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Abstract

In regression settings, a sufficient dimension reduction (SDR) method seeks the core
information in a p-vector predictor that completely captures its relationship with a re-
sponse. The reduced predictor may reside in a lower dimension d < p, improving ability
to visualize data and predict future observations, and mitigating dimensionality issues
when carrying out further analysis. We introduce ldr, a new R software package that
implements three recently proposed likelihood-based methods for SDR: covariance reduc-
tion, likelihood acquired directions, and principal fitted components. All three methods
reduce the dimensionality of the data by projection into lower dimensional subspaces. The
package also implements a variable screening method built upon principal fitted compo-
nents which makes use of flexible basis functions to capture the dependencies between the
predictors and the response. Examples are given to demonstrate likelihood-based SDR
analyses using ldr, including estimation of the dimension of reduction subspaces and se-
lection of basis functions. The ldr package provides a framework that we hope to grow
into a comprehensive library of likelihood-based SDR methodologies.

Keywords: dimension reduction, inverse regression, principal components, Grassmann mani-
fold, variable screening.

1. Introduction

Consider a regression or classification problem of a univariate response Y on a p × 1 vector
X of continuous predictors. We assume that Y is discrete or continuous. When p is large,
it is always worthwhile to find a reduction R(X) of dimension less than p that captures all
regression information of Y on X. Replacing X by a lower dimensional function R(X) is called
dimension reduction. When R(X) retains all the relevant information about Y , it is referred
to as a sufficient reduction. Advantages of reducing the dimension of X include visualization
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of data, mitigation of dimensionality issues in estimating the mean function E(Y |X), and
better prediction of future observations.

Most sufficient reductions consist of linear combinations of the predictors, which can be repre-
sented conveniently in terms of the projection PSX of X onto a subspace S of dimension d in
Rp. The subspace S is called a sufficient dimension reduction subspace if Y is independent of
X given PSX. Under some conditions, the intersection of all dimension-reduction subspaces
is also a dimension-reduction subspace which is referred to as the central subspace (Cook
1998). The central subspace is the parameter of interest in the sufficient dimension reduction
framework.

Dimension reduction has been ubiquitous in the applied sciences with the use of principal
components as the method of choice to reduce the dimensionality of data. However, principal
components do not yield a sufficient reduction as the components are obtained with no use of
the response. Numerous sufficient dimension reduction methods have been proposed in the
statistics literature since the seminal paper of Li (1991) on sliced inverse regression (SIR).
Among these methods are the sliced average variance estimation (SAVE, Cook and Weisberg
1991), principal Hessian directions (PHD, Li 1992), directional regression (Li and Wang 2007),
and the inverse regression estimation (IRE, Cook and Ni 2005). These methods do not make
any assumptions on the distribution of the predictors. Some recently developed methods
adopt a likelihood-based approach. These methods assume a conditional distribution of the
predictor vector X given the response Y , and include covariance reduction (CORE, Cook and
Forzani 2008a), likelihood acquired directions (LAD, Cook and Forzani 2009), principal fitted
components (PFC, Cook 2007; Cook and Forzani 2008b), and the envelope model (Cook, Li,
and Chiaromonte 2010). The R (R Core Team 2014) package ldr (Adragni and Raim 2014)
described in this article implements CORE, LAD and PFC.

At least two packages for sufficient dimension reduction can be found in the literature. One is
the R package dr (Weisberg 2002) which implements SIR, SAVE, PHD, and IRE. The other
package is LDR, a MATLAB (The MathWorks, Inc. 2012) package by Cook, Forzani, and
Tomassi (2012) which implements CORE, LAD, PFC and the envelope model. The package
introduced in this paper is the R counterpart of the MATLAB LDR package.

For the likelihood-based methods, except in some PFC model setups, there is no closed-form
solution to the maximum likelihood estimator of the central subspace, which is the parameter
of interest in dimension reduction framework. The maximum likelihood estimation is carried
out over the set of all d-dimensional subspaces in Rp, referred to as a Grassmann manifold,
and denoted by G(d,p). Optimization on the Grassmann manifold adds a layer of difficulty to
the estimation procedure. Fortunately, a recent R package called GrassmannOptim (Adragni,
Cook, and Wu 2012) has been made available for such optimization, which allows the current
implementation of ldr in R. The implementation of GrassmannOptim uses gradient-based
algorithms and embeds a stochastic gradient method for global search.

The package is built to use the typical command line interface of R. It has a hierarchical
structure, similar to the dr package. The top command is ldr, which handles the maximum
likelihood estimation of all parameters including the central subspace. The call of the ldr

function, as described in the manual, is

ldr(X, y = NULL, fy = NULL, Sigmas = NULL, ns = NULL, numdir = NULL,

nslices = NULL, model = c("core", "lad", "pfc"), numdir.test = FALSE, ...)
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There are also functions which are specifically dedicated to each of the three models. Their
calls are the following:

core(X, y, Sigmas = NULL, ns = NULL, numdir = 2, numdir.test = FALSE, ...)

lad(X, y, numdir = NULL, nslices = NULL, numdir.test = FALSE, ...)

pfc(X, y, fy = NULL, numdir = NULL, structure = c("iso", "aniso",

"unstr", "unstr2"), eps_aniso = 1e-3, numdir.test = FALSE, ...)

For PFC and LAD, the reduction data-matrix of the predictor is also provided, and can
be readily plotted. Available procedures allow the choice of the dimension of the central
subspace using information criteria such as AIC and BIC (Burnham and Anderson 2002) and
the likelihood ratio test.

The remainder of this article is organized essentially in two main sections. The concept of
sufficient dimension reduction and a brief description of the three aforementioned likelihood-
based methods are provided in Section 2. Section 3 provides an overview of the package,
along with examples on the use of the R package ldr to estimate a sufficient reduction. The
package is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.

R-project.org/package=ldr.

2. Likelihood-based sufficient dimension reduction

We describe the following three sufficient dimension reduction methods: covariance reduction
(Cook and Forzani 2008a), likelihood acquired directions (Cook and Forzani 2009), and prin-
cipal fitted components (Cook 2007; Cook and Forzani 2008b). These methods are likelihood-
based inverse regression methods. They use the randomness of the predictors and assume that
the conditional distribution of X given Y = y, denoted by Xy, follows a multivariate normal
distribution with mean µy = E(Xy) and variance ∆y = VAR(Xy). In some regressions R(X)
may be a nonlinear function of X, but most often we encounter multi-dimensional reductions
consisting of several linear combinations R(X) = Γ>X, where Γ is an unknown p× d matrix,
d ≤ p, that must be estimated from the data. Linear reductions are often imposed to facilitate
progress. If Γ>X is a sufficient linear reduction then so is (ΓM)>X for any d × d full rank
matrix M . Consequently, only span(Γ), the subspace spanned by the columns of Γ, can be
identified. The subspace span(Γ) is called a dimension reduction subspace.

If span(Γ) is a dimension reduction subspace, then so is span(Γ,Γ1) for any matrix p × d1

matrix Γ1. If span(Γ1) and span(Γ2) are both dimension reduction subspaces, then under mild
conditions so is their intersection span(Γ1) ∩ span(Γ2) (Cook 1996, 1998). Consequently, the
inferential target in sufficient dimension reduction is often taken to be the central subspace
SY|X, defined as the intersection of all dimension reduction subspaces (Cook 1994, 1998). A

minimal sufficient linear reduction is then of the form R(X) = Γ>X, where the columns of Γ
now form a basis for SY|X.

Let d = dim(SY|X) and let η denote a p × d semi-orthogonal matrix whose columns form a

basis for SY|X, so Y |X ∼ Y |η>X. In other words, Y |X has the same distribution as Y |η>X
so that η>X is sufficient to characterize the relationship between Y and X. The three afore-
mentioned likelihood-based methodologies are designed to estimate SY|X = span(η) under
different structures for the mean function µy and the covariance function ∆y. Essentially,
covariance reduction (CORE) is concerned with the problem of characterizing the covariance
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matrices ∆y, y = 1, . . . , h, of X observed in each of h normal populations and does not utilize
the population means µy. The likelihood acquired directions (LAD) method considers both
a general conditional covariance ∆y and a general mean µy. The principal fitted components
(PFC) method considers a model for the mean function µy, and while ∆y = ∆ is assumed for
all y, several structures of ∆ are involved. Each of these three methods is summarized in the
sections that follow.

2.1. Covariance reduction

Covariance reducing models were proposed by Cook and Forzani (2008a) for studying the
sample covariance matrices of a random vector observed in different populations. The models
allow the reduction of the sample covariance matrices to an informational core that is sufficient
to characterize the variance heterogeneity among the populations. It does not address the
population means.

Let ∆̃y, y = 1, . . . , h be the sample covariance matrices of the random vector X observed in

each of h normal populations, and let Sy = (ny − 1)∆̃y. The goal is to find a semi-orthogonal
matrix Γ ∈ Rp×d, d ≤ p, with the property that for any two populations j and k,

Sj |(Γ>SjΓ = B,nj = m) ∼ Sk|(Γ>SkΓ = B,nk = m).

That is, given Γ>SyΓ and ny, the conditional distribution of Sy must not depend on y. Thus
Γ>SyΓ is sufficient to account for the heterogeneity among the population covariance matrices.
The central subspace is SY |X = span(Γ).

The methodology is built upon the assumption that the Sy’s follow a Wishart distribution
and its development allows the covariance matrix for the population y to be modeled as

∆y = Γ0M0Γ>0 + ΓMyΓ>,

where Γ0 is an orthogonal completion of Γ, and M0 and My are symmetric positive definite
matrices. En route to obtain the central subspace SY |X , let ∆y = VAR(Xy) and ∆ = E(∆Y ),

and define PΓ(∆y) = Γ(Γ>∆yΓ)−1Γ>∆y as the projection operator that projects onto SY |X
relative to ∆y. The central subspace span(Γ) is redefined to be the smallest subspace satisfying

∆y = ∆ + P>Γ(∆y)(∆y −∆)PΓ(∆y).

This equality means that the structure of the covariance ∆y can be decomposed in terms
of the average structure of ∆ and a structure that is not shared with the other covariances.
The maximum likelihood estimator of SY |X is the subspace that maximizes over G(d,p) the
log-likelihood function

Ld(S) = c− n

2
log |∆̃|+ n

2
log |PS∆̃PS | −

h∑
y=1

ny
2

log |PS∆̃yPS |, (1)

where PS indicates the projection onto the subspace S in the usual inner product, c is a
constant that does not depend on S, and ∆̃ =

∑h
y=1 ∆̃y. The maximum likelihood estimators

of M0 and My are M̂0 = Γ̂>0 ∆̃Γ̂0 and M̂y = Γ̂>∆̃yΓ̂, where Γ̂ is an orthogonal basis of the

maximum likelihood estimator of SY |X and Γ̂0 is an orthogonal completion of Γ̂.
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The dimension d of the central subspace must be estimated. A likelihood ratio test and
information criterion were proposed to help estimate d. The likelihood ratio test Λ(d0) =
2(Lp−Ld0) was used in a sequential manner for the hypothesis H0 : d = d0 against Ha : d = p,
to choose d, starting with d = 0. The first hypothesized value of d that is not rejected is the
estimated dimension d. The term Lp denotes the value of the maximized log-likelihood for
the full model with d0 = p and Ld0 is the maximum value of the log-likelihood function in
Equation 1. Under the null hypothesis Λ(d0) is distributed asymptotically as a chi-squared
random variable with degrees of freedom (p − d)(h− 1)(p+ 1) + (h− 3)d/2, for h ≥ 2 and
d < p.

With information criterion, the dimension d is selected to minimize over d0 the function
IC(d0) = −2Ld0 + h(n)g(d0), where g(d0) is the number of parameters to be estimated, and
h(n) is equal to log n for the Bayesian criterion and 2 for Akaike’s.

2.2. Likelihood acquired directions

The likelihood acquired directions method estimates the central subspace using both the
conditional mean µy and conditional variance function ∆y. It assumes that Xy is normally
distributed with mean µy and variance ∆y, where y ∈ SY = {1, . . . , h}. Continuous response
can be sliced into finite categories to meet this condition. It furthermore assumes that the
data consist of ny independent observations of Xy, y ∈ SY , and the total sample size is

n =
∑h

y=1 ny.

Let µ = E(X) and Σ = VAR(X) denote the marginal mean and variance of X and let
∆ = E(∆Y ) denote the average covariance matrix. The subspace span(Γ) is the central
subspace if and only if span(Γ) is the minimum subspace with the conditions

(i.) span(Γ) ⊂ ∆−1span(µy − µ)

(ii.) ∆y = ∆ + P>Γ(∆y)(∆y −∆)PΓ(∆y)

The first condition (i.) implies that S∆Γ, the subspace spanned by ∆Γ, falls into the subspace
spanned by the translated conditional means µy−µ. The second condition is identical to that
of CORE.

Let Σ̃ denote the sample covariance matrix of X, and let ∆̃y denote the sample covariance
matrix for the data with Y = y. The maximum likelihood estimate of the d-dimensional
central subspace SY |X maximizes over G(d,p) the log-likelihood function

Ld(S) = c− n

2
log |Σ̃|+ n

2
log |PSΣ̃PS |0 −

1

2

h∑
y=1

ny log |PS∆̃yPS |0, (2)

where |A|0 indicates the product of the non-zero eigenvalues of a positive semi-definite sym-
metric matrix A, PS indicates the projection onto the subspace S in the usual inner product,
and c is a constant independent of S. The desired reduction is then Γ̂>X, where the columns
of Γ̂ form an orthogonal basis for the maximum likelihood estimator of SY |X .

There is a striking resemblance between Equation 1 of CORE and Equation 2 of LAD. The
difference is essentially that CORE extracts the sufficient information using the conditional
variance only, while LAD uses both the conditional mean and the conditional variance.
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The estimation of d is carried out as for CORE, using either the sequential likelihood ratio test
or information criteria AIC and BIC. The statistic Λ(d0) is distributed asymptotically as a chi-
squared random variable with degrees of freedom (p−d0){(h−1)(p+1)+(h−3)d0+2(h−1)}/2,
for h ≥ 2 and d0 < p. For the information criteria, IC(d0) = −2Ld0 + h(n)g(d0), g(d0) =
p + (h− 1)d0 + d0(p− d0) + (h− 1)d0(d0 + 1)/2 + p(p + 1)/2, and h(n) is equal to log n for
BIC and 2 for AIC.

2.3. Principal fitted components

Principal fitted components methodology was proposed by Cook (2007) and estimates the
central subspace by modeling the inverse mean function E(X|Y = y) while assuming that
the conditional variance function ∆ is independent of Y . The response may be discrete or
continuous. A generic PFC model can be written as

Xy = µ+ Γβfy + ∆1/2ε, (3)

where µ = E(X), β is an unconstrained d × r matrix, ε ∼ N(0, I), and fy ∈ Rr is a known
vector-valued function of y with linearly independent elements, referred to as basis functions.
The basis function is a user-selected function; it is supposed to adequately help capture the
dependency between the predictors and the response.

Several basis functions have been suggested in conjunction with PFC models (Cook 2007;
Adragni and Cook 2009; Adragni 2009), including polynomial, piecewise polynomial, and
Fourier bases. To gain an insight into the choice of the appropriate basis function, inverse
response plots (Cook 1998) of Xj versus y, j = 1, . . . , p could be used. In some regressions
there may be a natural choice for fy. For example, suppose for instance that Y is categorical,
taking values {1, . . . , h}. We can then set the kth coordinate of fy to be

fyk = J(y = k)− nk/n, k = 1, . . . , h,

where J(·) is the indicator function and nk is the number of observations falling into category
k.

When graphical guidance is not available, Cook (2007) suggested constructing a piecewise
constant basis. With a continuous Y , an option consists of “slicing” the observed values into
h bins (categories) and then specifying the kth coordinate of fy as for the case of a categorical
Y . This has the effect of approximating each conditional mean E(Xj |Y = y) as a step function
of Y with h steps.

With a continuous Y , piecewise polynomial bases, including piecewise linear, piecewise quadratic
and piecewise cubic polynomial bases, are constructed by slicing the observed values of Y into
bins Ck, k = 1, . . . , h. Let τ0, τ1, . . . , τh denote the end-points or knots of the slices. For ex-
ample, (τ0, τ1) are the end-points of C1; (τ1, τ2) are the end-points of C2, and so on. We give
here the description of the piecewise linear discontinuous basis fy ∈ R2h−1 by its coordinates

f2i−1(y) = J(y = i), i = 1, 2, . . . , h− 1

f2i(y) = J(y = i)(y − τi−1), i = 1, 2, . . . , h− 1

f2h−1(y) = J(y = h)(y − τh−1).

The number of components of fy is to be small enough compared to n to avoid modeling
random variation rather than the overall shape between the response and individual predictor.
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A number of structures of ∆ have been investigated. When the predictors are conditionally
independent, ∆ has a diagonal structure; the isotropic PFC corresponds to the case with
identical diagonal elements, while the anisotropic (initially called ‘diagonal ’ in Adragni and
Cook 2009) is for the case of non-identical diagonal elements. The unstructured PFC refers
to the case with a general structure for ∆ which allows conditional dependencies between the
predictors. Extended structures are more evolved and involve expressions of ∆ that depend
on Γ. We discuss each of these PFC models in the next sections.

Isotropic principal fitted components

The isotropic PFC (Cook 2007) assumes that ∆ = σ2Ip. The central subspace is obtained as
SY |X = span(Γ). To provide the estimate of SY |X , let X = (X1−X̄, . . . , Xn−X̄)> denote the

n×p data matrix of the predictors, and let F = (fy1− f̄, . . . , fyn− f̄)> be the n×r data matrix

of the basis function where f̄ = (1/n)
∑n

i=1 fyi . Let Σ̃fit = X>PFX/n, where PF denotes

the projection operator onto the subspace spanned by the columns of F. The term Σ̃fit can
be seen as the sample covariance matrix of the fitted vectors PFX from the multivariate
linear regression of X on f , including an intercept. The maximum likelihood estimator for
span(Γ) is the subspace spanned by the first d eigenvectors of Σ̃fit corresponding to its largest
eigenvalues.

Turning to the estimation of the dimension d of the central subspace SY|X, the likelihood ratio
test Λ(d0), and information criteria AIC and BIC used previously for CORE and LAD are
still used.

To get the expression of the maximized log-likelihood, let λ̂fit
i , i = 1, . . . , d be the eigenvalues

of Σ̃fit such that λ̂fit
1 > . . . > λ̂fit

d and let λ̂i, i = 1, . . . , p be the eigenvalues of Σ̃, the sample

covariance of X. The estimate of σ2 is σ̂2 = (
∑p

i=1 λ̂i −
∑d

i=1 λ̂
fit
i )/p. The maximized log-

likelihood is
Ld = −np

2
(1 + log(2π))− np

2
log σ̂2.

For the information criteria IC(d0) = −2Ld0 + h(n)g(d0), we have g(d0) = (p − d0)(r − d0),
and h(n) is equal to log n for BIC and 2 for AIC.

Anisotropic principal fitted components

The anisotropic PFC supposes that ∆ = diag(σ2
1, . . . , σ

2
p). The central subspace is obtained

as SY |X = ∆−1SΓ. There is no closed-form expression of the maximum likelihood estimator
of ∆ and Γ. An alternating algorithm is used to carry the maximum likelihood estimation.
The idea is to notice that, letting

Z = ∆−1/2µ+ ∆−1/2Γβf + ε, (4)

that we can estimate span(Γ) as ∆1/2 times the estimate Γ̃ of ∆−1/2Γ from the isotropic
model (4). With µ̂ = X̄, alternating between these two steps leads to the following algorithm:

1. Fit the isotropic PFC model to the original data, getting initial estimates Γ̂(1) and β̂(1).

2. For some small ε > 0, repeat for j = 1, 2, . . . until Tr{(∆̂(j) − ∆̂(j+1))
2} < ε

(a) Calculate ∆̂(j) = diag{(X− Fβ̂>(j)Γ̂
>
(j))
>(X− Fβ̂>(j)Γ̂

>
(j))},
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(b) Transform Z = ∆̂
−1/2
(j) X.

(c) Fit the isotropic PFC model to Z, yielding estimates Γ̃, and β̃.

(d) Back-transform the estimates to the original scale Γ̂(j+1) = ∆̂
1/2
(j) Γ̃, β̂(j+1) = β̃.

At convergence, the estimators Γ̂ and ∆̂ are obtained to form the estimator of SY|X as ∆̂−1S
Γ̂
,

where S
Γ̂

is the subspace spanned by the columns of Γ̂. There is no closed-form expression
of the maximized log-likelihood Ld under the anisotropic model, but it can be numerically
evaluated. The estimation of the dimension d is carried out similarly as described for the
isotropic case.

Unstructured principal fitted components

Unstructured PFC (Cook and Forzani 2008b) assumes that the covariance matrix ∆ has a
general structure, positive definite, and independent of y. The central subspace is SY |X =
∆−1span(Γ).

To present the maximum likelihood estimator of the central subspace, let Σ̃res = Σ̃− Σ̃fit, and
let ω̂1 > . . . ≥ ω̂p and V̂ = (v̂1, . . . , v̂p) be the eigenvalues and the corresponding eigenvectors

of Σ̃
−1/2
res Σ̃fitΣ̃

−1/2
res . Finally, let K̂ be a p×p diagonal matrix, with the first d diagonal elements

equal to zero and the last p− d diagonal elements equal to ω̂d+1, . . . , ω̂p. Then the maximum

likelihood estimator of ∆ is ∆̂ = Σ̃
1/2
res V̂ (I + K̂)V̂ >Σ̃

1/2
res (Theorem 3.1, Cook and Forzani

2008b). The maximum likelihood estimator of SY|X is then obtained as the span of ∆̂−1

times the first d eigenvectors of Σ̃fit.

The estimation of the dimension d is carried out as specified in the previous methods. The
maximized value of the log-likelihood is given by

Ld =
np

2
(1 + log(2π))− n

2
log |Σ̂res| −

n

2

p∑
i=d+1

log(1 + ω̂i).

The likelihood ratio test Λ(d0) follows a chi-squared distribution with (p−d0)(r−d0) degrees
of freedom. For the information criteria IC(d0) = −2Ld0 + h(n)g(d0), we have g(d0) =
p(p+ 3)/2 + rd0 + d0(p− d0), and h(n) is equal to log n for BIC and 2 for AIC.

Extended principal fitted components

The heterogenous PFC (Cook 2007) arises from a structure of ∆ as a function of Γ. Let Γ0

be the orthogonal complement of Γ such that (Γ,Γ0) is a p × p orthogonal matrix, and let
Ω ∈ Rd×d and Ω0 ∈ R(p−d)×(p−d) be two positive definite matrices. The model can be written
as

Xy = µ+ Γβfy + ΓΩ1/2ε+ Γ0Ω
1/2
0 ε0,

where (ε>, ε>0 )> ∼ N(0, I). The conditional covariance ∆ can be expressed as

∆ = ΓΩΓ> + Γ0Ω0Γ>0 .

Then the subsequent PFC model is referred to as an extended PFC (Cook 2007). The cen-
tral subspace is obtained as SY|X = span(Γ). The maximum likelihood estimator of SY|X
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maximizes over G(d,p) the log-likelihood function

L(S) = −n
2

log |Σ̃| − n

2
log |P>S Σ̃−1PS | −

n

2
log |PSΣ̃resPS |. (5)

This expression (5) assumes that both Ω and Ω0 are unstructured. The estimation of d is
carried out as in the previous cases, using either a sequential likelihood ratio test or the
information criteria.

3. Overview and use of the package

The following three functions, core, lad, and pfc mainly carry all the computations of
the maximum likelihood estimation of the reduction subspaces and all other parameters for
CORE, LAD, and PFC models. These functions could be called using the function ldr with
a model argument for the appropriate model to use. For any of the models, the predictor
data-matrix must be provided as an n × p matrix X. For core, covariance matrices may be
provided in lieu of the predictor data-matrix.

Covariance reduction, LAD, and extended PFC rely on an external R package called Grass-
mannOptim (Adragni et al. 2012) for the optimization. Additional optional arguments may be
provided for the optimization, especially arguments related to simulated annealing for global
optimization. It should be pointed out that two identical calls of the optimization function
in GrassmannOptim may produce different numerical results if no random seed is set. This
is due to the fact that subspaces are estimated, and they are not uniquely determined by a
matrix. In addition, the optimization has a random search process embedded.

The dimension of the reduction subspace numdir must be provided. The boolean argument
numdir.test determines the type of output with respect to the test on the dimension of the
central subspace. When numdir.test is FALSE, no estimation of the dimension of the central
subspace is carried out. Instead, the reduction subspace is estimated at the provided numdir.
With numdir.test being TRUE, a summary of the fit provides the AIC and BIC, along with
the LRT for all values of the dimension less than or equal to the provided numdir. A default
value of numdir is used when it is not provided by the user.

In the following sections, we provide some examples on the use of the ldr package. These
examples are related to core, lad and pfc. In all cases, the goal is to estimate the central
subspace.

3.1. An example with CORE

We replicate the results in Cook and Forzani (2008a) by applying CORE methodology to the
covariance matrices of the garter snakes. The matrices are genetic covariance for six traits
of two female garter snake populations, one from a coastal site and the other from an inland
site in northern California. The data set was initially studied by Phillips and Arnold (1999).
It is of interest to compare the structures of the two covariances and determine whether they
share similarities.
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We fit the model as follows:

R> set.seed(1810)

R> library("ldr")

R> data("snakes", package = "ldr")

R> fit <- ldr(Sigmas = snakes[-3], ns = snakes[[3]], numdir = 4,

+ model = "core", numdir.test = TRUE, verbose = TRUE, sim_anneal = TRUE,

+ max_iter = 100, max_iter_sa = 100)

R> summary(fit)

The optimization was carried out using a simulated annealing procedure that is optional
within GrassmannOptim, the Grassmann manifold optimization procedure. The simulated
annealing helps to avoid convergence to local maxima in the pursuit of a global maximum.
The summary output below was obtained using the command summary(fit). It provides the
results for the estimation of d, the dimension of the central subspace.

Estimated Basis Vectors for Central Subspace:

[,1] [,2] [,3] [,4]

[1,] 0.1362 0.0246 0.1705 -0.2998

[2,] -0.2690 -0.0088 -0.0910 0.3418

[3,] -0.0340 -0.8347 -0.5050 -0.2105

[4,] 0.8899 -0.1334 -0.0145 0.4236

[5,] 0.2776 -0.0711 0.3548 -0.6930

[6,] 0.1973 0.5289 -0.7626 -0.2989

Information Criterion:

d=0 d=1 d=2 d=3 d=4

aic 104.6859 66.02803 59.89242 57.83486 62.44468

bic 176.7941 158.73852 169.77152 181.44885 196.35984

Large sample likelihood ratio test

Stat df p.value

0D vs >= 1D 78.24122 18 1.737392e-09

1D vs >= 2D 27.58335 12 6.362675e-03

2D vs >= 3D 11.44774 7 1.202462e-01

3D vs >= 4D 1.39018 3 7.078382e-01

The sequential likelihood ratio test rejects the null hypotheses for d = 0, d = 1, and fails
to reject d = 2, thus the LRT procedure estimates d to be d̂ = 2. The smallest AIC value
is attained for d = 3, but the value of the objective function is close for d = 2 and d = 3.
The smallest value of BIC is at d = 1, although the value of the objective function at d = 1
and d = 2 are close. Following the result from the LRT procedure we have reached the same
conclusion as Cook and Forzani (2008a) in selecting d̂ = 2, so two linear combinations of the
traits are needed to explain differences in variation. The maximum likelihood estimator of the
central subspace is span(Γ̂), that is span(fit$Gammahat[[3]]). The index [[3]] refers to the
third element of the list corresponding to the estimates when d = 2, while [[1]] is for d = 0,
and [[2]] is for d = 1. The sample covariances can be written as ∆̃y = Γ̂0M̂0Γ̂>0 + Γ̂M̂yΓ̂>,
for y = 1, 2.
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We obtain the estimates M̂1 and M̂2 of M1 and M2 as follows

R> Gammahat <- fit$Gammahat[[3]]

R> Sigmahat1 <- fit$Sigmashat[[3]][[1]]

R> Sigmahat2 <- fit$Sigmashat[[3]][[2]]

R> Mhat1 <- t(Gammahat) %*% Sigmahat1 %*% Gammahat

R> Mhat2 <- t(Gammahat) %*% Sigmahat2 %*% Gammahat

The estimated directions vectors that span the estimated central subspace are

γ̂1 = (−0.0302,−0.0267, 0.8041, 0.4313, 0.0475,−0.4044)>,

γ̂2 = (−0.0113,−0.0606,−0.4414, 0.8881,−0.0925, 0.0635)>.

These estimates are numerically different from the reported estimates from Cook and Forzani
(2008a) but are quite close. The third element of γ̂1 and the fourth of γ̂2 are the largest entries
for the two directions of the reduction matrix. We reach the same conclusions as Cook and
Forzani (2008a) that the third and fourth traits are largely responsible for the differences in
the covariance matrices.

3.2. Examples with LAD

We present two examples using the LAD procedure. The first example has a categorical
response while the second has a continuous response. We use the flea dataset (Lubischew
1962) where the response is categorical. The data set contains 74 observations on six vari-
ables regarding three species of flea-beetles: concinna, heptapotamica, and heikertingeri. The
measurements on the six variables are of continuous type. The goal is to find the sufficient
directions that best separate the three species. This is essentially a discriminant analysis. We
fit the following:

R> data("flea", package = "ldr")

R> fit <- ldr(X = flea[, -1], y = flea[, 1], model = "lad",

+ numdir.test = TRUE)

The summary result of the fit obtained using the method summary for the fit object gives
the following output:

Estimated Basis Vectors for Central Subspace:

Dir1 Dir2

tars1 0.2628 -0.3004

tars2 -0.1374 0.2772

head -0.3617 -0.2636

aede1 -0.2079 0.8167

aede2 0.8526 0.2477

aede3 -0.1051 0.1876

Information Criterion:

d=0 d=1 d=2

aic 2843.332 2641.641 2535.783
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Figure 1: Plot of the two estimated directions of the sufficient reduction of the flea data using
LAD.

bic 2905.542 2724.587 2639.466

Large sample likelihood ratio test

Stat df p.value

0D vs >= 1D 343.5494 18 0

1D vs >= 2D 123.8577 9 0

This result suggests that the dimension of the central subspace is d̂ = 2. The two directions
are obtained as the sufficient reduction of the data that suffices to separate the three species.
The method plot for the fit object plots the two directions as on Figure 1 using the code

R> plot(fit)

The second example uses the BigMac data set (Enz 1991). The data set gives the average
values in 1991 on several economic indicators for 45 world cities, and contains ten continuous
variables (X). The response (Y ), which is also continuous, is the minimum labor to purchase
one BigMac in US dollars. The interest is in the regression of Y on X and we seek a sufficient
reduction of X such that Y |X ∼ Y |α>X, with α ∈ Rp×d where d < p. Once α is estimated
as a basis of the central subspace, the d components of α>X can be used in place of X. The
following code lines are used to fit a LAD model.

R> data("bigmac", package = "ldr")

R> fit <- ldr(X = bigmac[, -1], y = bigmac[, 1], nslices = 3,

+ model = "lad", numdir.test = TRUE)

R> summary(fit)
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Figure 2: Plot of the two LAD estimated components of the sufficient reduction of the BigMac
predictors against the response.

Since the LAD methodology requires a discrete response, we provided the arguments nslices
to be used to discretize the continuous response. We used three slices (nslices = 3) so that
each slice has nine observations. The summary of the fit gives the following output:

Estimated Basis Vectors for Central Subspace:

Dir1 Dir2

Bread -0.0329 -0.8087

BusFare -0.9585 -0.0999

EngSal -0.0064 0.2559

EngTax -0.0039 -0.0346

Service -0.0040 0.0083

TeachSal 0.2482 -0.2418

TeachTax -0.0572 0.2806

VacDays -0.1234 0.3628

WorkHrs -0.0008 0.0212

Information Criterion:

d=0 d=1 d=2

aic 3180.861 3127.153 3051.53

bic 3278.421 3246.393 3192.45

Large sample likelihood ratio test

Stat df p.value

0D vs >= 1D 177.33065 24 0.000000e+00

1D vs >= 2D 99.62326 12 6.661338e-16

With three slices, the reduction would have at most two directions. The likelihood ratio test
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and the information criteria agree on d̂ = 2. The plot of the fitted object fit is obtained by

R> plot(fit)

which produces Figure 2 of the two components of the reduction of the predictors against the
response. The plot shows a nonlinear trend between the response and the first component of
the sufficient reduction, with perhaps an influential observation. These two components are
sufficient to characterize the regression of the response on the nine predictors.

3.3. An example with PFC

The performance of principal fitted components in estimating the central subspace may de-
pend on the choice of the basis function fy. It is suggested to start with a graphical exploration
of the data to have an insight into the appropriate degrees of the polynomial. If quadratic
relationships are suspected, it might be best to use a cubic basis fy = (y, y2, y3)>. Piecewise
constant and piecewise linear bases among others could be considered. The choice of fy is set
by the function

bf(y, case = c("poly", "categ", "fourier", "pcont", "pdisc"),

degree = 1, nslices = 1, scale = FALSE)

The following bases are implemented: polynomial basis (poly), categorical response (categ),
Fourier basis (fourier), piecewise polynomial continuous (pcont), and piecewise polynomial
discontinuous (pdisc). The argument degree specifies the degree of the polynomial, and
nslices gives the number of slices when using piecewise polynomial bases. The columns of
the data-matrix can optionally be scaled to have unit variance by specifying scale = TRUE.

Once the basis function is determined, the structure of ∆ should be investigated. With
conditionally independent predictors, an isotropic or an anisotropic PFC might be suggested,
otherwise an unstructured model should be used, assuming that the sample size is larger
than the number of predictors. For a given dimension d for numdir, the structure may be
determined by a likelihood ratio test.

We reconsider the BigMac data set (Enz 1991) for an example. An initial exploration suggests
using a cubic polynomial basis function. We fit three models with isotropic, anisotropic and
unstructured ∆ with the following code.

R> fy <- bf(bigmac[, 1], case = "pdisc", degree = 0, nslices = 5)

R> fit1 <- pfc(X = bigmac[, -1], y = bigmac[, 1], fy = fy,

+ structure = "iso")

R> fit2 <- pfc(X = bigmac[, -1], y = bigmac[, 1], fy = fy,

+ structure = "aniso")

R> fit3 <- pfc(X = bigmac[, -1], y = bigmac[, 1], fy = fy,

+ structure = "unstr")

R> structure.test(fit1, fit3)

This output of this test has the results of the likelihood ratio test, and also of AIC and BIC.

Likelihood Ratio Test:

NH: structure= iso
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AH: structure= unstr

Stat df p.value

1502.188 44 0

Information Criteria:

iso unstr

aic 4581.696 3167.509

bic 4664.803 3330.108

These results provide strong evidence against the isotropic structure. Similarly, we found
strong evidence against the anisotropic structure in a test against the unstructured ∆. Thus,
a model with unstructured covariance matrix is suggested. With such covariance structure,
we then proceed to estimate the dimension of the central subspace. Using the following code
with numdir.test = TRUE,

R> fit <- pfc(X = bigmac[, -1], y = bigmac[, 1], fy = fy,

+ structure = "unstr", numdir.test = TRUE)

the summary output summary(fit) gives results about the test on the dimension.

Estimated Basis Vectors for Central Subspace:

Dir1 Dir2 Dir3 Dir4

[1,] -0.0031 0.0011 -0.0623 -0.1791

[2,] 0.9598 -0.0476 0.2630 -0.0589

[3,] 0.0617 0.1399 -0.0246 0.5565

[4,] -0.0340 0.3177 -0.0646 -0.2327

[5,] 0.0054 0.0022 -0.0119 0.0000

[6,] -0.2467 -0.4602 0.7578 -0.2421

[7,] 0.0395 -0.7402 -0.2804 0.4345

[8,] 0.1064 -0.3424 -0.5188 -0.5938

[9,] 0.0021 -0.0132 -0.0108 -0.0241

Information Criterion:

d=0 d=1 d=2 d=3 d=4

aic 3180.861 3148.350 3148.373 3156.211 3167.509

bic 3278.421 3267.589 3285.679 3307.970 3330.108

Large sample likelihood ratio test

Stat df p.value

0D vs >= 1D 85.3519652 36 6.900197e-06

1D vs >= 2D 28.8407314 24 2.261826e-01

2D vs >= 3D 8.8639289 14 8.396672e-01

3D vs >= 4D 0.7018758 6 9.944505e-01

Dir1 Dir2 Dir3 Dir4

Eigenvalues 2.5107 0.5588 0.1989 0.0157

R^2(OLS|pfc) 0.3690 0.5013 0.5514 0.5517
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Figure 3: Plot of the sufficient reduction of the predictors against the response using PFC on
the BigMac data.

The likelihood ratio test, AIC and BIC all point to the dimension of the central subspace
to be d̂ = 1. The summary output also provides the eigenvalues of the fitted covariance
matrix in decreasing order corresponding to the successive estimated reduction directions. In
addition, linear regressions of the response on the components of the reduction are fitted. The
coefficients of determination R2 are provided for each fit.

The final fit with numdir = 1 is obtained with

R> fit <- pfc(X = bigmac[, -1], y = bigmac[, 1], fy = fy,

+ structure = "unstr", numdir = 1)

The plot of fit on Figure 3 is obtained by plot(fit). It shows a clear nonlinear relationship
between the reduction of the predictors and the response. This single component reduction
retains all the regression information of the response that is contained in the nine predictors.

The call to ldr provides a number of outputs including the estimates of the parameters. The
list of outputs is provided by printing the fit object

R> fit

which gives the following list of components that are described in the package manual.

[1] "R" "Muhat" "Betahat" "Gammahat"

[5] "Deltahat" "evalues" "loglik" "aic"

[9] "bic" "numpar" "numdir" "model"

[13] "structure" "y" "fy" "Xc"

[17] "call" "numdir.test"
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4. Variable screening with PFC

When dealing with a very large number of predictors and a substantial number of them do
not contain any regression information about the response, it is often worth screening out
these irrelevant predictors. The package contains a function called screen.pfc for that task.
The methodology is based on the principal fitted components model. We provide a brief
description and show an example of its use on a data set.

4.1. Inverse regression screening

We consider the normal inverse regression model (3) where ∆ is assumed independent of
Y . Let X be partitioned into the vector of active predictors X1 and the vector of inactive
predictors X2. Assuming that X2 X1|Y , let us partition Γ according to the partition of X
as (Γ>1 ,Γ

>
2 )>. Then X2 Y if and only if Γ2 = 0.

Screening the predictors by testing whether Γ2 = 0 can be done by considering individual
rows of Γ. A predictor Xj is relevant or active when the corresponding row γj of Γ is nonzero.
We can thus test whether γj = 0, j = 1, . . . , p. Equivalently, letting φj = β>γj , the screening
procedure is based upon whether φj = 0 for each predictor Xj . The hypothesis

H0 : φj = 0 against Ha : φj 6= 0 (6)

can be tested for each of the p predictors at a specified significance level α. The predictor Xj

will be set as active or relevant when H0 is reject, and inactive or irrelevant otherwise. The
model could be written for individual predictors as

Xjy = µj + φ>j fy + δjε, ε ∼ N(0, 1), (7)

The relevance of a predictor Xj is assessed by determining whether the mean function
E(Xjy) = µj + φ>j fy depends on the outcome y. Model (7) is a forward linear regression
model where the “predictor” vector is fy and the “response” is Xj . An F test statistic can be
obtained for the hypotheses (6). The predictor Xj is relevant if the model yields an F statistic
larger than a user-specified cutoff value. The cutoff may correspond to a significance level
α such as 0.1 or 0.05 for example. The methodology was initially described in Adragni and
Cook (2008).

4.2. Illustration

We applied the screening method to a chemometrics data set. The data is from a study to
predict the functional hydroxyl group OH activity of compounds from molecular descriptors.
The response (act) is the activity level of the compound, and the predictors are the nearly
300 descriptors. The response and predictors are continuous variables and 719 observations
were recorded. The data set was provided by Tomas Oberg. We screened the descriptors at
a 5% significance level.

The choice of the basis function determines the type of screening. For example, a correlation
screening is obtained with a one degree polynomial basis function. A correlation screen-
ing selects the predictors linearly related to the response. The following example gives the
correlation screening.
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Descriptor p value CS p value PL

SssCH2 0.07863 0.000
tets2 0.05993 0.000
ka2 0.09536 0.000
jy 0.89416 0.000
jb 0.68736 0.000
bpc4 0.61782 0.000
spc4 0.33737 0.000
sc3 0.05593 0.000

Table 1: Screening p values under the correlation (CS) and the piecewise linear discontinuous
basis (PL).

R> data("OH", package = "ldr")

R> X <- OH[, -c(1, 295)]; y <- OH[, 295]

R> out <- screen.pfc(X, fy = bf(y, case = "poly", degree = 1), cutoff = 0.05)

The output shows an F statistic and p value for the test of dependence between the pre-
dictors and the response, where the latter is captured through a basis function. The Index

corresponds to the index of the predictors. The predictors are sorted in the decreasing order
of their F value. The following output is obtained with head(out).

F P-value Index

SdsCH 226.84789 0 231

SHCsatu 141.52605 0 275

SHvin 130.34194 0 276

SHother 97.05707 0 220

numHBa 81.54723 0 273

SHHBA 80.56008 0 281

The application of the correlation screening captured a set of 203 descriptors related to the
response. However using a piecewise linear discontinuous basis function with two slices,
the screening yielded a set of 235 descriptors, including 41 descriptors not detected by the
correlation screening. Table 1 is a short list of some of the 41 descriptors captured by the
piecewise linear discontinuous basis that were not selected by the correlation screening at the
5% significance level.

This example shows that, as expected, when a relevant predictor is not linearly related to the
response, a correlation screening may fail to capture it. However, with the appropriate choice
of the basis function, all relevant predictors would be detected. Graphical investigations
showed non-linear relationships between the response and some predictors listed on Table 1.
Figure 4 plots log(act) against compounds sc3 and tets2 as two examples of predictors which
were not selected by the correlation screening. A clear nonlinear relationship between the
predictors and the log-transformed response is displayed. We used the log-transformation of
the response to help see the graphical evidence of nonlinear relationship between the response
and the mentioned predictors. The solid line is a loess smooth curve.
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Figure 4: Scatter-plots of sc3 and tets2 against the log-transformed response act showing
nonlinear relationships.

5. Conclusions

We have presented ldr, an R package for dimension reduction in regression. The package
implements three recent likelihood-based methods for sufficient dimension reduction and a
variable screening methodology. It can be considered as the likelihood-based addition to the
R package dr. The package presents an architecture that allows the implementation of other
sufficient dimension reduction methods such as the envelope model of Cook et al. (2010),
which will be added in the near future. We foresee continuing the development of the package
into a comprehensive library of tools and methods for likelihood-based sufficient dimension
reduction in R.
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