Moreover, we are exploring the online apnea-
hipopnea detection, and for this reason we need to use
or develop faster algorithms to test a study.
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