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Resumen en Español

En la actualidad, una cantidad enorme de información se registra y almacena

diariamente en forma de imágenes, video, audio, señales biomédicas, datos fi-

nancieros y cient́ıficos. Para sacar provecho de toda esta información, es útil

encontrar regularidades y estructuras en los datos que permitan reconocer pa-

trones y clasificarlos de forma conveniente. La automatización de ese proceso es

el objeto del aprendizaje maquinal.

En aplicaciones como el reconocimiento de la escritura manuscrita, del habla

o de objetos en grabaciones de video, las entidades que se desean clasificar se

presentan como una sucesión o secuencia de datos correlacionados entre śı y la

asignación de cada secuencia a una clase determinada se basa en el modelado

estad́ıstico de las mismas. Es posible considerar que secuencias distintas son

independientes, pero es necesario describir adecuadamente las dependencias es-

tad́ısticas entre las observaciones que las constituyen. Los modelos ocultos de

Markov (HMM, del Inglés Hidden Markov Model) son la herramienta más uti-

lizada con este propósito. El atractivo principal de estos modelos reside en su

simpleza, en la disponibilidad de algoritmos muy eficientes desde el punto de

vista computacional para su entrenamiento y evaluación, y en su capacidad para

describir secuencias con un número variable de observaciones.

En un escenario de clasificación t́ıpico, los datos observados pertenecen a una

de h clases distintas, pero puede usarse un mismo conjunto de caracteŕısticas

para describir a todas las clases. Si Y = 1, 2, . . . , h denota la clase y X ∈ Rp

las caracteŕısticas, el clasificador es una función f(X) que nos indica la clase a la
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II

cual pertenece X con una mı́nima probabilidad de error.

El reconocimiento estad́ıstico de patrones comprende fundamentalmente la

selección de caracteŕısticas útiles para discriminar entre las distintas clases, el

modelado estad́ıstico de las mismas, y la construcción de f(X) a partir de tales

modelos. En los problemas que nos interesan en esta tesis, los datos que queremos

clasificar son secuencias de observaciones X = {X1, X2, . . . , XTi
} y la regla de

clasificación f(X) utiliza un HMM ϑy asociado con los datos de cada clase y.

Tradicionalmente, el uso de HMM para construir un clasificador se encuadra

dentro de las estrategias generativas de aprendizaje automático. Bajo este en-

foque, la suposición fundamental es que los datos de cada clase son modelados

exactamente por el HMM correspondiente, de modo que p(X|Y = y) ∼ p(X|ϑy).

Suponiendo que se conocen también las probabilidades a priori p(Y = y), el clasi-

ficador óptimo es la regla de Bayes, que asigna a los datos una clase de acuerdo

al modelo que maximiza la probabilidad posterior p(ϑy|X). El aprendizaje del

clasificador se reduce entonces a estimar las distribuciones p(X|ϑy) a partir de un

conjunto de datos de entrenamiento, para lo cual se usa comúnmente estimación

de máxima verosimilitud.

Entrenando los clasificadores de esta forma se han logrado buenos desempeños

en aplicaciones que involucran, por ejemplo, la clasificación de la escritura manus-

crita, del habla y de secuencias biológicas como proteinas y ácidos nucleicos. No

obstante, en este enfoque se tratan los datos de cada clase en foma independiente y

no se aprovecha todo el conjunto de datos disponibles para enfatizar las diferencias

entre las distintas clases. El objetivo general de esta tesis es proveer nuevas

herramientas para construir clasificadores de datos secuenciales basados en HMM

que aprovechen mejor la información disponible para ayudar a discriminar entre

las clases.

Aprendizaje discriminativo de HMM definidos en el dominio de la

transformada ondita

Una observación clave respecto del aprendizaje generativo es reconocer que

la densidad p(X|ϑy) usada en un clasificador no es idéntica a la verdadera dis-

tribución de los datos de la clase, sino que usualmente es sólo una aproximación

escogida por su conveniencia anaĺıtica y computacional. En consecuencia, el

clasificador de Bayes basado en p(X|ϑy) comúnmente deja de ser óptimo en apli-

caciones prácticas.
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III

Debido a ello, en los últimos años se ha registrado un gran interés por el

entrenamiento discriminativo de HMM. A diferencia del entrenamiento conven-

cional, en este tipo de aprendizaje el objetivo ya no es describir adecuadamente

p(X|Y = y), sino construir directamente una función f(X;ϑ1, . . . , ϑh) que minim-

ice la tasa de error esperada en la clasificación. Para ello, los parámetros de todos

los modelos se estiman simultáneamente, utilizando datos de entrenamiento de

todas las clases. Una alternativa directa para optimizar el desempeño del clasifi-

cador es minimizar el riesgo emṕırico de clasificación con respecto a una función

de costo. La elección usual para esta función es asignar un costo nulo cuando la

clase asignada a la observación es correcta y un costo unitario en cualquier otro

caso.

La estimación de HMM con este tipo de técnicas ha mostrado resultados muy

interesantes en diversas aplicaciones. Sin embargo, estos algoritmos están de-

sarrollados para entrenar HMM con una estructura particular en la cual la dis-

tribución condicional de las observaciones es una densidad normal o una mezcla

de densidades normales. Aunque este tipo de HMM es el usado con mayor fre-

cuencia en las aplicaciones, no resulta adecuado para describir algunas secuencias

de datos con estructuras de dependencias particulares. Un ejemplo de ello son

las representaciones de señales basadas en onditas.

La transformada ondita ha resultado ser una herramienta muy útil para ana-

lizar señales e imágenes en distintas aplicaciones, permitiendo su descomposición

en elementos con distintos niveles de detalle o resolución. Las representaciones

suelen concentrar la enerǵıa de toda la señal en un número reducido de coeficientes

y aquellos que están relacionados temporal/espacialmente suelen mostrar fuertes

dependencias estad́ısticas a lo largo de las distintas escalas de análisis. El uso de

mezclas de densidades normales definidas sobre el conjunto de coeficientes resulta

inadecuado para modelar estas propiedades. Por el contrario, un modelo oculto

de Markov definido sobre los coeficientes de la transformación ha resultado ser un

modelo especialmente útil para estas representaciones. Estos modelos reciben el

nombre de árboles ocultos de Markov (HMT, del Inglés Hidden Markov Trees) y se

han aplicado con éxito en tareas diversas. Los HMT fueron luego empleados como

modelos de observación en HMM convencionales. Esto permitió combinar las

ventajas del HMT para capturar dependencias estad́ısticas locales en el dominio

de la transfomación con la capacidad del HMM de modelar relaciones de más largo

alcance a lo largo de la secuencia y de tratar con la longitud variable que suelen
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IV

mostrar las mismas. No obstante, en estos trabajos se estiman los parámetros de

los modelos HMM-HMT intentando aproximar la distribución de p(X|Y = y),

sin explotar infomación discriminativa.

En esta tesis, se propone un método discriminativo de estimación de paráme-

tros para modelos compuestos HMM-HMT con el objeto de mejorar su desempeño

en tareas de clasificación. La estrategia desarrollada utiliza un conjunto de fun-

ciones discriminantes, definidas a partir de la máxima probabilidad que pueden

presentar los datos observados bajo el modelo HMM-HMT correspondiente a cada

clase. Estas cantidades pueden ser computadas en forma eficiente utilizando una

adaptación del algoritmo de Viterbi. Partiendo de modelos parcialmente entrena-

dos bajo el enfoque de máxima verosimilitud, el método adapta iterativamente los

parámetros del conjunto de modelos a fin de minimizar una aproximación diferen-

ciable del riesgo de la clasificación sobre el conjunto de datos de entrenamiento. El

aprendizaje es supervisado y la aproximación de la función de riesgo se construye

en tres pasos:

Las funciones discriminantes se combinan en una única medida d(X) cuyo

signo decide si la clase asignada a la secuencia de entrenamiento X es cor-

recta: f(X) = sign[d(X)] y la clasificación es correcta si f(X) < 0.

Una función de costo asociada a la clasificación de X penaliza una decisión

equivocada. ℓ(d) es una función continua que se aplica sobre el rango de

valores de d(X) para otorgar un valor en el intervalo [0; 1]. Al ser una

función continua de d, este costo puede penalizar no sólo la decisión final

del clasificador sino también la dificultad que presenta esa decisión, ya que

valores |d(X)| cercanos a cero indican que la secuencia X presenta una

probabilidad similar de pertenecer a clases distintas.

La función de riesgo es la suma de los costos asociados con la clasificación

de todas las secuencias de entrenamiento.

El riesgo resultante es una función de los parámetros de los modelos a través de

las funciones discriminantes que se combinan en d. Decimos que es aproximada

porque no utiliza la función de costo 0-1, que es discontinua, sino una aproxi-

mación diferenciable dada por ℓ(d). Esto nos permite obtener su gradiente con

respecto al conjunto de parámetros de los modelos y de esa forma utilizar métodos

de gradiente para hallar los estimadores que minimizan la función de riesgo.
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V

Proponemos y comparamos dos alternativas para la selección de d(X). Ambas

comparan el valor de la función discriminante correspondiente a la clase correcta

de X con una aproximación suave al máximo valor que toman las funciones dis-

criminantes para el resto de las clases, de modo de ver qué tan dif́ıcil de clasificar

resulta X. Sin embargo, una de las alternativas efectúa esta comparación a través

de una diferencia mientras que la otra alternativa lo hace a través de un cociente

que se compara luego con la unidad. En el primer caso, d ∈ (−∞; +∞) y el

gradiente de la función de costo usado en la actualización de los parámetros re-

sulta ser una función de |d(X)|. Es decir que el aprendizaje está conducido por la

dificultad que presentan las secuencias de entrenamiento para ser clasificadas cor-

rectamente, independientemente de que la decisión del clasificador resulte correcta

o no. De esta forma, una secuencia que es clasificada correctamente con facilidad

no genera una modificación apreciable en el valor de los parámetros. Tampoco lo

hace una secuencia que es clasificada incorrectamente presentando un valor po-

sitivo muy grande de d(X). Por el contrario, para la segunda definición de d(X)

el rango de esta función es (−∞; 1] y entonces las secuencias para las cuales el

clasificador se equivoca fuertemente presentan un d(X) cercano a la unidad. Para

una misma función de costo ℓ(d) que es simétrica en d, la consecuencia de esto es

que los datos de entrenamiento que son mal clasificados durante el aprendizaje

del clasificador provocan actualizaciones de los parámetros que en general son de

mayor magnitud que las registradas con la alternativa anterior, de modo que las

secuencias mal clasificadas tienen más peso sobre el proceso de aprendizaje.

Para evaluar ambas alternativas se realizaron pruebas de reconocimiento de

fonemas extráıdos de la base de datos TIMIT, de referencia en aplicaciones de

reconocimiento automático del habla. Los fonemas escogidos representan una

prueba de gran dificultad para un clasificador, ya que estas señales están obtenidas

de registros de habla continua, lo que suma a las semejanzas acústicas una gran

variabilidad de los fonemas debida al contexto en el que fueron enunciados. En

ambos casos, los resultados obtenidos mostraron ser consistentemente mejores

que los obtenidos con clasificadores basados en modelos entrenados de forma

tradicional. No obstante, las mejoras de desempeño registradas fueron significa-

tivamente mayores para la segunda alternativa, que penaliza con mayor intensi-

dad los casos que son mal clasificados. En estos ejemplos, las tasas de error de

clasificación mostraron reducciones cercanas al 20% comparadas con las corres-

pondientes a clasificadores entrenados por los métodos tradicionales.
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Los resultados correspondientes a esta parte del trabajo de tesis fueron pu-

blicados en [88, 89]. Durante la primera parte de estos desarrollos, se exploró

también el uso de los HMM-HMT para aplicaciones de supresión de ruido basada

en modelos estad́ısticos. Esos primeros resultados fueron reportados en [72].

Reducción de dimensiones bajo el enfoque de suficiencia

Cuando se usan modelos estad́ısticos para el reconocimiento de patrones, es

frecuente incluir un procedimiento para reducir la dimensión p del espacio de ca-

racteŕısticas. Ello permite definir modelos con un menor número de parámetros,

de modo que fijado el conjunto de datos de entrenamiento, la varianza de los

estimadores obtenidos es menor que si se hubieran definido modelos más grandes

sobre las caracteŕısticas originales. Esta disminución de la varianza de los esti-

madores usualmente se traduce en una mejora en el desempeño del clasificador.

En los métodos lineales de reducción de dimensiones las caracteŕısticas origi-

nales se proyectan a un subespacio de menor dimensión mediante una transfor-

mación lineal. En el contexto de clasificadores basados en modelos ocultos de

Markov, los métodos más usados en las aplicaciones son extensiones del análisis

discriminante lineal (LDA, del Inglés Linear Discriminant Analysis) para datos

normalmente distribuidos. Estos métodos están adaptados a un esquema de es-

timación de máxima verosimilitud a fin de poder integrar la reducción de di-

mensiones al proceso tradicional de estimación de parámetros en HMM. La más

usada de estas técnicas es una variante conocida simplemente como HLDA (por

Heteroscedastic Linear Discriminant Analysis).

Este proceso de reducción no debeŕıa perder información relevante para la

clasificación, sino conservar toda la información discriminativa presente en las

caracteŕısticas originales pero en un número menor de combinaciones lineales de

las mismas. Sin embargo, a pesar del uso extendido de HLDA en aplicaciones de

reconocimiento de patrones basado en modelos ocultos de Markov, su desarrollo

no tiene en cuenta la retención de información y tampoco existe hasta el momento

un análisis de su optimalidad en tal sentido.

Por el contrario, la reducción suficiente de dimensiones (SDR, del Inglés Suf-

ficient Dimension Reduction) es un enfoque relativamente reciente que tiene en

cuenta expĺıcitamente la pérdida de información. El objetivo de esta metodoloǵıa

es estimar el subespacio generado por ρ ∈ Rp×d, con d ≤ p mı́nimo, de modo que

la distribución condicional de X|(ρTX, Y ) es asintóticamente equivalente a la de
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VII

X|ρTX. Esta condición asegura que la proyección de X conserva toda la infor-

mación disponible sobre Y . Cuando se dispone de un modelo para X|(Y = y), la

estimación de ese subespacio mı́nimo puede efectuarse usando máxima verosimil-

itud. Los métodos disponibles de SDR basados en este tipo de estimación se

limitan, sin embargo, a datos con distribución normal y han estado orientados

t́ıpicamente al problema de regresión más que a la clasificación.

En clasificación, el objetivo de la reducción suficiente es estimar el subespacio

generado por ρ de modo que f(ρTX) = f(X) para todos los X. Aunque puede

parecer que el subespacio estimado de esta forma es distinto al obtenido con la

condición anterior, es posible demostrar que cuando los datos de cada clase se

distribuyen normalmente ambos subespacios son idénticos.

Partiendo de este resultado, en esta tesis utilizamos desarrollos teóricos re-

cientes referidos a la reducción suficiente de poblaciones normalmente distribuidas

para analizar LDA y HLDA en el contexto de suficiencia. Mostramos que las

proyecciones obtenidas con LDA conservan la información discriminativa sólo

cuando los datos de cada clase se distribuyen normalmente y la matriz de covari-

anza es la misma para todas las clases. Por otra parte, mostramos que con HLDA

es posible lograr una reducción que conserve la información discriminativa, pero

que para ello frecuentemente es necesario retener un número grande de combi-

naciones lineales de las caracteŕısticas originales. Esta cantidad usualmente es

mayor que la que seŕıa necesario retener empleando otro método de proyección

lineal conocido como LAD (por Likelihood Acquired Directions).

Mostramos que este resultado es una consecuencia de la estructura de las ma-

trices de covarianza que impĺıcitamente se suponen en HLDA. La reducción de

dimensiones a través de este método puede entenderse como un proceso de dos

pasos. En primer lugar, se busca una transformación (ρ,ρ0) ∈ Rd×d de tal modo

que toda la información espećıfica de la clase queda concentrada en ρTX y ρTX

es estad́ısticamenete independiente de ρT
0X. Luego, como ρT

0X no depende de la

clase Y , es común para todas ellas y puede descartarse. La observación funda-

mental que enfatizamos en esta tesis es que la suposición de independencia entre

ρTX y ρT
0X es más fuerte de lo necesario para poder descartar ρT

0X e impone

una estructura particular en las matrices de covarianza de los modelos de las

clases para poder lograrla. Mostramos que la condición suficiente para reducir

las dimensiones sin perder información discriminativa es que ρT
0X|(ρTX, Y = y)

no dependa de la clase y. Esta caracteŕıstica es lo que explota LAD y gracias
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VIII

a ello asegura conseguir la reducción suficiente mı́nima para modelos normales

con matrices de covarianza arbitrarias. La consecuencia práctica de estos resul-

tados es que con HLDA usualmente es necesario retener un mayor número de

combinaciones lineales de X que con LAD, o presentado de otra forma, que fijada

una cantidad d de combinaciones lineales de las X originales, estas nuevas coor-

denadas conservan mejor la información original cuando se obtienen con LAD.

Dado que LAD tiene el mismo costo computacional que HLDA, estos resultados

sugieren el uso de LAD como alternativa general de reducción lineal para modelos

normales con covarianza arbitraria.

Por otra parte, si los datos verdaderamente satisfacen la estructura de covari-

anza supuesta por HLDA, es posible que la proyección obtenida con este método

tampoco sea mı́nima. En la tesis también proponemos un método de proyección

para estos casos que provee una reducción suficiente mı́nima, al mismo tiempo

que explota la estructura particular de las matrices de covarianza. El estimador

resultante puede entenderse como una aplicación particular de LAD sobre carac-

teŕısticas transformadas previamente mediante HLDA.

Todos estos desarrollos son ilustrados con simulaciones y con un ejemplo de

clasificación de d́ıgitos manuscritos. En este último caso utilizamos HLDA y

LAD para proyectar los datos originales a un subespacio bidimensional. El ejem-

plo ilustra cómo las distintas clases presentan distribuciones de caracteŕısticas

más normales cuando la reducción se lleva a cabo por medio de LAD. Más impor-

tante aún, clasificando los d́ıgitos utilizando un discriminante cuadrático sobre las

proyecciones obtenidas con LAD y con HLDA, la tasa de errores de clasificación

obtenida con LAD presenta una mejora de aproximadamente el 60% respecto a

la tasa de error obtenida con HLDA.

El enfoque de suficiencia para la reducción de dimensiones proporciona además

un sustento teórico para inferir cuál debe ser la dimensión d del subespacio al

cual se proyectan los datos a fin de conservar toda la información. Este aspecto

también es de interés práctico, ya que brinda la posibilidad de utilizar métodos

de inferencia menos costosos computacionalmente que las pruebas de validación

cruzada utilizadas comúnmente. En la tesis derivamos métodos de inferencia para

d usando el criterio de información de Akaike (AIC), el criterio de información de

Bayes (BIC), tests de relaciones de verosimilitud (LRT) y tests de permutación.

Estos métodos ya estaban disponibles para LAD, pero no aśı para LDA y HLDA.

Las pruebas con datos simulados mostraron que BIC en particular es una buena
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IX

alternativa para la estimación de d, brindando buenos resultados con un costo

computacional relativamente bajo. La opción de menor costo computacional es

LRT, pero su desempeño no es tan bueno como el de BIC cuando la cantidad de

datos disponibles para el entrenamiento es reducida.

Por último, extendemos todos estos métodos desarrollados inicialmente para

datos con distribución normal a HMM que usan densidades normales como mod-

elos de observación. Esta extensión se basa en la descomposición conveniente de

la función de verosimilitud que resulta de utilizar el algoritmo de maximización

de la esperanza para la estimación de parámetros de los HMM bajo el enfoque

de máxima verosimilitud.

Los resultados correspondientes a esta parte del trabajo de tesis fueron pub-

licados en [86]. Por otra parte, el software desarrollado para implementar los

métodos de SDR fue publicado en [22].
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Notation

I Identity matrix.

ρ Basis matrix for a dimension reduction subspace.

Sρ Subspace spanned by the columns of ρ.

ρ0 Basis matrix for the orthogonal complement of Sρ.
SY |X Central subspace for the regression of Y on X.

X|Y Random variable X conditioned on the random variable Y .

X ∼ Y Asymptotic equivalence of the distributions of X and Y .

EX(X) Expectation of the random variable X.

VarX(X) Variance of the random variable X.

µ, σ2 Mean, variance of a scalar random variable.

µ Mean of a vector random variable.

µy Mean vector of data from population y, E(X|Y = y).

Σ Total (marginal) covariance matrix Var(X).

∆y Conditional (within-class) covariance matrix Var(X|(Y = y)).

∆ Average within-class covariance matrix EY (∆y).

p(X) Probability density function or probability mass function of X.

p(X|Y = y) Conditional pdf of X given the value of Y is y.

N (µ,∆) Normal pdf with parameters µ and ∆.

{·} Set or sequence.

Lϑ Likelihood for parametric model ϑ.

KL(p|q) Kullback-Leibler divergence between densities p and q.
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XX LIST OF FIGURES

Xn n-th observed sequence.

xn
t Observed vector at time t in sequence Xn.

qt
1 Sequence {q1, q2, . . . , qt}.

πk In a HMM, probability of the chain of being in state k at t = 1.

aij In a HMM, transition probability from state j to state i.

bj(X) In a HMM, pdf of observations from state j.

ϑi Hidden Markov model for data from class i.

Tu In a HMT, subtree rooted at node u.

Tu/v In a HMT, subtree rooted at node u excluding subtree Tv.
Xi Training sample corresponding to class i.

Ni Cardinality of Xi.

ℓ(·) Loss function.

R(·) Risk function.

gj(X) Discriminant function for class j.
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CHAPTER 1

Introduction

Learning from data has become a major task in recent years. Collecting and

storing data is often easy and cheap with today’s technology. However, extracting

useful information and taking advantage of it have proved a much more difficult

task. Machine learning aims at finding structures in data automatically, so that

they can be used as patterns to make predictions about new observations coming

from the same source of data.

An important subset of machine learning techniques are targetted to sequential

data. In this type of data, observations form a correlated sequence. Though

different sequences can be assumed independent, modeling the correlations within

each of them is fundamental to describe the underlying process. Examples include

time series, biomedical signals, handwritten text and sequences of aminoacids in

proteins. The observations can come directly from the measurement process, as

may be the case with econometric time series, but also from features extracted

from a short-term analysis of a whole signal, as it is usual with speech. In

addition, the size of the sequences frequently is not fixed, which also contributes

to the complexity of modeling them.

Hidden Markov models (HMM) have been found very useful in applications

concerning this type of data. They provide parsimonious models of the observa-

tions by enabling simple statistical dependencies between latent variables that are

hidden but govern the outcomes available to the observer. In a typical setting for

classification, the data are assumed to belong to one out of h different classes that

can be described using the same set of features or descriptors. Those features are
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4 Introduction

Figure 1.1: Generative learning approach.

assumed to be well-modeled by a single HMM for each class. The learning task

to build a classifier is to estimate the model parameters that maximizes the like-

lihood of the class observations given the model. Once all the models have been

trained in this way, the classification of a new observation reduces to evaluate

which model is more likely to have generated the data.

The learning framework stated above is called generative, as it assumes that

models can generate the data from their corresponding class. This scheme has

shown to be successful for automatic classification tasks concerning for instance

speech [28, 51, 80], handwritten characters and digits [5, 9, 47, 36, 90], biological

sequences [3], and network traffic [25, 66]. Nevertheless, this basic approach

strieves only on describing the data from each class, regardless of whether this

effort helps to discriminate beetween classes or not in a practical setting. In this

thesis, new learning methods for HMM-based classifiers are developed focussing

on discriminative information as a way to improve their performance for pattern

recognition.

1.1 Generative vs discriminative learning

Let Y be a label used to indicate the class from where a multivariate vector of

features X comes. Given a sample of labeled observations from the joint process

(Y,X), the goal in statistical pattern recognition is to construct a classification

rule Y = f(X) to predict with minimum probability of error the class from

where an unlabeled vector of features comes. When statistical models are used
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1.1. Generative vs discriminative learning 5

Figure 1.2: Discriminative learning approach.

to describe the data, f(X) is a function of those models.

Let {ϑy} be the models for the classes, with y = 1, 2, . . . , h. In generative

learning, the essential assumption is that p(X|Y = y) = p(X|ϑy). The exact

distribution is not known in advance, but it is common to assume that it belongs

to some parametric family of probability density functions, and that the param-

eters can be estimated from the data. The usual choice to do this is maximum

likelihood estimation (MLE). Once all of these distributions and the a priori

probability of each class πy = p(Y = y) have been estimated, Bayes rule allows

us to compute posterior probabilities for each class given a new observation X.

Then, a class label is assigned to X according to the Bayes classification rule

f(X) = argmax
y

p(ϑy|X).

This is the usual setting used with HMM-based classifiers. If the assumed

models account for the true distribution of the data and the set of training signals

is large enough to allow us achive asymptotic optimality of the estimators, the

above approach guarantees minimal error rates in classification [75]. Nevertheless,

these assumptions hardly ever hold in applications. Assumed models usually

cannot be expected to match the true class distributions and sample availability

for parameter estimation often is too small to account for the large variability

that exists in data. Thus, this approach to classifier design becomes suboptimal

and there is a significant increase in error rates [13].

To overcome these limitations, in recent years there has been a growing interest

in discriminative training of HMMs [13, 45, 52]. Unlike the generative approach,

this one does not aim at maximizing the likelihood of the class observations
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6 Introduction

given the model for that class only, but to exploit dissimilarities between models

using all the available data. We can think of discriminative learning not trying

to describe the whole data distributions, but to locate the decision boundary

between them. To do so, this approach uses a set of discriminant functions

that depend on the models, and the whole set of parameters {ϑy} is estimated

simultaneously using training samples from all the classes [52].

Under the discriminative training framework, several criteria have been pro-

posed to drive the learning process of HMM, giving rise to different methods. As

examples, maximum mutual information (MMI) [2] seeks to maximize the mu-

tual information between the observations and their labels. This criterion inherits

several properties from information theory, but cannot guarantee to achieve the

least error rate [13]. On the other hand, minimum classification error (MCE)

[54] sets minimization of the error rate explicitely as the optimization task. Min-

imum phone error (MPE) [79] is another criterion widely known in the speech

recognition community. It is conceptually similar to MCE, but when the data is

structured at several hierarchical levels it allows to consider smaller units of the

sequences to account for the classification error. For example, sentences in speech

contain words and words contain phonemes. MCE would account for errors at

the sentence level regardless of how many errors occured within the sentence,

whereas MPE would account for errors at the phoneme level.

Among these methods, MCE allows for a more direct link between the design of

the classifier and its expected performance. Systems trained using this approach

have shown important improvements in recognition rates compared to the same

systems trained using conventional MLE, both in simple applications [54, 62, 93]

as well as in large-scale applications [69, 92]. Nevertheless, up to date these

approaches have been limited to HMMs that use Gaussian mixtures as observation

distributions.

1.2 Extracting features in the wavelet domain

Observed data are usually transformed in some way before using them for

pattern recognition [50]. This process aims to extract features that can help

to discriminate better between different classes. Take the speech signal as an
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1.2. Extracting features in the wavelet domain 7

example. It is not the rough record what is used for classification, but a number

of spectral features obtained in a short-term analysis of the signal [28, 51, 80].

Typically, the speech waveform is analyzed in segments of 30 ms length. For each

segment, a spectral analysis is carried out and further processing of the spectrum,

gives a set of coefficients that are assumed to be descriptive for the signal. This

vector of coefficients is the feature vector used for classification, and statistical

models like HMM operate on this feature space. Similar processes for feature

extraction could be described for other applications. Most of them are heuristic

in nature, specific for the application and they lose information in the process.

Could we think of a feature extraction process that remain fairly the same

for a wide range of tasks? One that needs less decisions from an expert and

that could be used when smart engineered features are not available in advance?

Developing a method like that is obviously a very ambitious goal that would

help enormously to automate the learning process. While being far away from a

solution yet, first steps in that direction has been given, taking tools from wavelet

theory and multirresolution analysis [7, 15, 65].

An important property of the wavelet transform is that it allows to use parsi-

monious statistical models to describe the coefficients of the representation and

the statistical dependencies between them [91]. In this way, useful models are

assumed directly on the wavelet domain, and no other feature extraction process

is required. The best known of wavelet-domain models is the hidden Markov tree

(HMT) [24], which has led to many successful applications [32, 46, 58, 82, 95].

Nevertheless, the HMT is not suitable to sequential data with varying lengths.

This limitation arises from the use of the (dyadic) discrete wavelet transform

(DWT) [27, 67], which makes the structure of representations depend on the size

of signals or images. To overcome this we could think of tying parameters along

scales. This is extensively used in the signal processing community, where param-

eter estimation often relies on a single training sequence. However, in a typical

scenario of pattern recognition we have multiple observations available and we

would want to use all of that information to train a full model without constrain-

ing modeling power because of tying parameters. To do so, the HMT should be

trained and used only with signals or images with the same size; otherwise, a

warping preprocessing would be required to match different sizes and that would

be difficult to achieve in real-time applications.

A different approach to deal with variable length signals in the wavelet domain
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8 Introduction

is to exploit the probabilistic nature of the HMT to embed it as the observation

distribution for a standard HMM [71, 73]. In this way, the HMT accounts for

local features in a multiresolution framework while the external HMM handles

dependencies in a larger time scale and adds flexibility to deal with sequential

data. The HMM-HMT model was shown to achieve promising results both for

pattern recognition and for denoising tasks [72, 73]. Nevertheless, the training

algorithms used so far provide maximum likelihood (ML) estimates of model

parameters and discriminative learning approaches have not been proposed yet.

1.3 Dimensionality reduction

The performance of a classifier depends strongly on the set of features on which

it acts. As discussed above, observed data are usually transformed in some way

to emphasize important information for class discrimination. The output of this

feature extraction process is a random vector X ∈ Rp which is assumed to be

better suited for classification than the raw measurement.

Nevertheless, the coordinates of X often have redundant information or some

of them are not useful to discriminate between different classes. When this is the

case, the parametric models for X|(Y = y) use parameters to describe nuissance

dimensions that are not important for classification. For a given training sample,

using larger models results in an increase of the variance of parameter estimates,

which often degrades the ability of the classifier to perform well with new data

not used during the learning process [41, 50].

Because of this, variable selection or dimension reduction are frequently added

to the feature extraction to retain a smaller number of predictors and lower

the size of the statistical models [50]. In common variable selection procedures,

some coordinates of X are discarded and the remaining ones are retained without

further processing [8]. On the other hand, dimension reduction typically involves

some transformation of the features X followed by a selection process on the new

coordinates to retain just a few of them [49].

A frequent choice with HMM-based classifiers is to use linear dimension re-

duction. In this type of reductions, a matrix ρ ∈ Rp×d, d ≤ p, is used to

project the original features X onto a lower-dimensional subspace with coor-
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1.3. Dimensionality reduction 9

dinates ρTX ∈ Rd. These d linear combinations of X should not lose any in-

formation carried by X that is relevant for classification. If successful, we could

estimate models for ρTX|Y , instead of full-sized models for X|Y .

The best known of linear reduction methods is principal component analysis

(PCA). It seeks to maximize the variance of the retained coordinates as a way

to conserve the information available in the original X [53]. However, PCA does

not account for any dependence about between Y and X, and thus important

discriminative information can be lost in the reduction process. For a classifi-

cation task, supervised dimension reduction is a better option. Examples of the

most widely used methods in HMM-based classifiers are the subspace projection

methods proposed in [56, 57, 83]. They pursue likelihood-based approaches to lin-

ear discriminant analysis (LDA) and heteroscedastic linear discriminant analysis

(HLDA) for Gaussian data. As these methods are stated in a MLE framework,

they can be consistently embedded into the training process of HMM. Neverthe-

less, both LDA and HLDA have been derived from heuristics, without taking care

of retention of information.

Sufficient dimension reduction (SDR) is a relatively new approach that deals

explicitly with loss of information for a particular objective [18, 60]. In a classi-

fication setting, ρTX is said to be a linear sufficient reduction for Y |X if given

ρTX the class assignment is conditionally independent of the remaining infor-

mation in X [23, 94]. However, SDR developments have been more tailored to

regression problems, where the essential task is to estimate the smallest subspace

of X that does not lose any information about Y . The sufficient reduction sub-

space in regression is usually larger than the sufficient discriminative subspace,

but connections between them can be stated under some assumptions [23]. This

allows us to use methods developed for regression in a classification framework.

The general SDR methodology does not require model assumptions for X or

X|Y [16, 23, 60], but when a model for X|Y is assumed, maximum likelihood

estimation can be used to estimate the fewest linear combinations of the features

that retain all the information about Y . Existing model-based theory concerns

conditional normal models only. It was introduced in [18] and further developed

in [20, 21]. In particular, a new method called Likelihood Acquired Directions

(LAD) was presented in [20] to deal with Gaussian data with unconstrained

covariance. Nevertheless, these methods have not been explored neither for se-

quential data nor for complex classification tasks. In addition, understanding
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10 Introduction

existing reduction methods for HMM-based classifiers under this framework is

also pendant.

1.4 Contributions of the Thesis

This thesis deals with discriminative information when using HMMs for pat-

tern recognition in sequential data. We focus on two different aspects:

Discriminative training of wavelet-domain HMM.

A new method for discriminative training of HMM-HMT models is intro-

duced, aiming at improving the performance of sequential pattern recog-

nizers in the wavelet domain. The proposed method relies in the MCE

approach and provides reestimation formulas for fully non-tied models. An

adapted version of Viterbi’s decoding algorithm suited to HMM-HMT mod-

els is used to define the discriminant functions. Valued at each training

sample, these functions are further combined in a single misclassification

function whose sign determines the decision of the classifier. Direct appli-

cation of standard procedures used with Gaussian mixture-HMMs is shown

not to be effective for the HMM-HMT model, requiring a modification of

the way rival candidates are weighted during the classification process. To

deal with this, we propose a new approximation to the misclassification loss

that penalizes differences in the order of magnitude of model likelihoods

rather than in their values. As a result of this approximation, the updating

process is driven not only by confusability of the training samples as is the

usual approach, but also by the correctness of their classification. Phoneme

recognition experiments with highly confusable phonemes from the TIMIT

speech corpus [99] show that the proposed method consistently outperforms

its MLE-based counterparts. Results from this contribution were published

in [88, 89].

Sufficient dimension reduction of HMM.

Standard procedures for dimension reduction in HMM-based pattern rec-

ognizers are re-examined under the sufficiency approach. It is shown that

both LDA and HLDA are capable of retaining all the class information of
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1.5. Outline 11

the original features, but under quite strongs constraints on the covariance

structure of the data that hardly ever hold in practice for a small dimension

of the mantained subspace. As a consequence, to minimize the information

loss HLDA usually needs to project the data to a subspace that is not the

smallest one that could be obtained, thus losing efficiency. Most important,

it is argued that LAD provides a better way to deal with heteroscedastic

data, and that it outperforms HLDA when data is not constrained to the

special covariance structure required by this method. A very special case

arises if a reduction actually has a structured covariance as assumed in

HLDA. The subspace estimated with HLDA may not be minimal even in

this case, and the LAD estimator, albeit providing the smallest reduction

yet, losses efficiency because it does not account for the special structure.

We address this point and present a new estimator that both satisfies the

same covariance structure as HLDA and gives a minimal sufficient reduc-

tion. On the other hand, the discussed theory allows us to derive methods

to infer about the dimension of the smallest subspace that retains all the

information to discriminate between the classes. This is useful in practice to

serve as alternative to k-fold cross-validation or trial-and-error approaches.

Developments are carried out for conditional normal models and its exten-

sion to HMM is shown. Results from this contribution have been reported

in [86, 87], along with an open-access software toolkit for SDR methods

published in [22].

1.5 Outline

We start by reviewing the basic theory and algorithms for HMM in Chapter

2. Both HMM with normal observation distributions and wavelet-domain HMM

which use HMT as observation models are discussed. Contributions of the thesis

are developed in Chapter 3 and Chapter 4. Concluding discussions are given in

Chapter 5, along with further research derived from this work.
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CHAPTER 2

Basics of hidden Markov models

2.1 Introduction

Hidden Markov models (HMM) are statistical models that haved proved useful

to describe sequential data. They comprise a bivariate random process in which

one of the variables forms a Markov chain. The state of the Markov chain re-

mains hidden to the observer, but governs the outcome of the observed random

variable in a probabilistic manner. The success of HMM lies in that they provide

parsimonious parametric models for sequential data and in that there exist very

efficient algorithms for estimating their parameters.

The basic theory on HMM was published by Baum and his colleagues [4].

Later, the proposed learning algorithms under the maximum likelihood frame-

work turned out to be a special case of the expectation (EM) maximization

algorithm for incomplete data [29]. In the applications area, they have shown

to be remarkably useful for modeling speech, being at the core of automatic

speech recognition, speech synthesis, spoken language understanding and ma-

chine translation [28, 48, 51, 80]. They have proved useful also in modeling

and classification of proteins and genomic sequences [3], biomedical signals such

as electrochardiograms [76], network traffic [25, 66] and econometric time-series

[68]. In this chapter we review the basics of HMM, emphasizing the topics that

will be needed in later developments. More comprehensive treatments can be

13
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14 Basics of hidden Markov models

found in [11, 37, 39, 51, 68].

2.2 Definition of HMM

Let {qk} be a sequence of random variables, with k = 1, 2, . . . , T and qk

taking values in the finite set {1, 2, . . . , Nq}. Denote by qt
1 the subsequence

{q1, q2, . . . , qt}. The sequence {qk} is said to form a Markov chain provided

p(qt|qt−1
1 ) = p(qt|qt−1). (2.1)

From the product rule of probability, the joint distribution of the overall sequence

can be factorized as

p(qT
1 ) = p(qT |qT−1

1 )p(qT−1
1 )

= p(qT |qT−1
1 )p(qT−1|qT−2

1 )p(qT−2
1 )

= p(q1)
T∏
t=1

p(qt|qt−1
1 ).

Thus, for a Markov chain we have

p(qT
1 ) = p(q1)

T∏
t=1

p(qt|qt−1). (2.2)

If p(qt = i|qt−1 = j) does not depend on the index t, the Markov chain is

said to be homogeneous and it is completely specified by the set of parameters

{πi, aij}, with πi = p(q1 = i) and aij = p(qt = i|qt−1 = j) for i, j = 1, 2, . . . , NQ.

These parameters are constrained by

NQ∑
i=1

πi = 1,

NQ∑
i=1

aij = 1, for all j. (2.3)

Some state-transitions may not be allowed, so that aij = 0 for them. The set of

allowed transitions, along with their corresponding probabilities, are often shown

in a finite-state representation as the one shown in Figure 2.1. In this figure,
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2.2. Definition of HMM 15

Figure 2.1: Finite-state representation of a Markov chain. State-transtions 1 → 3,

3→ 1, 2→ 4, 4→ 2, 2→ 2, and 4→ 4 are not allowed for this example.

for instance, the chain cannot jump neither between states 2 and 4, nor between

states 1 and 3, nor stay in states 2 or 4 in consecutive instants.

Assume now that {qk} is not observable, but what is available to the observer

is another sequence of random variables {Xk} whose distribution is governed by

the state of the Markov chain. In particular, assume that

p(Xt|Xt−1
1 ,qt

1) = p(Xt|qt), (2.4)

with Xt−1
1 = {X1, X2, . . . , Xt−1}. In this way, the distribution of Xt is determined

only by qt and it is conditionally independent of the remaining variables. For

instance, Xt may be a normally distributed random variable whose mean and

variance are determined by qt.

When (2.1) and (2.4) hold, the random process {qk, Xk} is said to be a hid-

den Markov chain. In the engineering literature it is most commonly known

as a hidden Markov model (HMM). The statistical dependence structure can be

represented in a graphical model as the one shown in Figure 2.2. The graph

summarizes that the observed variable Xt depends only on the hidden variable qt

and this depends only on the preceding qt−1.

Assume t indexes time instants. At any t, the Markov chain takes a state

qt = i out of the NQ possible states and the observed output Xt is drawn from

a probability density function p(Xt|qt = i). At time t+ 1, the state of the chain

can be the same as qt, or it may have been evolved to other state qt+1 = j

according to a probability p(qt+1 = j|qt = i). Given the state of the chain at this

new instant, the output of the model is drawn now from p(Xt+1|qt+1 = j). The

outputs {Xt} are the unique observable quantities of the process, so the states

{qt} of the underlying Markov chain always remain hidden to the observer.
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16 Basics of hidden Markov models

Figure 2.2: Graphical-model representation of a HMM. The graph shows the statistical

dependencies between the variables of the model.

The observed variables Xt can be scalars or vectors, but the conditional dis-

tributions of Xt|qt are usually assumed to belong all to the same parametric

family. We say that the HMM is homogeneous if the underlying Markov chain

{qt} is homogeneous and the conditional distribution Xt|qt does not depend on

the index t. In this case, the HMM is completely specified by the structure

ϑ = {Q, πi, aij, bi(·)}, where Q = {1, 2, . . . , NQ} is the set of allowed states for

the latent variables qt, πi = p(q1 = i|ϑ) and aij = p(qt = i|qt−1 = j, ϑ) are the

parameters of the underlying Markov chain {qt}, and bi(·) stands for the para-

metric model for p(X|qt = i, ϑ). Thus, given Q, if Nb parameters are needed to

characterize each observation model bi(X), in general we have (1 +Nb +NQ)NQ

parameters in the model that must satisfy the constraints (2.3). It is important

to note that the observed sequence {Xk} is not a Markov chain. In fact, one

advantage of HMM relies in that they can model longer-range statistical depen-

dencies between the observed variables through simple first-order dependencies

between the latent variables {qk}.

2.3 Model likelihood and computations

Let X = XT
1 be a single sequence of observed features. Assume we model

this sequence with an homogeneous HMM defined by the set of parameters ϑ

and let q = qT
1 be the sequence of states of the Markov chain at t = 1, 2, . . . , T .

As we cannot observe the sequence q that originated the observations, the like-

lihood Lϑ(X) = p(X|ϑ) accounts for all the possible paths q that could have

generated the observed X. Each path q has a joint probability p(X,q). From
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2.3. Model likelihood and computations 17

assumptions (2.1) and (2.4), the likelihood then reads

Lϑ(X) = p(X|ϑ)
=

∑
∀q

p(X|q, ϑ)p(q|ϑ)

=
∑
∀q

T∏
t=1

p(Xt|qt, ϑ)
T∏
t=2

p(qt|qt−1, ϑ)p(q1|ϑ).

Rearranging, we have

Lϑ(X) =
∑
∀q

p(q1|ϑ)p(X1|q1, ϑ)
T∏
t=2

p(Xt|qt, ϑ)p(qt|qt−1, ϑ),

where the summation is then over all possible sequences of states q that may

have generated the observations. Using the notation introduced in Section 2.2 we

get

Lϑ(X) =
∑
∀q

bq1(X1)πq1

T∏
t=2

bqt(Xt)aqt−1qt . (2.5)

In many applications with sequential data, a particular type of HMM known

as left-to-right HMM is used [28, 51, 80]. In this type of HMM, aij = 0 for j > i

and the initial state is fixed say at q1 = 1 so that we can write π1 = a01 = 1 and

πj = 0, ∀j > 1. Figure 2.3 shows a finite-state representation of this model and a

corresponding trellis to show the possible paths that generated the observations.

For this common structure we have

Lϑ(X) =
∑
∀q

T∏
t=1

bqt(Xt)aqt−1qt . (2.6)

A key issue for the success of HMM is that there exist very efficient algorithms

for computing the likelihood, for inference about the sequence of state that most

likely generated the observations, and also for estimation of the parameters of

the model [11, 80].

2.3.1 Parameter estimation

Likelihood computation assumes we know the parameters of model ϑ. In

practice, we have to estimate them from the data. The usual framework to do

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



18 Basics of hidden Markov models

(a) Finite-state representation of a left-to-right HMM with

five states.

(b) Trellis for a sequence of six observations modeled with the

HMM in (a).

Figure 2.3: a) Finite-state representation of a left-to-right HMM with five states.

Note that states 0 and 4 are mandatory intial and final states, respectively. b) Trellis

graph for a sequence of six observations modeled with a left-to-right HMM with five

states. The arrows indicate the possible sequences of states taken by the underlying

Markov chain to generate the obseved sequence X6
1 = {X1, X2, . . . , X6}. One of these

paths is highlighted. Note that the chain can reach the final state q = 4 only at the final

observation X6.

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



2.3. Model likelihood and computations 19

that is maximum likelihood estimation [80]. Estimating the likelihood directly is

infeasible due to the large number of allowed sequences of states we would have

to consider and the fact that each path includes the product of many probability

factors that would lead to numerical underflow in computations. In addition,

taking the logarithm of the likelihood function would not help, even when the

conditional densities are taken from an exponential family, as it does not allow

for any useful factorization.

A very efficient alternative is to use the EM algorithm for incomplete data

[4, 29]. Assume for simplicity that we have a single observed sequence X to

learn the parameters of ϑ. The sequence X is considered as incomplete data,

being (X,q) the complete data [29]. The algorithm works iteratively. As q is not

observed, it first estimates p(q|X, ϑold) in the E step, using the observed features

and a current estimate of the model parameters ϑold. Given this estimation, in

the M step the model parameters are updated by maximizing the expectation

Q(ϑ, ϑold) = Eq|X,ϑold {log p(q,X|ϑ)}
=

∑
q

p(q|X, ϑold) log p(q,X|ϑ). (2.7)

Maximizing this expectation amounts to maximizing (2.5), but computations are

much more efficient since the joint likelihood log p(q,X|ϑ) factorizes conveniently.

To describe the computations in some detail, let us start by rewritting the

expectation Q(ϑ, ϑold) as

Q(ϑ, ϑold) =
∑
q

∑
t

p(q|X, ϑold) log aqt−1qt +

+
∑
q

∑
t

p(q|X, ϑold) log bqt(Xt)

=

NQ∑
i=1

NQ∑
j=1

T∑
t=1

γt(i, j) log aij +

NQ∑
j=1

T∑
t=1

γt(j) log bj(Xt),

where we have defined

γt(i, j) ≜ p(qt−1 = i, qt = j|X, ϑold)

=
p(qt = i, qt−1 = j,X|ϑold)

p(X|ϑold)
(2.8)

γt(j) ≜ p(qt = j|X, ϑold)

=
p(qt = j,X|ϑold)

p(X|ϑold)
. (2.9)
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20 Basics of hidden Markov models

Then, in the E step we compute the quantities γt(i, j) and γt(j) using a current

estimate ϑold of the model parameters, and use these results in the M step to

update the model parameters by maximizing Q(ϑ, ϑold).

The E step. The efficient implementation of this step of the algorithm requires

the definition of a pair of auxiliary variables that can be computed recursively.

Define the forward variable

αt(i) ≜ p
(
Xt

1, qt = i |ϑ
)
. (2.10)

Starting with α1(i) = πibi(X1), it is shown that it can be computed with the

recurssion [6, 80]

αt(i) = bi(Xt)

NQ∑
j=1

αt−1(j)aji. (2.11)

Similarly, we can define a backward variable

βt(i) ≜ p
(
XT

t+1 |qt = i, ϑ
)
. (2.12)

Starting from βT (i) = 1/NQ, it is also shown that it can computed recursively as

[6, 80]

p(XT
t+1|qt = i, ϑ) =

NQ∑
j=1

bj(Xt+1)βt+1(j)aij. (2.13)

From definitions (2.10) and (2.12), we see that γt(i, j) and γt(j) can be computed

efficiently as

γt(i, j) =
αt−1(i)aijbj(Xt)βt(j)∑NQ

j=1 αT (j)
, (2.14)

γt(j) =
αt(j)βt(j)∑NQ

j=1 αT (j)
. (2.15)

Here we have used the recurssion for the forward variable to compute the

likelihood of the observed sequence X under model ϑold

Lϑold(X) = p(X|ϑold) =
∑
∀i∈Q

p(X, qT = i|ϑold) =
∑
∀i∈Q

αT (i). (2.16)
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2.3. Model likelihood and computations 21

The M step. Once the E step has been completed, the model parameters are

updated by maximizing Q(ϑ, ϑold). Note first that

Q(ϑ, ϑold) =

NQ∑
i=1

NQ∑
j=1

T∑
t=1

γt(i, j) log aij +

NQ∑
j=1

T∑
t=1

γt(j) log bj(Xt)

= Qa(ϑ, ϑ
old) +Qb(ϑ, ϑ

old).

As Qb(ϑ, ϑ
old) does not depend on the state-transition probabilities aij after the

quantities γt(i, j) have been obtained in the E step, the estimation of parameters

{aij} requires the maximization of just Qa(ϑ, ϑ
old). As a consequence, the estima-

tion of the state-transition probabilities has the same form regardless the choice

of parametric observation models. Maximizing Qa(ϑ, ϑ
old) with the constraints

(2.3) leads to the set of re-estimation formulas

aij =

T∑
t=1

γt(i, j)

T∑
t=1

NQ∑
j=1

γt(i, j)

, for i, j = 1, 2, . . . , NQ. (2.17)

Likewise, updating the parameters of the observation models {bi(X)} requires the
maximization of Qb(ϑ, ϑ

old) only, but to derive the specific re-estimation formulas

we have to assume a parametric model for bi(X). In the next paragraph we

describe this step when the observation models are normal densities.

Gaussian HMM. In many HMM applications, the observations are random

vectors of features Xt = xt ∈ Rp and multivariate normal densities or mixtures

of normal densities are used as observation models. We will refer to this models

as normal hidden Markov models or simply as GHMM. For simplicity, assume

bj(xt) = N (xt|µj,∆j). In this case, we have

Qb(ϑ, ϑ
old) =

NQ∑
j=1

T∑
t=1

γt(j) log bj(xt)

= −1

2

NQ∑
j=1

T∑
t=1

γt(j)(xt − µj)
T∆−1

j (xt − µj) + B,
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22 Basics of hidden Markov models

where

B = −1

2

NQ∑
j=1

T∑
t=1

γt(j)[p log(2π) + log |∆j|].

Maximizing with respect to µj and ∆j we get [6, 80]

µj =

T∑
t=1

γt(j)xt

T∑
t=1

γt(j)

(2.18)

∆j =

T∑
t=1

γt(j)(xt − µj)(xt − µj)
T

T∑
t=1

γt(j)

. (2.19)

Remember that in these derivations we have considered the likelihood for a

single long sequence of observations (see 2.5). In machine learning applications,

we typically have a set of observations {Xp}, with p = 1, 2, . . . , P , to learn the

parameters for each model. In this case, the usual assumption is that each ob-

served sequence is statistically independent of the others, so that the obtained

formulas simply take the form

µj =

P∑
p=1

Tp∑
t=1

γp
t (j)x

p
t

P∑
p=1

Tp∑
t=1

γp
t (j)

(2.20)

∆j =

P∑
p=1

Tp∑
t=1

γp
t (j)(x

p
t − µj)(x

p
t − µj)

T

P∑
p=1

Tp∑
t=1

γp
t (j)

. (2.21)

A deeper view to the EM algorithm. In previous paragraphs we described

how the EM algorithm works iteratively on an auxiliary function Q(ϑ, ϑold) in

order to maximize the likelihood function Lϑ(X). A nice presentation of this

relationship is given in [6]. To start with, let g(q) be a distibution defined over
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2.3. Model likelihood and computations 23

the latent (hidden) variables and assume g(q) > 0. For any choice of g(q), we

can rewrite the logarithm of the likelihood as 1

logLϑ(X) = log p(X|ϑ),

=
∑
q

g(q) log
p(X,q|ϑ)

g(q)
−
∑
q

g(q) log
p(q|X, ϑ)

g(q)
,

= L(g, ϑ) + KL(p(q|X, ϑ)||g),

where

L(g, ϑ) =
∑
q

g(q) log
p(X,q|ϑ)

g(q)
,

KL(p(q|X, ϑ)||g) = −
∑
q

g(q) log
p(q|X, ϑ)

g(q)
.

In the last expression, KL(p(q|X, ϑ)||g) is the Kullback-Leibler divergence be-

tween g(q) and the posterior distribution p(q|X, ϑ). This term is nonnegative.

Thus, log p(X|ϑ) ≥ L(g, ϑ) and, L(g, ϑ) is a lower bound for log p(X|ϑ). With

these ingredients, we can think of a general EM algorithm as a two-step iterative

process where we seek to maximize the log-likelihood log p(X|ϑ) by maximizing

the lower bound L(g, ϑ) [6]:

In the E step of the EM algorithm, the bound is maximized over g(q) while

holding fixed the current estimate of the model parameters ϑold. When ϑold

is fixed, the likelihood log p(X|ϑold) is fixed and the maximum of the bound

occurs at KL(p(q|X, ϑ)||g) = 0, which gives g(q) = p(q|X, ϑold).

In the M step, g(q) is held fixed at g(q) = p(q|X, ϑold) and the lower bound

is maximized with respect to ϑ to update the current estimate ϑold. This

step will cause L(g, ϑ) to increase, unless it is already at a maximum. With

these new estimates, we expect KL > 0 since the model parameters have

changed from ϑold and thus log p(X|ϑ) > log p(X|ϑold).

Iterations are repeated until convergence. This general view of the EM algorithm

has a broader scope than we need here. But what is interesting to note is that

1To see this, decompose
∑

q g(q) log
p(X,q|ϑ)

g(q) and note that
∑

q g(q) log p(X|ϑ) = log p(X|ϑ).
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24 Basics of hidden Markov models

since g(q) is fixed at p(q|X, ϑ) in the M step, the lower bound reads

L(g, ϑ) =
∑
q

p(q|X, ϑold) log p(X,q|ϑ)−

−
∑
q

p(q|X, ϑold) log p(q|X, ϑold)

= Q(ϑ, ϑold) + const.

Thus, maximizing Q(ϑ, ϑold) as we did in our presentation of the EM algorithm

for hidden Markov models, is the same as maximizing L(g, ϑ) at the M step and

then we see that maximizing Q(ϑ, ϑold) amounts to maximizing the log-likelihood

log p(X|ϑ).

2.3.2 Inference: Viterbi’s algorithm

The forward-backward recursions reviewed in Section 2.3.1 provide an efficient

way to compute the likelihood of an observed sequence given the model ϑ. Nev-

ertheless, in many cases we are interested in infering about the sequence of states

which is more likely to have generated the observed data. This amounts to find

the sequence q̃ that maximizes the joint likelihood p(X,q), so that [6, 48]

q̃ = argmax
q

T∏
t=1

bqt(Xt)aqt−1qt (2.22)

The algorithm that efficiently optimizes this search is known as Viterbi’s algo-

rithm. We can think of it as a modification of the forward algorithm, in which

instead of summing up probabilities from different paths coming to the same

destination state (see 2.10), only the best path is picked and remembered.

To do this, define an auxiliary variable λt(j) as

λt(j) ≜ max
∀qt−1

{
p
(
qt−1, qt = j,Xt |ϑ

)}
; ∀j ∈ Q. (2.23)

Similarly to the forward variable, starting with λ1(i) = πibi(X1) ∀i ∈ Q, it can

be computed with the recursion

λt(j) = max
1≤i≤NQ

{λt−1(i)p(qt = j|qt−1 = i, ϑ)p(Xt|qt = j, qt−1 = i, ϑ)}

= max
1≤i≤NQ

{λt−1(i)p(qt = j|qt−1 = i, ϑ)p(Xt|qt = j, ϑ)}

= max
1≤i≤NQ

{λt−1(i)aij} bj(Xt). (2.24)
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2.4. Hidden Markov models in the wavelet domain 25

Parallel to this variable, define:

ξt(j) ≜ argmax
∀i∈Q
{λt−1(i)aij}.

Thus, from

q̃T = argmax
∀i∈Q
{λT (i)}

we obtain the best path q̃ using the inverse recursion:

q̃t = ξt+1(q̃t+1); t = T − 1, T − 2, . . . , 1

In many cases, the best score maxj∈Q λT (j) = p(X, q̃) is a good approximation

to the (complete) likelihood p(X|ϑ), and it is then used for classification.

2.4 Hidden Markov models in the wavelet domain

Multiscale analysis using wavelets is a well-established tool for signal and im-

age representation [27, 67]. The multiresolution property of the wavelet trans-

form and its flexibility to deal with local features simultaneously in time/space

and frequency provide a suitable scenario for many signal processing and pat-

tern recognition tasks. Initial interest in these representations was largely driven

by powerful non-linear methods which relied on simple scalar transformations of

coefficients [31]. Many posterior developments kept in mind the idea of some

decorrelation property of the wavelet transform or assumed very simple statisti-

cal models for the coefficients. Nevertheless, in practical applications signals and

images usually show sparse representations and some structural dependence be-

tween coefficients which cannot be described with such models. Simply speaking,

coefficients typically are not normally distributed and large ones tend to form

clusters along scales and to propagate across scales [67]. Because of this, both

coefficients magnitude and statistical dependencies between them carry relevant

information about signals and their underlying distribution.

These features can be exploited for pattern recognition, but the joint distribu-

tion of the coefficients is needed. While complete knowledge of this probability is

infeasible, we can replace it with a suitable model that accounts for the main prop-

erties of the representation while remaining simple enough and computationally
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26 Basics of hidden Markov models

tractable. If we succeed in doing this, we can use these models straightforwardly

for statistical pattern recognition, without the need of specific feature extraction

procedures that can loss important information.

2.4.1 The discrete wavelet transform

We measure a signal with the aim to extract some useful information from

it. The measurement process is usually done in a way that is convenient tech-

nologically, but the information within the measured signal can be difficult to

interprete. Thus, we look for a transformation of the signal so that the new

representation allows us to easily extract the information.

Wavelet analysis has shown to provide useful representations of signals and

images in many applications. There are several different transforms commonly

grouped as wavelet transforms [67]. In all of them, each coefficient or atom of

the decomposition provides a local weighted average of the signal at a certain

scale and interval of time. Thus, we can think of these transforms as providing a

mapping of a signal onto a time-scale plane. Different wavelet transforms differ

in the partition they induce on that plane.

In this thesis we work with the DWT, which provides an orthogonal decom-

position for vectors in RN . It can be computed very efficiently [67] and induces a

dyadic partition of the time-scale plane that allows for representing the obtained

coefficients naturally as a binary tree. This structure helps to make computations

very efficient, which is an important factor in applications.

To briefly describe this transformation, assume z ∈ RN , with N = 2J , is the

sampled measured signal2. The DWT of z is w = Wz, where W is an N × N

matrix defining the transformation and satisfying WTW = IN . Particular values

for this matrix depends on the wavelet filters chosen for the analysis. The n-th

coefficient of w, wn, is a local average over a particular scale and a particular set

of times. From the orthogonality of the transform, w2
n measures the energy of the

signal at that scale and interval of times. Then, w represents a multiresolution

decomposition of z at scales τj = 2j−1, for j = 1, 2, . . . , J . The analysis gives

N/(2τj) coefficients at each scale and they can be arranged so that coefficients

2The condition that the length of z be a power of two is too restrictive and can be remove

in practice, but we keep it here for ease of exposition.
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2.4. Hidden Markov models in the wavelet domain 27

belonging to the same scale of analysis are adjacent in w. Furthermore, two

adyacents rows of W that corresponds to the same scale j are circularly shifted

versions of each other by an amount 2j.

Computations are perfomed very efficiently using the pyramidal algorithm [67].

The obtained representations tend to be sparse, meaning that a few coefficients

concentrate most of the energy of the signal. From an statistical point of view, it

means that if we regard the coefficients as realizations of a random process, their

marginal density is often very sharp near zero, which leads to a distribution with

a kurtosis greater than for the normal density.

Another key property of the wavelet transform is locality. It accounts to the

fact that each atom of the decomposition is concentrated simultaneously in time

and in scale/frequency. As stated above, each coefficient carries the energy of the

signal in a given region of the time-scale plane. The tilling of the plane induced

by the DWT is shown in Figure 2.4, with each rectangle being related to a given

coefficient in the representation. Note that the area of the rectangles is constant

for all of them. If we colour the rectangles according to the squared magnitud

of the associated coefficients, we obtain a graph known as scalogram. A main

feature of the wavelet representations of real-world signals and images is that

this graph often shows clusters of coeffcients for which their magnitud is large, as

well as this trend in intensity tending to propagate across scales, something that

is frequently referred to as the persistance property of the transform.

If we are to use some statistical model of the wavelet coefficients, we should

account for the properties just discussed. We discuss next a parsimonious model

that does this.

2.4.2 Hidden Markov trees

Crouse et al. [24] proposed a multiresolution Markov model to concisely ac-

count for properties of wavelet representations of signals and images. In their

framework, the marginal probability of each coefficient is modeled as a Gaus-

sian mixture driven by a hidden state variable. While the mixture accounts for

sparseness, markovian relationships between hidden states allow for describing de-

pendencies between coefficients. The resulting structure is then a hidden Markov

model on the wavelet domain which exploits the natural tree structure of DWT,
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28 Basics of hidden Markov models

Figure 2.4: Eschematics of the HMT model. A hidden latent variable (shadowed cir-

cles) is associated to each rectangle in the time-frequency plane and Markovian depen-

dencies are set between them. The state of the latent variable determines the parameters

of the normal distributions related to the observed coefficients linked to them. Thus, the

observed coefficients (white circles) are assumed conditional independent of the other

variables and their marginal distribution is a mixture of normal densities.

and it is usually referred to as hidden Markov tree (HMT). Figure 2.4 shows

a diagram of the model. Other multiresolution Markov models are reviewed in

[91], with an emphasis in signal and image processing. Some of them do not

use latent variables but set statistical dependencies between wavelet coefficients

directly. Nevertheless, many of these models are targetted to specific applications

and can be described only in those contexts. Throughout this thesis we will focus

only in the HMT, which has been found useful in a broad range of applications

concerning both signals and images.

Let w = [w1, w2, . . . , wN ], with wu ∈ R, be the observed features, which result

from a DWT analysis of the signal with J scales and discarding w0, the approxi-

mation coefficient at the coarsest scale. From the partition of the time-scale plane

induced by the transformation, the random vector of coefficients wt can also be

indexed as a tree rooted in w1. Associated with each wavelet coefficient, there is

a latent (hidden) variable ru. Thus, associated with the vector of coefficients w

there is a vector of hidden states r = [r1, r2, . . . , rN ] that can also be indexed as
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2.4. Hidden Markov models in the wavelet domain 29

a tree rooted in r1. Each latent variable ru takes values in the set {1, 2, . . . , K}.
We will usually refer to u = 1, 2, . . . , N as nodes. For u = 2, . . . , N , ρ(u) will

denote the parent node of u. In addition, if u is not a leaf of the tree structure,

Cu = {c1(u), . . . , cNu(u)} will denote the set of children nodes of u. Note that

for a dyadic tree resulting from a DWT analysis, each non-terminal node has

two children. These variables are said to define a HMT provided they fulfill the

following assumptions [34]:

1. ∀u ∈ {1, 2, . . . , N}, the marginal distribution of wu is a mixture

p(wu = w) =
K∑
k=1

p(ru = k)fu,k(w),

where fu,k(wu) = p(wu|ru = k).

2. Markov tree property for the latent variables

p(ru = m| {rv/v ̸= u}) = p(ru = m|rρ(u)).

3. The observed coefficients depend on the state of the latent variables, not

on the rest of coefficients

p(w1, . . . , wN |r1, . . . , rN) =
N∏

u=1

p(wu|r1, . . . , rN).

4. The observed coefficients depend only on the state of the latent variable

associated to them in the corresponding node of the tree

p(wu|r1, r2, . . . , rN) = p(wu|ru), ∀u.

Note that the last two assumptions resemble the conditional independence prop-

erty of usual HMM as discussed in Section 2.2. The dependence structure of the

HMT is shown in Figure 2.5.

Similarly to a conventional HMM, the HMT is characterized for the set of

parameters θ = ({κm}, {ϵu,mn}, {fu,m}), where κm = p(r1 = m|θ), ϵu,mn = p(ru =

m|rρ(u) = n, θ), and fu,m = p(wu|ru = m, θ) as defined previously. Usually, fu,m is

assumed normal. Despite the similarities with conventional HMM, there are some

important differences between them and HMT that are important to note. First,

there is not a temporal notion in the HMT. All wavelet coeffcients are observed
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30 Basics of hidden Markov models

Figure 2.5: Graphical-model representation of a HMT. Only a part of the tree is

shown.

simultaneously. Second, though the state-transition probabilities ϵu,mn are often

assumed independent of the node u, this assumption is usually stronger than in

the homogeneous conventional HMM and aims mainly at reducing the number

of parameters in the model. This is an example of strong parameter tying that

is found frequently in signal processing applications. Nevertheless, in machine

learning we often have a set of training signals for parameter estimation and

we can hope to learn larger models keeping the variance of parameter estimates

acceptable.

Likelihood of the HMT. From the assumptions stated above, the likelihood

Lθ(w) = p(w|θ) for the HMT model reads [24]

Lθ(w) = p(w1, . . . , wN |θ)
=

∑
∀r

p(r1, . . . , rN , w1, . . . , wN |θ)

=
∑
∀r

p(r1, . . . , rN |θ)p(w1, . . . , wN |r1, . . . , rN , θ), (2.25)

where the summation is over all possible combinations of states r in the nodes of
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2.4. Hidden Markov models in the wavelet domain 31

the tree. The first factor in each term of the summation represents the probability

of each of those combinations of states. From the Markov property of the tree,

we have

p(r1, . . . , rN |θ) = p(r1|θ)
N∏

u=2

p(ru|rρ(u), θ)

= πr1

N∏
u=2

ϵu,rurρ(u) (2.26)

The second factor in each term of the summation can be simplified using the

conditional independence assumptions for the HMT, reading

p(w1, . . . , wN |r1, . . . , rN , θ) =
N∏

u=1

p(wu|r1, . . . , rN , θ)

=
N∏

u=1

p(wu|ru, θ)

=
N∏

u=1

fu,ru(wu). (2.27)

Replacing back in the likelihood and letting ϵ1,r1rρ(1) = πr1 , we get

Lθ(w) =
∑
∀r

πr1

N∏
u=2

ϵu,rurρ(u)

N∏
u=1

fu,ru(wu)

=
∑
∀r

N∏
u=1

ϵu,rurρ(u)fu,ru(wu). (2.28)

We see that this expression for the likelihood of the HMT resembles that for the

standard HMM. Nevertheless, we must keep in mind that transition probabilities

in the time-domain HMM have very different meaning than time-scale transitions

in the HMT.

As with conventional HMM, there are three basic problems related to the

HMT: efficient likelihood computation; parameter estimation; and inference of

the best combination of states for the latent variables in the tree.

Parameter estimation. Parameters in the HMT model θ are estimated using

an adapted EM algorithm [24, 34]. To start with, note that maximizing the
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32 Basics of hidden Markov models

likelihood given a learning set {wℓ} of independent random vectors wℓ is identical

to iteratively maximizing the auxiliary function

Q(θ, θold)({wℓ}) = Ew

{
Ep(r|wℓ,θold)

{
log p(wℓ, r|θ)

}}
=

∑
ℓ

∑
u

∑
m

∑
n

ξℓu(m,n) log ϵu,mn +

+
∑
ℓ

∑
u

∑
m

γℓ
u(m) log fu,m(w

ℓ
u),

where we have used the definitions

ξℓu(m,n) ≜ p(ru = m, rρ(u) = n|wℓ, θold) (2.29)

=
p(wℓ, ru = m, rρ(u) = n|θ)

p(wℓ|θ)
,

γℓ
u(m) ≜ p(ru = m|wℓ, θold) (2.30)

=
p(wℓ, ru = m|θ)

p(wℓ|θ)
.

The E step involves computing ξℓu(m,n) and γℓ
u(m). This can be done efficiently

using upward and downward recursions through the tree that are defined similarly

to the forward and backward variables described for conventional HMM. The

algorithm was first proposed in [24] and improved in [34]. We describe it in a

way it is easy to compare it with the conventional forward-backward algorithm.

Further details are given in [34].

Let Tu be the subtree of observed wavelet coefficients rooted in node u, so that

T1 is the complete observed tree, and let Tu∖v be the subtree rooted in u so that

the coefficients in Tv are also in Tu but not in Tu∖v (see Figure 2.5). Define

αu(n) ≜ p (T1∖u, ru = n |θ ) , (2.31)

βu(n) ≜ p (Tu |ru = n, θ ) , (2.32)

βρ(u),u(n) ≜ p
(
Tu
∣∣rρ(u) = n, θ

)
. (2.33)

Variables βu(n) and βρ(u),u(n) are computed recursively going upward through

the tree from the leaves to the root node, while αu(n) is computed recursively
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2.4. Hidden Markov models in the wavelet domain 33

going downwards throughout the tree. The recursions can be obtained as [24]

βu(n) = p (Tu |ru = n, θ )

=

 ∏
v∈C(u)

p (Tv|ru = n, θ)

 p (wu|ru = n, θ)

=

 ∏
v∈C(u)

βu,v(n)

 fu,n(wu), (2.34)

where we have

βρ(u),u(n) = p
(
Tu
∣∣rρ(u) = n, θ

)
=

M∑
m=1

p (Tu|ru = m, θ) p
(
ru = m|rρ(u) = n, θ

)
=

M∑
m=1

βu(m)ϵu,mn. (2.35)

These recursions are initialized with βv(n) = fv,n(wv) for all v in the smallest

scale. Then, these values are used to compute the initial values for βρ(v),v(n) for

that smallest scale an these are then used to compute βv(n) for the upper scale.

The procedure is repeated until reaching the coarsest scale at the root node of

the tree.

Similarly, αu(n) can be computed with the recursion

αu(n) = p (T1∖u, ru = n |θ ) =

=
M∑

m=1

p
(
ru = n, rρ(u) = m, T1∖ρ(u), Tρ(u)∖u|θ

)
=

M∑
m=1

p
(
ru = n|rρ(u) = m, θ

) p (Tρ(u)|rρ(u) = m, θ
)

p
(
Tu|rρ(u) = m, θ

) ·
·p
(
T1∖ρ(u), rρ(u) = m|θ

)
=

M∑
m=1

ϵu,nmβρ(u)(m)αρ(u)(m)

βρ(u),u(m)
. (2.36)

This recursion is initialized with α1(m) = p(r1 = m|θ) = κm. Note that using

these variables, the likelihood of the model can be computed efficiently as

p(w|θ) = p(T1|θ)

=
M∑
n=1

αu(n)βu(n) (2.37)
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34 Basics of hidden Markov models

Note also that this computation does not depend on the node u chosen for splitting

the tree.

Using these variables, the E step of the EM algorithm for HMT reduces to

compute

ξℓu(m,n) =
βu(m)ϵu,mnαρ(u)(n)βρ(u)(n)/βρ(u),u(n)

M∑
n=1

αu(n)βu(n)

,

γℓ
u(m) =

αu(m)βu(m)
M∑
n=1

αu(n)βu(n)

.

These quantities remain fixed in the M step to update the model parameters. The

state-transition probabilities in the HMT model are estimated by maximizing

Qϵ =
∑
ℓ

∑
u

∑
m

∑
n

ξℓu(m,n) log ϵu,mn,

with the constraint
M∑

m=1

ϵu,mn = 1. (2.38)

We obtain [24, 34]

ϵu,mn =

L∑
ℓ=1

ξℓu(m,n)

L∑
ℓ=1

γℓ
ρ(u)(n)

. (2.39)

Assume now that we model each conditional density fu,m(w
ℓ
u) with a normal dis-

tribution with parameters µu,m and σ2
u,m. This is a scalar density p(wℓ

u = w|ru =

m, θ) = N (w|µu,m, σ
2
u,m). Estimation of the set of parameters {µu,m, σ

2
u,m}u,m,n is

carried out by maximizing the auxiliary function

Qf (θ, θ
old)({wℓ}) =

∑
ℓ

∑
u

∑
m

γℓ
u(m) log fu,m(w

ℓ
u)

= −1

2

∑
ℓ

∑
u

∑
m

γℓ
u(m)

{
(wℓ

u − µu,m)
2

σℓ
u,m

+B

}
,
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2.4. Hidden Markov models in the wavelet domain 35

with B = log 2π + log σ2
u,m. We obtain [24, 34]

µu,m =

L∑
ℓ=1

γℓ
u(m)wℓ

u

L∑
ℓ=1

γℓ
u(m)

, (2.40)

σ2
u,m =

L∑
ℓ=1

γℓ
u(m)(wℓ

u − µu,m)
2

L∑
ℓ=1

γℓ
u(m)

. (2.41)

Inference in the HMT. Like in the case of standard HMM, we are often

interested in inferring about the most probable sequence of states in the nodes of

the tree that has generated the observed set of wavelet coefficients; that is, given

w, we look for the sequence of states r̃ so that

r̃ = argmax
r

p(r|w, θ). (2.42)

The specific algorithm for the HMT was first introduced by [34], but is analogous

to Viterbi’s algorithm for HMM presented above. In particular, the algorithm

turns out to be a modified upward recursion, where the summation in (2.35) is

replaced by taking the maximum over the states. In this way, the algorithm starts

by initializing the variables λu(m) = βu(m) in the nodes u that corresponds to

leaves of the tree. From this point, the following quantities are computed upwards

the tree for each scale

λρ(u),u(n) = max
1≤m≤M

βu(m)ϵu,mn, (2.43)

ξu(n) = argmax
1≤m≤M

βu(m)ϵu,mn, (2.44)

λu(m) = fu,m(wu)
∏

v∈C(u)

λρ(u),v(m). (2.45)

The recursion ends at the root node of the tree. Then, starting with

r̃1 = argmax
1≤m≤M

λ1(m),

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



36 Basics of hidden Markov models

for u = 2, 3, . . . , N we do

r̃u = ξu(r̃ρ(u)). (2.46)

Limitations. In last years the HMT model has received considerable attention

for several applications, including signal processing [32, 43, 84], image denoising

[58, 59, 78, 85], texture classification [74, 82], computer vision [38, 95] and writer

identification [46]. For classification tasks, however, it can deal only with static

patterns. This limitation arises from the use of the discrete wavelet transform

(DWT), which makes the structure of representations depend on the size of signals

or images. To overcome this we could think of tying parameters along scales, but

it would come at the price of reducing modeling power. In a typical scenario for

pattern recognition we have multiple observations available and we would like

to use the whole information in order to train a full model. In these cases, the

HMT should be trained and used only with signals or images with the same size;

otherwise, a warping preprocessing would be required to match different sizes and

that would be difficult to achieve on-line.

2.4.3 Dealing with sequential data: the HMM-HMT model

A composite Markov model in the wavelet domain was introduced by Milone

et al. [73] to deal with length variability in the observed sequences. The approach

exploit the probabilistic nature of the HMT to embed it as the observation model

for a standard HMM. An adapted version of the EM algorithm was derived to

drive the parameter estimation of fully coupled models. The resulting structure is

a composite hidden Markov model in which the HMT accounts for local features

in a multiresolution framework while the external HMM handles dependencies

in a larger time scale and adds flexibility to deal with sequential data. With

this model, signals are seen as realizations of a random process which emits

wavelet coefficients in a short term basis driven by a Markov chain. The emitted

coefficients are not independent, but obey probabilistic dependencies structured

as a tree.

To clarify, let us briefly describe this composite model. Let wt ∈ RN be the set

of coefficients emitted at time t and W = {w1, . . . , wT} be the entire sequence

of vectors of coefficients resulting from the DWT analysis. The observation is

modeled by a HMM with a structure as defined in Section 2.1. In the assumed
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Figure 2.6: The HMM-HMT model. A left-to-right hidden Markov model uses hidden

Markov trees as models for the observed data in the wavelet domain.

model, for every state k of the chain, observed coefficients are drawn from a HMT,

so that bk (w
t) is itself a hidden Markov structure. Figure 2.6 shows a sketch of

the full model.

We recall that the observed coefficients wt
u are drawn from an observation

model fu,m(w
t
u) conditioned on the state m of the node. We assume scalar Gaus-

sian models N (wt
u|µu,m, σ

2
u,m) for all of them. Finally, we will use superscript k to

indicate the parameters of the HMT model θk that serves as observation model

bk (w
t) for the HMM.

Model likelihood and parameter estimation. Replacing (2.28) in (2.5), the

likelihood for the composite HMM-HMT model given a single observed sequence

W is:

Lϑ(W) =
∑
∀q

∏
t

aqt−1qtbqt(w
t)

=
∑
∀q

∏
t

aqt−1qt

∑
∀r

∏
∀u

ϵq
t

u,rtur
t
ρ(u)

f qt

u,rtu
(wt

u)

=
∑
∀q

∑
∀R

∏
t

aqt−1qt

∏
∀u

ϵq
t

u,rtur
t
ρ(u)

f qt

u,rtu
(wt

u),

(2.47)

where we have assumed a left-to-right HMM. In these expressions, ∀q denotes

that the sum is over all possible state sequences q = q1, q2, . . . , qT in the external

HMM and ∀R accounts for all possible sequences of all possible combinations of

hidden states r1, r2, . . . , rT in the nodes of each tree.
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38 Basics of hidden Markov models

Parameters in the HMM-HMT model are estimated using an adapted version

of the EM algorithm [73, 72]. The re-estimation formulas turn to be extensions

of those stated previously for the HMT and HMM. We present the final results

here, further details can be found in [73]. Assume we have P independent training

sequences in the learning set, each with a number Tp of correlated observations.

We have

State-transition probabilities in the HMTs:

ϵku,mn =

P∑
p=1

Tp∑
t=1

γp,t(k)ξp,tku (m,n)

P∑
p=1

Tp∑
t=1

γp,t(k)γp,tk
ρ(u)(n)

. (2.48)

Means of the conditional normal models in the HMTs:

µk
u,m =

P∑
p=1

Tp∑
t=1

γp,t(k)γp,tk
u (m)wp,t

u

P∑
p=1

Tp∑
t=1

γp,t(k)γp,tk
u (m)

. (2.49)

Variances of the conditional normal models in the HMTs

(σk
u,m)

2 =

P∑
p=1

Tp∑
t=1

γp,t(k)γp,tk
u (m)

(
wp,t

u − µk
u,m

)2
P∑

p=1

Tp∑
t=1

γp,t(k)γp,tk
u (m)

. (2.50)

where γp,tk
u (m) and ξp,tku (m,n) are computed as described for general HMM.

2.5 Concluding remarks

In this chapter we have reviewed the basics of HMM and have described briefly

these models with two types of observation densities: Gaussian distributions and

HMTs. Likelihood computation, parameter estimation and inference have been

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



2.5. Concluding remarks 39

discussed for both of these models. Parameter estimation for Gaussian HMM will

be revisited when we discuss sufficient dimension reduction methods for hidden

Markov models. On the other hand, learning parameters of HMM-HMT models

under maximum likelihood estimation will provide us the initial values for the

iterative discriminative training procedure we develope in Chapter 3.
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CHAPTER 3

Discriminative training of HMM in
the wavelet domain

3.1 Introduction

Discriminative training of HMM has been a topic of intense research in re-

cent years [45, 44, 52]. HMM-based classifiers designed in this way have shown

to outperform their ML-based counterparts in many applications [13]. Most of

these works deal only with standard HMM with Gaussian densities as observation

models [13, 54, 1]. On the other hand, the HMM-HMT reviewed in Section 2.4.3

achieved promising results both for pattern recognition and for denoising tasks

[72, 73]. Nevertheless, training algorithms used so far provide ML estimates for

the parameters of this model.

The goal of this chapter is to take the MCE learning approach to this dif-

ferent scenario in which data is observed in the wavelet-domain and modeled

through the HMM-HMT, aiming at improving the performance of these models

for classification tasks.

41
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42 Discriminative training of HMM in the wavelet domain

3.2 MCE approach for classifier design

The classification rule Y = f(W) usually depends on a parameterized set of

functions or models, one for each class, which measure the degree of membership

of the observation W to that class. Let {gj(W; Θ)}hj=1 be that parameterized

set of functions for a classification task comprising h classes c1, c2, . . . , ch, and

Θ = {ϑj}Mj=1 be the whole parameter set. An unlabeled observation W will be

assigned to class ci when

f(W; Θ) ≜ argmax
j
{gj(W; Θ)} = i . (3.1)

The classifier design involves the estimation of an optimum parameter set Θ∗ that

minimizes the expected classification error over all the observation space.

In traditional generative learning, gj(W; Θ) is set to the joint distribution of

(ϑj,W) and maximizing (3.1) amounts to maximizing p(ϑj|W). Then, by the

Bayes rule, the model for each class can be trained by maximizing the likeli-

hood p(W|ϑj) using a training sample from class cj only. On the other hand, in

discriminative learning all models are updated simultaneously in a competitive

way. This process aims to exploit differences between classes that can lead to a

reduction in the error rate of the classifier. In MCE training in particular, mini-

mization of the classification error is set formally as a goal. We now summarize

the main topics of the method and provide simulation examples with a simple

Gaussian model in order to motivate our developments.

3.2.1 Derivation of the MCE criterion

The main ingredient of the MCE approach for classifier design is a soft approx-

imation of the misclassification risk over the set of samples available for training.

Although in advance we would not be able to guarantee minimum expected error

over all possible observations working just on a finite (possibly small) training

set, the method has shown to generalize well over validation sets [69, 92]. Recent

works have also explained the generalization property of MCE methods by linking

them with large margin estimation [52, 70].

For an observation W, the conditional risk of misclassification is given by
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3.2. MCE approach for classifier design 43

R(Θ|W) =
M∑
j=1

ℓ(f(W; Θ), cj)P(cj|W),

where ℓ(f(W; Θ), cj) is a loss function which penalizes a wrong decision when

classifying an observation W from class cj. The usual choice for the loss function

is the zero-one loss which assigns ℓ(f(W), cj; Θ) = 1 for f(W) ̸= cj and zero for

correct classification [33]. In the training process, we look for a parameter set Θ∗

that minimizes the risk

R(Θ) =

∫ M∑
j=1

ℓ(f(W; Θ), cj)P(cj|W)dP(W), (3.2)

where the integral extends over the entire sequence space. Nevertheless, when

designing a classifier we only have the labeled observations in the training set.

Let Ωj stand for the subset of observations in the training set which belong to

class cj. The expectation (3.2) can be replaced with an average of the loss with

all the observations given equal probability mass

R̃(Θ) =
1

S

S∑
s=1

h∑
j=1

ℓ(f(Ws; Θ), cj)I(Ws ∈ Ωj).

In the equation above I(·) is the indicator function and S is the cardinality of

the training set.

The MCE approach minimizes a smoothed version of this empirical risk which

is differentiable with respect to model parameters [54]. Let us write this approxi-

mation as ℓ(f(W; Θ), cj) = ℓ(dj(W; Θ)), where function dj(W; Θ) simulates the

decision of the classifier. Assume the current training observation comes from

class ci. A common choice for ℓ(di(W; Θ)) is the sigmoid [13, 54]

ℓ(di(W; Θ)) =
1

1 + exp (−γdi(W; Θ) + β)
. (3.3)

Parameter γ controls the sharpness of the sigmoid and the bias β is usually set

to zero. To complete the picture we must specify the function di(W; Θ), which is

often referred to as the misclassification function [13, 54, 55]. In order to allow

ℓ(di(W; Θ)) to behave close to the zero-one loss, it must give a large enough

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



44 Discriminative training of HMM in the wavelet domain

positive value for strongly misclassified observations and a small negative value

when the decision is right. In addition, very confusing samples should give a value

close to zero so that their related loss fall in the raising segment of the sigmoid.

From (3.1), an obvious candidate for di(W; Θ) is

di(W; Θ) = max
j ̸=i
{gj(W; Θ)} − gi(W; Θ) .

However, the maximum operation is not differentiable. As we are looking for a

smoothed version of the risk, what is used in practice is a soft approximation

like an ℓp-norm with p large. However, different selections of the misclassification

function are possible (see, for example, [55]) and they can have important effects

on the performance of the algorithm as we will see below.

3.2.2 Optimization

In the preceding section we have described the approximation of the empirical

risk which serves as the optimization criterion for MCE learning. The simplest

approach to find the parameter estimates is a gradient-based optimization tech-

nique often known as Generalized Probabilistic Descent (GPD), which is a special

case of stochastic approximation [13, 14, 55]. This is simply an on-line scheme

which aims at minimizing the smoothed approximation of the classification risk

by updating the whole set of parameters Θ in the steepest-descent direction of

the loss. Starting from an initial estimate Θ̂0, the τ -th iteration of the algorithm

can be summarized as

Θ̂←− Θ̂− ατ ∇Θℓ(Wτ ; Θ)|Θ=Θ̂τ
, (3.4)

where ατ is the learning rate, that is allowed to decrease gradually as iterations

proceed in order to assure convergence [55]. Usually, Θ̂0 is chosen to be the ML

estimate of Θ and the updating process is carried out for each training signal [13],

so that Wτ is actually the sequence picked up from the training set at the τ -th

iteration. Batch implementations can also be used to exploit parallelization [52,

69]. It is important to see that the derivative of (3.3) on di(W,Θ) is symmetric

around zero when β = 0. As a consequence, the strength of the update depends

on how confusing the training observation is to the classifier and not on the
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3.2. MCE approach for classifier design 45

−20 −10 0 10 20

Figure 3.1: Distribution of the data for the proposed experiment. The solid line shows

the distribution of class A while the dotted line shows the one of class B.

correctness of the decision. This way, patterns that are similarly likely to belong

to different classes induce the update of the parameter set, even if they are well

classified.

3.2.3 An example with Gaussian models

In order to show the potential of discriminative learning over traditional ML

estimation of model parameters, let us consider a simulation example for a binary

classification problem. We assume Gaussian models for both classes, but allow

data from one of them, say class A, to be drawn actually from a two-component

Gaussian mixture, with parameters µA1 = −2.5, σ2
A1 = 4, µA2 = 9, σ2

A2 = 9 and

weights 0.9 and 0.1, respectively. This is a simple example of a model not fitting

the real distribution of observed data. To make the decision task more difficult,

suppose also that the real distribution of class B data is a Gaussian with mean

and variance very close to the global mean and variance for class A. Figure

3.1 illustrates the proposed situation. It is clear that this is a very demanding

task for a quadratic classifier based on ML estimation. In fact, we expect it to

discriminate very poorly and we are interested in seeing how much improvement

can the MCE approach achieve.

Ten runs were carried out for each training method. For every run, data was
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46 Discriminative training of HMM in the wavelet domain
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Figure 3.2: Recognition rates over the testing set as a function of the number of MCE

iterations. Shown scores are averages over ten runs for each tested condition.

generated randomly for class A first and its sample mean and variance were used

to generate data from class B, setting µB = µ̂A +0.25 and σ2
B = σ̂2

A. A thousand

samples from each class were used in both the training set and a separate testing

set. ML estimates were used as initial guesses for the discriminative training, and

standard settings were used for the MCE criterion [1]. Obtained results varying

the number of MCE iterations are shown in Figure 3.2. It can be seen that an

important improvement in recognition rate is achieved after just a few iterations

of the algorithm. After five iterations, the discriminative approach reduces the

error rate from 38% to 31%. Further iterations do not seem to provide significant

improvements for this case.

Figure 3.3 compares the trained models obtained with maximum likelihood

only against those estimated discriminatively. The competitive updating process

modifies initial model parameters so that the Gaussian for class A concentrates

around the mean for the most likely component in the original mixture. On the

other hand, the model for class B widens a lot to account for all other values in

data. The final models used for classification are very different from the real data

distributions. Thus, unlike with the ML approach, obtained parameter estimates

do not try to explain the data but only to improve the classifier performance

emphasizing differences between distributions.
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0.10

0.15

(a)

−30 −20 −10 0 10 20 30
0
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Figure 3.3: Comparison of the trained classifiers, showing the densities they use

for classification. a) Models obtained with maximum likelihood estimation. b) Models

obtained with MCE training after five iterations over the whole training set. Solid lines

show the model for class A and dotted lines show the one for class B.

3.3 Algorithm formulation

It is clear from our discussion of the general aspects of the MCE/GPD approach

in Section 3.2 that the key points to be defined when designing a classifier under

this framework are: i) the parametrized form for the discriminant functions;

and ii) the misclassification function di(W; Θ). If an unconstrained optimization

algorithm like GPD is to be used, suitable transformations of the parameters must

also be introduced to account for constraints. We will follow rather conventional

choices for i) and for transformation of parameters in Section 3.3.1, but we will

go apart from the mainstream when considering ii) in Section 3.3.2. Updating

formulas are outlined in Section 3.3.3, while details about their derivation are left

to Appendix A.

3.3.1 Discriminant functions and parameter transformations

For an HMM-based discriminant function approach to pattern recognition, it

is a usual practice to define gj(W; Θ) as a function of the joint likelihood Lϑj

[13]. In particular, due to the efficiency of Viterbi’s decoding algorithm for both
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48 Discriminative training of HMM in the wavelet domain

HMM and HMT, it is attractive to define

gj(W; Θ) =

∣∣∣∣log(max
q,R

{
Lϑj

(W,q,R)
})∣∣∣∣ (3.5)

= −
∑
t

log aq̄t−1q̄t −
∑
t

∑
∀u

log ϵq̄
t

u,r̄tur̄
t
ρ(u)
−
∑
t

∑
∀u

log f q̄t

u,r̄tu
(wt

u) ,

where | · | denotes absolute value and q̄t and r̄t refer to states in the external

HMM and the corresponding HMT model, respectively, that achieve maximum

joint likelihood. It should be noticed that this definition involves a little change in

what we have said about the decision of the classifier in (3.1). Now this decision is

ruled by the minimum (rather than the maximum) of the discriminant functions,

valued at the unlabeled observation.

Despite of discriminant functions using standard model parameters, we must

introduce some parameter transformations to account for restrictions if we are to

use a gradient-based optimization technique such as GPD [13, 54]. To constrain

aij to be a probability, we define ãij so that

asj =
exp ãsj∑
m exp ãsm

. (3.6)

Exponentiation assures aij is non-negative and normalization makes it less or

equal to one. A similar transformation is needed for the transition probabilities

in the internal HMTs. With analogous arguments, we define ϵ̃ku,mn so that

ϵku,mn =
exp ϵ̃ku,mn∑
p exp ϵ̃

k
u,pn

. (3.7)

We also need to constrain the Gaussian variances to be positive-valued. To do

so, we define σ̃k
u,m so that σ̃k

u,m = log σk
u,m. In addition, we scale the means of the

Gaussian distributions as µ̃k
u,m = µk

u,m/σ
k
u,m. This is done to reduce the range of

values that the parameters can take, so that the same learning rate can be used

for all of them [54]. Note that these transformations are rather standard in the

literature [13, 54].
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3.3. Algorithm formulation 49

3.3.2 Misclassification function

For HMMs with Gaussian mixture observations and discriminant functions

defined as the negative of those stated above, the frequent choice for MCE training

has been simulating the decision of the classifier with the function [13]

d̃i(W; Θ) = −g̃i(W; Θ) + log

[
1

h− 1

∑
j ̸=i

eg̃j(W;Θ)η

]1/η
. (3.8)

As η becomes arbitrarily large the term in brackets approximates, up to a con-

stant, the supremum of {g̃j(W; Θ)} for all j ̸= i. This definition of the misclassi-

fication function, composed with a zero-bias approximation to the zero-one loss,

penalizes confussing patterns rather than a wrong classifcation. Thus, a strong

decision of the classifier implies no update of the parameter set, whether this

decision is right or not. Despite it can look counterintuitive at first, it is in fact a

conservative statement which avoids modifying parameter estimates due to bad

data.

Nevertheless, likelihoods for the HMT model are tipically much smaller than

those found for Gaussian mixtures in standard feature spaces. We can expect

this noting that the joint likelihood for the HMM-HMT model involves many

products which are probabilities often being very small. As a result, gj(W; Θ)

takes extremely low values for W /∈ Ωj and the exponentiation leads to numerical

underflow. A natural option to look for a similar behaviour of the misclassification

function but avoiding those numerical issues is to define it as

d̄i(W; Θ) = gi(W; Θ)−

[
1

h− 1

∑
j ̸=i

gj(W; Θ)−η

]−1/η

. (3.9)

Roughly speaking, both of these functions account for the decision margin be-

tween the true model and the best competing ones. They weight rival candidates,

but do not introduce any special corrective penalty in case of a wrong classifi-

cation. Because of this, we will refer to them as symmetric misclassification

functions and will use the acronym SMF to refer to (3.9) in what follows.

Due to the behaviour of the likelihoods for the HMM-HMT model discussed

above, also their dispersion is much larger than in the Gaussian mixture-HMM
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50 Discriminative training of HMM in the wavelet domain

case. In this situation, similarity could be better measured comparing the order

of magnitude between discriminant functions rather than their difference. To do

so, we define an alternative form for discriminant functions as

di(W; Θ) = 1−

[
1

h−1

∑
j ̸=i gj(W; Θ)−η

]−1/η

gi(W; Θ)
. (3.10)

As above, η is supposed to be a large positive scalar so that the sum in the

numerator approaches the minimum of the terms as η grows. When the classifier

takes a right decision, this minimum will be larger than gi(W; Θ) and di(W; Θ)

will take a negative value as required. If the observation makes decision hard for

the classifier, di(W; Θ) will be close to zero. However, it must be noticed that

di(W; Θ) will take no value larger than one. This implies that all misclassified

observations will fall in the raising segment of the approximation to the zero-

one loss if it is not too sharp. This simple fact has a very important effect in

practice because it determines that every misclassified observation in the training

set induces an update of the parameter set. To stress this lack of symmetry in

dealing with correct and wrong classifications, we will refer to (3.10) as a no-

symmetric misclassification function and will use the acronym nSMF to denote

it in the following.

3.3.3 Updating formulas

In the following, let assume that the τ -th training sequence Wτ belongs to Ωi.

To simplify notation, allow ℓi, dj and gj stand for ℓi(dj(W; Θ)), dj(W; Θ) and

gj(W; Θ), respectively. For convenience, define also

ζii ≜
dℓi
ddi

∂di
∂gi

,

and

ζij ≜
dℓi
ddi

∂di
∂gj

,
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3.3. Algorithm formulation 51

where in the last expression we assume i ̸= j. For the misclassification function

SMF, these quantities take values

ζii = γℓi(1− ℓi) (3.11)

ζij = γℓi(1− ℓi)(di − gi)
g−η−1
j∑
k ̸=i g

−η
k

. (3.12)

Note that for a binary classification problem these quantities have the same ab-

solute value but opposite sign. For the misclassification function nSMF, we have

ζii = γℓi(1− ℓi)
di − 1

gi
(3.13)

ζij = γℓi(1− ℓi)(1− di)
g−η−1
j∑
k ̸=i g

−η
k

. (3.14)

Again, ζii and ζij always have opposite sign, but their absolute value is not the

same even for a two-classes only task.

The updating process works upon the transformed parameters to assure the

original ones remain in their feasibility range. For the Gaussian mean associated

to the state m in the node u of the HMT linked to the state k of the HMM for

class cj, the updating step is given by

µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατ
∂ℓi

∂µ̃
(j)k
u,m

∣∣∣∣∣
Θ=Θ̂τ

, (3.15)

where Θ̂τ refers to the estimates of parameters obtained in the previous iteration.

Applying the chain rule of differentiation and using the variables defined above,

we get (see details in Appendix A):

µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατζ
∑
t

δ(q̄t − k, r̄tu −m)

[
wt

u − µ̂
(j)k
u,m

σ̂
(j)k
u,m

]
, (3.16)

where ζ takes the value ζii or ζij depending on whether we are dealing with a

training pattern from the same class as the model or not. The delta function δ(·, ·)
is typical of Viterbi decoding. As the factor in brackets depends on the time frame

through wt
u, this function states that we only consider for the updating process

the standardized observed coefficient for the node in those frames when the most

likely state in the external model is k and the most likely state in the node is
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52 Discriminative training of HMM in the wavelet domain

m. Then, to restore the original parameters we just compute µ
(j)k
u,m(τ + 1) =

σ
(j)k
u,m(τ)µ̃

(j)k
u,m(τ + 1). The updating process for Gaussian variances is completely

analogous to the one shown above for the means. The working expression for

training reads:

σ̃(j)k
u,m ←− σ̃(j)k

u,m − ατζ
∑
t

δ(q̄t − k, r̄tu −m)

(wt
u − µ̂

(j)k
u,m

σ̂
(j)k
u,m

)2

− 1

 , (3.17)

where ζ and δ(·, ·) have the same meaning as above. Once again, Viterbi decod-

ing acting on the Markovian dependencies decouples all the nodes and the final

formula resembles just the derivative of a log-normal on its standard deviation.

Then, original variances are restored doing σ
(j)k
u,m(τ + 1) = exp(σ̃

(j)k
u,m(τ + 1)).

The above strategy works for updating the transition probabilities too. It is

shown in Appendix A that the updating formula for the transformed probability

ϵ̃
(j)k
u,mn reads:

ϵ̃(j)ku,mn ←−ϵ̃(j)ku,mn − ατζ

{∑
t

δ(q̄t − k, r̄tu −m, r̄tρ(u) − n)−

−
∑
t

∑
p

δ(q̄t − k, r̄tu − p, r̄tρ(u) − n)ϵ̂(j)ku,mn

}
.

(3.18)

The first sum in brackets counts how many times the most likely state in the

node is m given that the most likely state in its parent node is n and the state

in the HMM is most likely to be k. For the double sum, note that ϵ̂
(i)k
u,mn is a

common factor and the sum actually counts all the frames when the most likely

state in the parent of the given node is n and the most likely state in the external

HMM is that related to the corresponding HMT, k in this case. Restoration of

the original parameters is straightforward from the definition of ϵ̃
(j)k
u,mn.

Finally, following identical procedures we find the updating formulas for the

transformed state transition probabilities ã
(j)
sj given by:

ã
(i)
sj ←−ã

(i)
sj − ατζ

{
T∑
t=1

δ(q̄t−1 − s, q̄t − j)−
T∑
t=1

δ(q̄t−1 − s)â
(i)
sj

}
. (3.19)
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3.4. Experimental results 53

Once again, we can interprete the summations in the above formula as counters

acting on the sequence of most likely states in the external HMM, as given by

Viterbi decoding. Original parameters a
(j)
sj (τ + 1) are easily restored using the

definition of ã
(j)
sj .

3.4 Experimental results

In order to assess the proposed training method, we carry out automatic speech

recognition tests using phonemes from the TIMIT database [99]. This is a well

known corpus in the field and it has already been used in previous works dealing

with similar schemes [71, 73]. In particular, we use samples of phonemes /b/,

/d/, /eh/, /ih/ and /jh/. The voiced stops /b/ and /d/ have a very similar

articulation and different phonetic variants according to the context. Vowels /eh/

and /ih/ were selected because their formants are very close [80]. Thus, these

pairs of phonemes are very confusable. The affricate phoneme /jh/ was added as

representative of the voiceless group to complete the set. It must be remarked

that this signals are not spoken isolatedly but extracted from continuous speech.

Because of that, there is a large variability in both acoustic features and duration

in the dataset. All of these contribute to a very demanding task for a classifier.

As a measure of performance, we compare recognition rates achieved with the

proposed method against those for the same models trained only using the EM

algorithm. In all the experiments we model each phoneme with a left-to-right

hidden Markov model with three states (NQ = 3). The observation density for

each state is given by an HMT with two states per node. This is the standard

setting for the state space in most HMT applications [24]. The sequence analysis

is performed on a short-term basis using Hamming windows 256-samples long,

with 50% overlap between consecutive frames. On each frame, a full dyadic

discrete wavelet decomposition is carried out using Daubechies wavelets with

four vanishing moments [67, 73].

In a first set of experiments, we show numerically that the recognition rate

achieved with the EM algorithm attains an upper bound for the given models and

dataset. This bound is shown not to be surpassed neither increasing the number

of re-estimations of the algorithm nor enlarging the training set. We next carry
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54 Discriminative training of HMM in the wavelet domain

out a two-phoneme recognition task using the approach developed in Section 3.3.

The re-estimation formulas are reduced to much simpler expressions in this case,

allowing to get further insight into the discriminative training process. It also

serves us to compare the misclassification functions proposed in Section 3.3.2.

Finally, we carry out a multiclass speech recognition experiment to assess the

error rate reduction after adding a discriminative stage to the training process.

3.4.1 Limits on performance for ML estimators

Discriminative training methods usually use ML estimates computed via the

EM algorithm as initial values for model parameters [13, 52]. Thus, it is fair to

ask if better performance could be achieved just using more training sequences

in the pure ML approach or increasing the number of re-estimations in the EM

algorithm, without adding a discriminative stage. To answer this question em-

pirically for our data and our particular model, we first perform a two-phoneme

recognition task using models trained with the EM algorithm proposed in [71, 73].

We ran the experiment using training sets of increasing sizes, from 25 sequences

to 200. Each training set was picked at random from the whole training partition

of the dataset. A separate testing set with 200 sequences was used for all trials.

Each tested condition was run ten times and the number of re-estimations used

for the EM algorithm was fixed at 6 in all of them. Obtained results for the

{/b/,/d/} pair are given in Figure 3.4.a). It is clear from the figure that increas-

ing the number of training samples does not lead to a significant improvement in

the recognition rate when only the EM algorithm is used for training. In fact,

the analysis of the results shows that the p-value for the {/b/,/d/} pair is 0.4476,
which is far from the critical value to reject the null hypothesis of all means being

statistically the same. Similar comments apply for the {/eh/,/ih/} pair.

On the other hand, the effect of fixing the size of the training set and increasing

the number of re-estimations used in the EM algorithm is shown in Figure 3.4.b).

Given values correspond to training sets with 200 sequences. It can be seen

that recognition rates remain fairly the same with the increase in the number

of re-estimations. For the {/b/,/d/} pair and the specific set of sequences used

in the experiment, there is a small improvement in performance up to ten re-

estimations. Beyond that there is no benefit in adding re-estimations steps in the

EM algorithm. For the {/eh/,/ih/} pair of phonemes there is a little improvement
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Figure 3.4: Recognition rates for EM training. a) Increasing the size of the training

set. Shown results are the median over ten runs for each tested condition. Error-bars

are given by the first and third quartiles of the obtained scores. b) Increasing the number

of reestimations. The {/b/,/d/} pair was used in both experiments.

up to five re-estimations but no further improvement is seen either adding more

re-estimations.

Observed results in this experiment reproduce a typical scenario when working

with “real” data. Always the proposed model it is obviously not the true model

for the data in that case. Increasing the training set or adding re-estimations to

the EM algorithm can only contribute to find better estimates for the parameters

in those models. If models were the true ones, this would help for classification.

But as models do not give the exact distribution of the data, we cannot expect

this to translate into better discrimination. Note that this is not a statement on

the goodness of fit of the model itself. For complex real data (like speech, in this

case), hardly any model we propose would fail to model it accurately. Here is

when discriminative training becomes important.

3.4.2 MCE training for two-class phoneme recognition

In order to get some insight into the learning process, we first consider a

classification task comprising only two phonemes. In this case, for a training

sequence W ∈ Ω1, the symmetric misclassification function SMF in (3.9) reduces

to

d̄1(W; Θ) = g1(W; Θ)− g2(W; Θ) .
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56 Discriminative training of HMM in the wavelet domain

Aside from the change in sign to account for the different definition of the dis-

criminant functions we made in (3.6), this is the same as the frequently used

function (3.8) for a binary classification problem [1]. When the classifier decision

is right, g1(W; Θ) < g2(W; Θ) and the misclassification function takes a nega-

tive value. As this decision is stronger, d̄1(W; Θ) becomes more negative and

the resulting loss (3.3) goes to zero. We then see from the updating formulas in

Section 3.3.3 that no updating is performed in such a case. So, the algorithm

preserves model parameters that do well when classifying the current training

signal. Furthermore, for strongly confused patterns d̄1(W; Θ) becomes a large

positive value and no update is introduced either.

On the other hand, the non-symmetric misclassification function nSMF in

(3.10) reduces to

d1(W; Θ) = 1− g2(W; Θ)

g1(W; Θ)
.

When the classifier decision is right, it behaves closely to d̄1(W; Θ). Nevertheless,

if the current training sequence is strongly misclassified, d1(W; Θ) will tend to

1. Unlike the previous case, parameters will be updated unless γ is too large.

Therefore, this definition of the misclassification function adds a corrective feature

to the learning process. In both cases, the parameter update takes place when

models are confusable and it is the strongest when the current training sequence

is equally likely for both of them. With the second definition, however, we can

also expect an updating step even for strongly misclassified patterns.

We can get an idea of the strength of the updating steps looking at the dis-

tribution of ℓi(1 − ℓi). For a given pattern, this factor scales the gradients in

the re-estimation formulas according to how confusable the pattern is for the

classifier, as told by the misclassification function. Figure 3.5 compares the dis-

tribution of this factor at the beginning of the iterative process, obtained for the

same training set but choosing a different training method in each case. Figure

3.5.a) corresponds to standard MCE training for HMMs with Gaussian mixtures

as observation densities on a cepstral-based feature space. Figure 3.5.b) comes

from a classifier based on HMM-HMTs, using the misclassification function SMF

to derive the MCE criterion; and Figure 3.5.c) comes from a classifier based on

HMM-HMTs, but using nSMF as the misclassification function. In these later

histograms, the bin that includes the value ℓi(1 − ℓi) = 0 was removed to keep

figures at a similar scale. It is interesting to see that despite of (3.8) and SMF

sharing the same misclassification function for a binary problem like this, it is
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Figure 3.5: Distribution of the loss and the factor ℓi(1 − ℓi) at the beginning of

different settings of the MCE training. Upper figures show the location of the loss

for each sequence in the training set, while figures at the bottom show the resulting

histogram for the factor ℓi(1 − ℓi). a) and d) using cepstral features and Gaussian

mixture-HMMs along with a standard misclassification function as in (3.8); b) and d)

using the HMM-HMT and SMF; c) and e) using the HMM-HMT and nSMF.

the criterion based on the misclassification function nSMF which generates the

distribution of factors more similar to the standard case shown in plot d) when

using the HMM-HMT. Therefore, changing the feature space used to represent

the data can induce important modifications in the way the updating process is

driven by a given approximation of the loss.

To compare the performance achieved by SMF and nSMF, we carried out

numerical experiments with phonemes {/b/,/d/} and {/eh/,/ih/}, which are the

most confused pairs in the set. Two hundred sequences from each class were used

for training and another set of two hundred sequences from each class were used

for testing. Five re-estimation steps were used in the EM algorithm, along with

Viterbi flat start [80]. Parameters for the MCE learning stage were set following

informal tests on a validation test, aimed to find the values that give better

performance for each pair of phonemes and for each choice of misclassification

function. When using SMF we set α0 = 2.5 and γ = 0.01, while we set α0 = 0.5

and γ = 1 for the algorithm derived using nSMF. In all cases, the learning rate was
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Figure 3.6: Recognition rates for phonemes /b/ and /d/: a) using SMF; b) using

nSMF. Shown results are the median over ten runs for each tested condition. Error-

bars are given by the first and third quartiles of the obtained scores.

decreased at a constant rate from ατ = α0 at the beginning of the discriminative

training to ατ = 0 at its end. The number of iterations of the MCE algorithm

through the whole training set was varied as 5, 15, 25 and 35. Ten runs were

performed for each tested condition, varying the training set in each one but

keeping fixed the set for testing.

Obtained results for each pair of phonemes and each choice of the misclassi-

fication function are shown in Figure 3.6 and Figure 3.7. Figure 3.6 shows the

achieved recognition rates for the pair {/b/,/d/}. Performance for zero iterations

of the MCE algorithm refers to the case when the classifier is trained using ML

estimation and serves as the baseline for comparison. It can be seen that the

scores using discriminative steps are significantly higher than the baseline with

both MCE criteria for all tested conditions with more than five iterations. For

five MCE iterations there is no significant improvement on the average. Figure

also shows that the training method using the misclassification function nSMF

outperforms that based on SMF. With 35 iterations of the algorithm, the former

achieves an average reduction of about 30% in the error rate, whereas the later

does a 14%. In addition, there seems to be a trend to continue rising the recogni-

tion rate in Figure 3.6.b), while in 3.6.a) improvements appear to have reached a

bound. Furthermore, the variance of the obtained scores remain very similar as

they go better for the method using the misclassification function nSMF, while

it increases significantly for the method using SMF.
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Figure 3.7: Recognition rates for phonemes /eh/ and /ih/: a) using SMF; b) using

nSMF. Shown results are the median over ten runs for each tested condition. Error-bars

are given by the first and third quartiles of the obtained scores.

The difference in performance achieved with a different choice of the misclas-

sification function is stressed in the results for phonemes {/eh/,/ih/} shown in

Figure 3.7. Scores obtained here with the method based on nSMF are markedly

better than those achieved using SMF. For the former the average improvement

in the error rate is around 45%, whereas for the latter it is about 20%. A possible

explanation of these results relies on the wide dispersion of discriminant function

values. As SMF is based just on a difference between these values, it also has

a large variability that makes it very difficult to choose a suitable sigmoid to

capture many confusable samples to drive the competitive update without pick-

ing too much of them. The selected value for γ becomes conservative and then

only a small subset of confusable samples are used to trigger the updates, which

results in a poorer performance. It must be noticed that this effect is expected

to be emphasized as the duration of sequences increases, so that is natural to

have better results for the shorter samples from {/b/,/d/}. On the other hand,

the misclassification function nSMF introduces a scaling that avoids it to have so

much variation in its values, which makes it easier to find a suitable sigmoid to

drive the selection of confusable patterns.
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Figure 3.8: Sensitivity of recognition rate to changes on the parameters of the

MCE/GPD algorithm. a) Varying α0, with γ fixed. b) Varying γ, with α0 fixed.

3.4.3 Sensitivity to parameters of the algorithm

It is interesting to see the effect on the recognition rate when changing the

parameters of the MCE/GPD algorithm. Consider the problem of classifying

phonemes {/eh/,/ih/}. We first carried out a simple experiment setting η =

4 and γ = 1 as in previous tests, and changed α0 to take values {0.25, 0.50,
1.0, 2.0}. Obtained results are shown in Figure 3.8.a). It can be seen that for

this dataset recognition rates attain a bound at 67.5% for all conditions, but

they differ in the speed they do it with. The smaller learning rate shows the

lowest increase in recognition rate when increasing the number of iterations of

the learning algorithm. Increasing α0 speeds up the process, but it can be seen

also that it can lead to overfitting. This situation is common to all gradient-based

techniques as the one proposed here. The optimal value of α0 depends on the

data and the size of the training sample. Some rough guidelines to choose this

parameter are stated in [69], taking into account the variability of the sample.

A similar effect can be seen in Figure 3.8.b), but varying γ and letting α0 and

η fixed. Nevertheless, the reason is quite different. Parameter γ determines the

rate of change of the loss aproximation. For small values of γ, the sigmoid grows

slowly from ℓ = 0 to ℓ = 1 and much of the training samples result in values of the

misclassification function that fall in the raising segment of the sigmoid. In this

case, even well classified sequences trigger strong updates. As γ becomes large, the

raising segment of the sigmoid gets sharper and less cases fall in this region. Thus,

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



3.4. Experimental results 61

−5 5
0

0.5

1

d

l

(a)

−5 5
0

0.5

1

d

l

(b)

−5 5
0

0.5

1

d

l

(c)

Figure 3.9: Location of the training sequences on the loss function for different values

of parameter γ, using nSMF: a) γ = 0.5, b) γ = 1; and c) γ = 2.

well classified observations introduce a much weaker change on the parameters.

At the same time, when nSMF is used as the misclassification function, small

values of γ make misclassified cases fall in a narrow segment of the sigmoid, as

seen in Figure 3.9. They give rise to updates with similar strength regardless the

confusability of the training sequence. As γ becomes larger, misclassified cases

occupy a broader region of the sigmoid, triggering updates that depend more on

confusability.

3.4.4 Multiclass phoneme recognition

To further assess the proposed discriminative training method for the HMM-

HMT model, a new speech recognition task including the whole set of phonemes

was carried out. In this experiment, only the MCE approach based on the mis-

classification function nSMF was taken into account, as consistently better results

were found for this choice in the previous task. Ten training sets picked at ran-

dom were considered and a replicate of the experiment was run for each of them.

The testing set remained fixed for all runs. Both the training sets and the testing

set were build randomly taking 200 sequences from each class. The same learning

rate was used for all the parameters in the models. The initial rate α0 was chosen

to be the largest value that gave a monotonic improvement in recognition rate

as a function of the number of iterations of the MCE algorithm, when using a

separate set of sequences both for training and testing. This was checked in pre-

liminary runs. During the experiments, this learning rate was linearly decreased

from ατ = α0 at the first iteration to ατ = 0 at the end of the training process.

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



62 Discriminative training of HMM in the wavelet domain

5 15 25 35

0

5

10

15

20

25

30

E
rr

or
 r

ed
uc

tio
n 

(%
)

MCE iterations

Figure 3.10: Error rate improvement over standard ML training using the proposed

MCE approach to train the classifier for the set of five phonemes. The misclassifica-

tion function nSMF was used in this experiment. Initial recognition rates using ML

estimates are around 37% for the considered phoneme set.

Obtained results are shown in Figure 3.10. A monotonic improvement in the

error rate is achieved as more iterations over the whole training set are added

to the discriminative training process. After 35 iterations, the average error rate

reduction is about 18%. Most of the improvement, however, occurs up to 25

iterations of the MCE algorithm, reducing the error rate around a 17.25% at

this level. The variance in the obtained rates remains fairly the same with the

increased number of iterations. Analysis of individual runs reveals that for some

training sets performance degrades with the first iterations of the algorithm and

then starts to improve as more iterations are carried out. Furthermore, three of

the ten runs show that the achieved score starts to decrease slowly at 35 iterations,

suggesting that overfitting could be taking place after this point.

This difficult classification task show a consistent improvement in recognition

rate using the proposed method to discriminatively train the HMM-HMT model.

3.5 Concluding remarks

In this chapter, a new discriminative training method was introduced for

hidden Markov models in the wavelet domain. The algorithm is based on the
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3.5. Concluding remarks 63

MCE/GPD approach and it allows for training fully non-tied HMM-HMT mod-

els. This observation model and feature space required special considerations. It

was shown that standard procedures were numerically unfeasible in this scenario,

and alternative choices were needed to simulate the classifier decision when the

MCE criterion was derived. Assessment of proposed misclassification functions in

a simple phoneme recognition task showed that comparing the order of magnitude

of the log-likelihoods for competing models was more appealing to this context

than simple comparison of their value. This important modification results in a

stronger penalty for misclassified patterns, giving rise to a corrective character-

istic that works well in this context. Speech recognition experiments show that

the proposed method achieves consistent improvements on recognition rates over

training with the standard EM algorithm only.
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CHAPTER 4

Discriminative dimension
reduction: a sufficiency approach

4.1 Introduction

When parametric models for X|Y are estimated using maximum likelihood,

likelihood-based supervised dimension reduction can be consistently embedded

into this learning framework. For GHMM-based classifiers, the techniques most

widely used in applications are the subspace projection methods proposed in

[57, 56, 83]. They are built upon reduction methods for Gaussian data and pursue

likelihood approaches to linear discriminant analysis (LDA) and heteroscedastic

linear discriminant analysis (HLDA). But do they retain all the discriminative

information that is contained in the original data? If they do, are the obtained

subspaces the smallest that show that conservation property?

In this chapter we address these questions under the framework of sufficient

dimension reduction (SDR), which explicitly accounts for loss of information in

the context of a particular task [60, 18]. We show that both LDA and HLDA

actually can obtain an optimal subspace projection in the sense of sufficiency

for classification, but under some strong constraints on the covariance structure

of the class models. In addition, we show that when seen from the sufficiency

point of view, HLDA obtains a subspace that may not be minimal. As a remedy,

we propose a new linear transformation that satisfies the same covariance con-

65
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66 Discriminative dimension reduction: a sufficiency approach

straints HLDA does, but spans the smallest linear subspace that retains all the

information about Y . When heteroscedastic data is not constrained to a special

covariance structure, we show that there is another estimator derived under suffi-

ciency that provides a more proper way to deal with this type of data and thus it

is able to outperform HLDA. The theory and algorithms are developed under the

assumption that the dimension d of the retained subspace is known. Nevertheless,

theory allows to provide methods for inference on d. We review some of these

methods, which also help to ground the selection of d on a principled basis and

can serve as alternatives to computationally demanding cross-validation tests.

The chapter is organized as follows. We start by briefly reviewing LDA and

HLDA in Section 4.2. In Section 4.3 we review the basics of sufficient dimen-

sion reduction, and restate the main results derived for normal models. We then

analyze LDA and HLDA from the point of view of sufficiency in Section 4.4.

In Section 4.5 we focus on inference methods for the dimension of the retained

subspace. We review likelihood ratio tests, information criteria, and permutation

tests, which can serve as alternatives to cross-validation estimation of classifica-

tion errors. Simulations illustrate our points in Section 4.6. Finally, in Section

4.7 we show how these SDR methods originally derived for conditional normal

models can be extended to GHMM.

4.2 Existing methods for linear dimension reduc-
tion

In this section we briefly review the basics of LDA and HLDA. For convenience,

we summarize some notation now. For A ∈ Rp×p and a subspace S ⊆ Rp,

AS ≡ {Ax : x ∈ S}. PS indicates the orthogonal projection onto the subspace

S in the usual inner product, andQS = I−PS is the projection onto its orthogonal

complement. In addition, let Vd(A) stand for the matrix whose columns are the

leading d-eigenvectors of the symmetric positive definite matrix A, meaning that

they correspond to the d largest eigenvalues of A. Also, assume in the following

that we have Ny i.i.d. observations {(Yi = y,Xi)} for each class y = 1, 2, . . . , h,

with N =
∑

y Ny, let µy = E(X|Y = y), ∆y = var(X|Y = y), µ = E(µY ),

∆ = E(∆Y ) and consider statistics µ̃y = N−1
y

∑Ny

i=1Xi, ∆̃y = N−1
y

∑Ny

i=1(Xi −
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4.2. Existing methods for linear dimension reduction 67

µ̃y)(Xi − µ̃y)
T , µ̃ = N−1

∑
y Nyµ̃y, and ∆̃ = N−1

∑
y Ny∆̃y. Finally, for a

parameter γ, let γ̂ refer to its ML estimator.

4.2.1 Linear discriminant analysis

The best known of supervised dimension reduction methods is Fisher’s LDA

[40]. It aims to separate classes as far as possible by maximizing the ratio of

between-class scatter to average within-class scatter in the transformed space.

The transformation matrix ρLDA is then determined by maximizing the criterion

JF (ρ) = tr{(ρT∆̃ρ)−1(ρTBρ)}, (4.1)

where B = N−1
∑h

y=1Ny(µ̃y − µ̃)(µ̃y − µ̃)T is the so-called between-class covari-

ance matrix. Optimization of JF boils down to finding the eigenvalue decompo-

sition of ∆̃
−1/2

B∆̃
−1/2

. Doing this we get

ρLDA = ∆̃
−1/2

Vd(∆̃
−1/2

B∆̃
−1/2

). (4.2)

As the rank of B is h−1, we can find at most min(h−1, p) discriminant directions.

While it is not necessary to make restrictive assumptions on X|Y to derive

ρLDA in this way, it is well-known that this projection method achieves the best

results when X|Y is normally distributed and all within-class covariance matrices

are the same. This observation motivated efforts to understand ρLDA as a ML

estimator. Such interpretation when X|(Y = y) ∼ N (µy,∆) is given in [10].

4.2.2 Heteroscedastic linear discriminant analysis

Several extensions to LDA have been proposed to deal with the nonconstant

variance case [57, 83, 26, 77, 64, 63]. We are concerned here only with those based

on maximum likelihood estimation, so that they can be consistently embedded

into HMM training. Probably the best known of these methods is that introduced

in [57], which we will simply refer to as HLDA. Their derivation is as follows.

Assume X|(Y = y) ∼ N (µy,∆y) and consider a full-rank linear transformation

of X with a matrix Θ = (ρHLDA,ρ0) so that ΘTX ∼ N (µ∗
y,∆

∗
y), with
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68 Discriminative dimension reduction: a sufficiency approach

µ∗
y =

(
ρTµy

ρT
0µ

)
∆∗

y =

(
Ωy 0

0 Ω0

)
.

In this way, ρT
HLDAX is independent of ρT

0X and the latter is constant for all classes

y. Thus, ρT
0X does not carry any discriminative information and can be ignored

for classification. Without loss of generality, assume Θ is an orthogonal matrix

and that ρHLDA is semi-orthogonal. From [57] the optimum matrix Θ maximizes

the log-likelihood function

LHLDA(Θ) = −N

2
log |ρT

0 Σ̃ρ0| −
1

2

h∑
y=1

ny log |ρT
HLDA∆̃yρHLDA|. (4.3)

The optimum does not have a closed-form solution, so numerical techniques must

be employed [57, 42]. Notice that in this derivation, beginning with normality

for X|Y , restrictions are imposed in the transformed feature space, not in the

original space of X. Also, the models assumed in the transformed space are

strongly structured to allow statistical independence between ρT
HLDAX and ρT

0X.

It is also interesting to analyze the case in which Ωy = Ω; that is, when it is

the same for all classes. Now it is obvious that ∆y = ∆ for all y; then no part of

the covariance matrices has any discriminative information. The log-likelihood

function (4.3) reduces to

L(Θ) = −N

2
log |ρT

0 Σ̃ρ0| −
N

2
log |ρT∆̃ρ|. (4.4)

It is stated in [96, 57] that maximization of this function gives rise to ρLDA,

allowing us to interpret it as a special case of ρHLDA when all covariance matrices

are the same. We think this statement is wrong. For all y, ∆∗
y = ∆∗ will still

have a block-diagonal structure

∆∗ =

(
Ω 0

0 Ω0

)
.

Thus, even in this case∆∗ induces a particular structure for the covariance matrix

∆, not just being the same for all classes. That is, when ∆y = ∆ for all classes

but ∆ is an arbitrary covariance matrix without this structure, we cannot assure

ρLDA = ρHLDA.
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4.3. Sufficient dimension reduction 69

In fact, it can be shown that (4.4) is induced by special assumptions on the

normal class models. The corresponding model is known as extended principal

fitted components in the Statistics literature [18]. Furthermore, it is stated there

that there is not an analytical solution to (4.4) and numerical optimization has

to be used [18].

4.3 Sufficient dimension reduction

Sufficient dimension reduction is a methodology that deals explicitly with infor-

mation retention. In this section we review the basics of the sufficiency framework

and restate the main results derived for normal models.

4.3.1 Basics

For a response variable Y ∈ R and a set of features or predictors X ∈ Rp, the

following definition formalizes the notion of a sufficient dimension reduction [18]:

Definition: A reduction R : Rp → Rd, with d ≤ p is sufficient if it satisfies

one of the following conditions:

(i) Y |X ∼ Y |R(X)

(ii) X|(Y,R(X)) ∼ X|R(X)

(iii) (X ⊥ Y ) | R(X)

Notice that each of these conditions conveys the idea that R(X) carries all the

information about Y that is contained in X. One may be more useful than the

others depending on the stochastic nature of Y and X, but they are equivalent

when (Y,X) has a joint distribution, as is usually assumed with Bayes classifiers.

In this work we deal only with linear reductions of the form R(X) = ρTX.

Note that the full feature vector X is always a sufficient reduction. Thus, the

essential tasks in SDR are to characterize and estimate the smallest sufficient

reduction. In addition, if ρTX is a sufficient reduction and η ∈ Rd×d is a non-

singular matrix, then ηρTX is also a sufficient reduction. Thus, ρ is not unique
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70 Discriminative dimension reduction: a sufficiency approach

and what really makes sense to identify is the subspace spanned by the columns

of ρ. This subspace Sρ = span(ρ) is called a sufficient dimension reduction sub-

space. Under mild but non-neglible conditions, the intersection of all sufficient

dimension reduction subspaces is also a sufficient dimension reduction subspace

and thus it is the smallest one. It is called the central subspace [16, 17] and it is

the inferential target in SDR. From now on, unless stated otherwise, ρ will be a

basis matrix for the central subspace.

Here we are interested in the case where X|Y is normally distributed with

parameters µy and ∆y. Under this model, the central subspace exists and we

can employ a likelihood function to estimate it from the data. Then, maximum

likelihood estimation guarantees
√
N consistency and also asymptotical efficiency

when the likelihood accurately describes the data.

It might be argued, however, that the definition stated above for sufficient

dimension reduction is not focussed explicitly in classification. In a classification

framework, we are interested actually in finding a classification rule to assign a

label Y = y to each feature vector X. If f(X) : Rp → {1, 2, . . . , h} is the decision
rule, we can think of a reduction as sufficient if given X = x, f(ρTx) = f(x)

for each x in the feature space. The subspace spanned by the columns of ρ

would be then a central discriminant subspace1 [23, 94]. This subspace may be a

subset of the central subspace, as we may need less information to discriminate

between classes than to describe them accurately. Nevertheless, when using the

common Bayes classification rule, it was shown in [23] that this discriminant

subspace is identical to the central subspace when class models are Gaussian

distributions. Thus, for normally distributed data we can exploit theory recently

developed for regression tasks to get further insight into dimension reduction

aimed to classification tasks.

4.3.2 Sufficient reductions for normal models

The theory of sufficient dimension reduction for normally distributed data with

constant covariance matrix was presented in [18] and further developed in [21].

The extension to general cases with unconstrained covariance was introduced in

1In [94] this subspace is referred to as intrinsic Bayes discriminant subspace. We prefer the

terminology used here to keep it closer to the central subspace widely known in regressions.
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4.3. Sufficient dimension reduction 71

[20]. The following theorem, demonstrated in [20], gives necessary and sufficient

conditions for a subspace S to be a dimension reduction subspace.

Theorem 1: Assume that X|(Y = y) ∼ N (µy,∆y), y = 1, 2, . . . , h. Then

Sρ = span(ρ) ⊂ Rp is a sufficient dimension reduction subspace if and only if:

a) span(µy − µ) = ∆ span(ρ).

b) QSρ∆
−1
y does not depend on the class Y .

This theorem implies that the subspace spanned by ∆ρ must be an invariant

subspace for the deviations ∆y −∆, and that the translated means µy −µ must

fall also in that subspace2 [20]. Under these conditions, the means and covariance

matrices of the class models are

µy = µ+∆ρνy, (4.5)

∆y = ∆+∆ρTyρ
T∆,

for some νy ∈ Rd and ν̄ =
∑

y νy = 0, Ty ∈ Rd×d and
∑

y Ty = 0, and

d = dim(Sρ). It is important to emphasize that (4.5) are necessary and sufficient

conditions derived from Theorem 1 to assure the existence of a linear SDR when

X|Y ∼ N (µy,∆y); they are not assumptions set a priori to derive the subspace

projection method.

Despite this theorem being a main result, in practice we are interested in an

estimator for Sρ. Going in that direction, let ρ be a semi-orthogonal basis matrix

for Sρ ⊆ Rp and let (ρ,ρ0) ∈ Rp×p be an orthogonal matrix. It is shown in [20]

that Sρ is a sufficient dimension reduction subspace if and only if the following

two conditions are satisfied for some vectors νy

1. ρTX|(Y = y) ∼ N (ρT (µ+∆ρνy),ρ
T∆yρ)

2. ρT
0X|(ρTX, Y = y) ∼ N (ρT

0µ+HρT (X− µ),D), with

D = (ρT
0∆

−1ρ0)
−1 and H = (ρT

0∆ρ)(ρT∆ρ)−1.

It is clear now that if Sρ is a dimension reduction subspace, the distribution

of ρTX|(Y = y) can depend on Y , but the distribution of ρT
0X|(ρTX, Y = y)

2S ⊂ Rp is an invariant subspace of A ∈ Rp×p if AS ⊆ S.
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72 Discriminative dimension reduction: a sufficiency approach

cannot. Thus, ρTX carries all the information that X contains about Y and

ρT
0X|ρTX does not retain any information about the class and it is irrelevant for

classification.

4.3.3 The optimal estimator under sufficiency

With the ingredients stated in the last subsection, we are ready to obtain

the MLE of ρ. Assume that ρ ∈ Rp×d is a semi-orthogonal basis matrix for the

smallest dimension reduction subspace. For normally distributed data with means

and covariance matrices as in (4.5), the MLE ρLAD maximizes the log likelihood

function [20]

LLAD(ρ) = const +
N

2
log |ρT Σ̃ρ| − 1

2

∑
y

Ny log |ρT∆̃yρ|. (4.6)

This estimator is simply known as likelihood acquired directions (LAD). There is

not an analytic solution to this maximization problem, so we must employ nu-

merical optimization to find ρ that maximizes LLAD(ρ). In addition, to guarantee

achieving the MLE, all the columns of ρ should be estimated jointly. We recall

that the stated result restricts itself to semiorthogonal matrices ρ. It is easy to

see that for any nonsingular matrix O ∈ Rd×d, LLAD(ρ) = LLAD(ρO). Thus, the

natural parameter space for ρ is the Grassmann manifold of dimension d in Rp

[12].

The LAD estimator is equivariant under full-rank transformation of the fea-

tures X. That is, if we rescale the observed X as ηTX prior to estimation, the

obtained estimator will be a semi-orthogonal basis matrix for span(ηρ) provided

η is a nonsingular matrix. This invariance property does not hold for HLDA,

as shown later in Section 4.4.2. In addition, LAD is found to perform well even

when the data deviate from normality [20]. In particular, it can be shown that if

E(X|ρTX) is linear and var(X|ρTX) is a nonrandom matrix, then the subspace

spanned by ρ̃ as found by maximizing (4.6) is a consistent estimate of the minimal

reduction subspace [20].
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4.4. Understanding existing methods under SDR 73

4.4 Understanding existing methods under SDR

In this section we wonder if the frequently used methods LDA and HLDA for

likelihood-based subspace projection of Gaussian data can be understood under

the sufficiency approach, that is, if they do not loose any class-information that

was present in the original features. Under what assumptions on the class models

do these methods provide sufficient dimension reduction in the sense discussed

here? We work on this question in the following paragraphs.

4.4.1 LDA from the sufficiency approach

When ∆y = ∆ for all y, condition b) in Theorem 1 becomes trivial, and

ρTX is a minimal sufficient reduction if and only if span(µy − µ) = ∆ span(ρ),

with class models being normal distributions with mean µy = µ + ∆ρνy and

covariance matrix ∆ for all y [18, 21].

A basis matrix for this minimal dimension reduction subspace can be found

by modeling νy [21]. Assume for a moment that Y is a general response variable

in R and let Y ∈ Rr be a vector valued function of Y . Let X ∈ RN×p stand

for the whole sample of feature vectors, where each row is an observation, and

let X c be its centered counterpart. Taking νy = βY, with β ∈ Rd×(h−1), the

centered fitted values X̃ of the linear multivariate regression of X c|Y on Y have

covariance matrix Σ̃fit = X̃ T X̃ /N . Define Σ̃res so that Σ̃ = Σ̃fit + Σ̃res. It

is shown in [21] that ρ = Σ̃
−1/2

res Vd(Σ̃
−1/2

res Σ̃fitΣ̃
−1/2

res ), with d ≤ min(h − 1, p),

spans the smallest dimension reduction subspace when X|(Y = y) is normally

distributed with mean µy = µ +∆ρβY and covariance matrix ∆y = ∆ for all

classes y. This reduction is called principal fitted components (PFC).

While this development seems more tailored to dimension reduction in regres-

sion, we want to emphasize here that it is equally suitable to discrimination tasks.

Indeed, when Y represents class labels, the estimator ρPFC found in this way re-

sembles ρLDA. To see this, let Y ∈ Rh−1 be an indicator multivariate response

whose columns designate the class from where the feature vector X comes. In

particular, if X = x comes from class y = k, the i-th coordinate of Y takes the

value 1 − Nk/N if i = k and −Ni/N otherwise. Note that E{Y} = 0 with this
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74 Discriminative dimension reduction: a sufficiency approach

choice.

With this setting, assume as before that X|(Y = y) ∼ N (µy,∆) with µy =

µ +∆ρβY so that a sufficient reduction exists. The sample covariance matrix

of the fitted values Σ̃fit = X̃ T X̃ /n is the sample between-class scatter matrix

B defined above. As the marginal sample covariance matrix is Σ̃ = B + ∆ =

Σ̃fit + Σ̃res, Σ̃res takes the place of ∆̂. Then ρ̂ = ∆̂
−1/2

Vd(∆̂
−1/2

B∆̂
−1/2

), with

d ≤ min(h−1, p), is a basis matrix for the smallest dimension reduction subspace.

The relationship with ρLDA in (4.2) is clear.

Note this result provides both a maximum likelihood derivation of LDA and

a sufficiency interpretation for it. Although there exists other developments to

cast the LDA projection in a likelihood framework [10], the one presented here

gives sufficient conditions on the distribution of X|(Y = y) so that ρT
LDAX retains

all the information about Y that is contained in X. As a consequence, this

interpretation allows us to choose a dimension d ≤ min(h− 1, p) for the minimal

dimension reduction subspace using tools derived from theory.

4.4.2 HLDA from the sufficiency point of view

We saw in Section 2.2 that HLDA was derived in [57] assuming a particular

model for the transformed features ΘTX. To gain insight into this method under

the sufficiency approach, we need the model induced by these assumptions back

in the original space of the features X.

Let Θ = (ρ,ρ0) be an orthogonal matrix with ρ ∈ Rp×d. It is easy to see that

we get the HLDA assumptions ρTX|Y = y ∼ N (ρTµy,Ωy) and ρT
0X|(ρTX, Y =

y) ∼ N (ρT
0µ,Ω0) if and only if X|(Y = y) is normally distributed with mean

and covariance matrix

µy = µ+ ρνy ,

∆y = ρΩyρ
T + ρ0Ω0ρ

T
0 . (4.7)

In addition, it is clear that ∆ = ρΩρT + ρ0Ω0ρ
T
0 , where Ω =

∑
y Ωy. This

structure implies that the subspace spanned by ρ reduces ∆, i.e. there exists a

matrix C ∈ Rd×d so that ∆ρ = ρC. Then, rewritting νy = Cγy and Ωy −Ω =

CTyC
T , we get µy = µ + ∆ργy and ∆y = ∆ + ∆ρTyρ

T∆. We see that

ρ = ρHLDA satisfies (4.5) and as a result it is a special case of LAD and then
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4.4. Understanding existing methods under SDR 75

it is a basis matrix for a dimension reduction subspace. Thus, HLDA estimates

a sufficient reduction provided X|(Y = y) is normally distributed with mean

µy = µ+ ρνy and covariance matrix ∆y = ρΩyρ
T + ρ0Ω0ρ

T
0 .

The derivation above emphasizes that HLDA as introduced in [57] can be

regarded as an extension of LDA for heteroscedastic data with constrained co-

variance matrix. As a consequence, it does not seem suitable to consider HLDA

as a general extension of Fisher’s LDA for every type of heteroscedastic data. On

the other hand, the LAD model discussed in Section 4.3.3 provides that natural

extension allowing for class models with unconstrained covariance matrices. In

addition, the strong independence assumed in the transformed domain between

ρT
HLDAX and ρT

0X will no longer hold, in general, after rescaling the features with

an arbitrary nonsingular matrix η. Thus, unlike the LAD estimator, the HLDA

estimator is not equivariant under full rank transformation of the features. This

is an important point that becomes clear with the simulations in Section 4.6.

4.4.3 The minimality question

We saw in Section 4.4.2 that HLDA can give a sufficient linear reduction pro-

vided the data has a particular covariance structure. Nevertheless, it is interesting

to recall that if a dimension reduction subspace is a subset of a bigger subspace,

then the larger subspace is also a dimension reduction subspace. Thus, there exist

sufficient dimension reductions that are nonminimal; that is, we could expect to

reduce the retained subspace even further. So we turn now to the question of

minimality of reductions obtained using HLDA: are the retained directions the

fewest linear combinations of the features that retain all the information about

the class or can we find a smaller linear subspace that still conserves all of that

information?

The answer seems rather evident at this point. From our previous discussions,

it is easy to see that in general we cannot expect the subspace spanned by ρHLDA

to be the smallest dimension reduction subspace, although it will be so when the

required covariance structure holds. We focus on giving an intuitive explanation

here. The general lack of minimality of the HLDA estimator is due to the partic-

ular covariance structure of the assumed class models. The transformation needs

to accomodate all the class-specific information there is in ∆y into matrices Ωy,
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76 Discriminative dimension reduction: a sufficiency approach

and achieve statistical independence between ρT
HLDAX and ρT

0X. This fact deter-

mines the dimension of span(ρHLDA), as ρHLDA must capture this structure in the

covariance. This is always possible with d = p, albeit the reduction is no longer

useful.

As the dimension of Ωy grows, it is more probable that the smallest dimension

reduction subspace is a subset of span(ρHLDA). Assume that the dimension of

span(ρHLDA) is actually u, and that α ∈ Rp×d, d ≤ u ≤ p, is a semiorthogonal

basis matrix for the smallest sufficient dimension reduction subspace (we can infer

about both u and d as we will see in Section 4.5). If span(α) ⊆ span(ρHLDA),

then there exist a semi-orthogonal matrix A ∈ Ru×d so that α = ρHLDAA. Thus,

HLDA provides a minimal sufficient dimension reduction only when u = d. If

this is not the case, HLDA will still be able to achieve a sufficient dimension

reduction ρT
HLDAX ∈ Ru, but it will not be minimal. On the other hand, LAD

always estimates the smallest linear reduction, so that span(ρLAD) ⊆ span(ρHLDA).

In practice, the effect of this is that HLDA often needs to retain more directions

than LAD to properly account for all the discriminative information.

4.4.4 A new estimator LAD2

Assuming the HLDA model (4.7) and recalling that ρ ∈ Rp×u is a sufficient

reduction, it follows that ∆ has a structure ∆ = ρΩρT + ρ0Ω0ρ
T
0 , where Ω =

E(ΩY ). If the minimal reduction, that is the central subspace, is span(α), then

α = ρA for some semiorthogonal A ∈ Ru×d, with d ≤ u. Using this statement

and (4.5) we get

µy = µ+∆ανy

= µ+ ρΩAνy,

∆y = ∆+∆αTyα
T∆

= ρΩρT + ρ0Ω0ρ
T
0 + ρΩATyA

TΩρT . (4.8)

From the previous discussion, the semi-orthogonal basis matrix α can be regarded

as a special case of ρLAD. Nevertheless, the LAD reduction does not recognize

the special structure of the covariance matrices. If model (4.8) actually holds

for the data, we can look for a more efficient reduction by taking the covariance

constraints into account. To do so and achieve a minimal sufficient reduction, we
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4.4. Understanding existing methods under SDR 77

need to estimate ρ and A jointly by maximizing the likelihood function

LLAD2(ρ,A) = const− N

2
log |ρT Σ̃

−1
ρ| − N

2
log |ρT Σ̃ρ|+ (4.9)

+
N

2
log |ATρT Σ̃ρA| − 1

2

∑
y

Ny log |ATρT∆̃yρA|,

with ρ in the Grassmann manifold of dimension u in Rp, and A in the Grassmann

manifold of dimension d in Ru. The proof is left to the Appendix B. We will refer

to this estimator as LAD2 and will denote it by ρLAD2.

A priori, when the data is normally distributed with this structure, estimating

ρ and A in this way should be more efficient than using LAD, since when u <

p there are less degrees of freedom in these computations than in LAD. It is

interesting to recall that if we knew ρ, A would reduce to the LAD estimator for

the transformed features ρTX. As ρ provides the same covariance structure as

ρHLDA, we can approximate the solution applying HLDA first to the features X

and then obtaining the LAD estimator ALAD for the transformed data ρTX|Y .

In this way, ρHLDAALAD can serve as an estimator of ρLAD2, though not being

the MLE. In addition, note that when u = d, A is an orthogonal matrix and

maximizing (4.9) over ρ gives ρHLDA again.

4.4.5 Connections to other methods for heteroscedastic data

While we have focused our attention on HLDA due to its historical importance

in applications, in particular for speech technologies, there are other related meth-

ods that deserve consideration. In [83], a projection for heteroscedastic data is

proposed by generalizing Fisher’s criterion as

JHDA =
h∏

y=1

(
|ρBρT |
|ρ∆̃yρT |

)Ny

. (4.10)

Taking the log and rearranging terms, maximizing JHDA amounts to maximizing

([83] eq. 3)

H(ρ) = −
h∑

y=1

Ny log |ρ∆̃yρ
T |+N log |ρBρT |. (4.11)

As H(ρ) differs from (4.6) just on a term that does not depend on the trans-

formation, it is clear that optimization of this objective function gives the same

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



78 Discriminative dimension reduction: a sufficiency approach

estimator as LAD. Nevertheless, one is derived through an heuristic while the

other is driven explicitly by information retention as a goal.

The dimension reduction method proposed in [97] is also related to LAD under

some special conditions. It aims at extending Fisher’s LDA to nonparameteric

densities by sequentially maximizing a generalized log-likelihood ratio statistic in

a fixed direction α. For normal class models, this criterion reduces to [98]

LR(α) =
h∑

y=1

Ny

N
(logαTΣα− logαT∆yα). (4.12)

After the first unit vector is obtained, say α1, the method proceeds by maximizing

the same objective function with the added constraint αT
2α1 = 0, and so on. It

is easy to see that α1 is identical to ρLAD when the dimension of the central

subspace is assumed to be d = 1. Nevertheless, adding a second dimension α2

in this way, the subspace spanned by the matrix (α1,α2) is not equivalent to

span(ρLAD) for d = 2, with both columns of ρLAD estimated jointly. An example

with real data is used in [19] to illustrate that while span(ρLAD) can capture

all the structure and separate well the classes with just two directions, (α1,α2)

cannot perform comparably and lead to overlapped clusters of projected features.

The central point we want to stress is that the performance of a given dimension

reduction method depends on both the objective function being optimized and

the procedure used to carry it out. In particular, sequential optimization may

lead to different estimates than joint optimization of the likelihood. The MLE

of (4.6) is guaranteed using joint maximization but not proceeding sequentially.

The same is true for the methods for infering about the dimension d of the central

subspace we review in the following section.

4.5 Choosing the dimension of the reduction

In previous sections we assumed that we knew the dimension d of the small-

est linear subspace that retained all the class information. In practice, we do

not know this quantity and we have to infer it from the data. Most dimension

reduction methods rely on an exhaustive approach to infer the dimension of the

retained subspace. In them, a sequence of reductions of increasing size are tested

based on some measure of performance; the one that achieves the best score is
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4.5. Choosing the dimension of the reduction 79

Model Degrees of freedom

HLDA p+ (h− 1)d0 + (h− 1)d0(d0 + 1)/2 + p(p+ 1)/2

LAD p+ (h− 1)d0 + (h− 1)d0(d0 + 1)/2 + p(p+ 1)/2 + d0(p− d0)

LAD2 p+ (h− 1)d0 + (h− 1)d0(d0 + 1)/2 + p(p+ 1)/2 + d0(u0 − d0)

Table 4.1: Degrees of freedom for computation of semi-orthogonal basis matrix ρ ∈
Rp×d0 for HLDA, LAD, and LAD2 methods.

picked as the dimension of the reduction process. Cross-validation estimation

of prediction error rates is probably the best known alternative for classification

[50]. We can also rely on some of these methods for choosing d. Nevertheless,

the likelihood-based approach of the methods discussed in this work allows us

to use other principled methods for choosing d. Some of them can be a much

less expensive alternative to cross validation. In the following paragraphs we

review dimension selection methods based on likelihood-ratio statistics, simple

information criteria, and permutation tests.

4.5.1 Likelihood ratio tests

The hypothesis d = d0 in HLDA and LAD can be tested using the likelihood

ratio statistic Λ(d0) = 2(L̂p − L̂d0). Here, L̂p is the value of the log likelihood

for the considered model when using the whole set of features and L̂d0 is the

log likelihood at the MLE retaining d0 directions under the same model. Let

g(d0) be a function that gives the degrees of freedom in obtaining the MLE

under the considered model when looking for a dimension reduction subspace of

dimension d0. Under the null hypothesis Λ(d0) is distributed asymptotically as a

χ2 distribution with g(p) − g(d0) degrees of freedom. This statistic can be used

to sequentially test for d = d0. Starting at d0 = 0 and using always the same

level α for the test, the estimated dimension d̂ is the first hypothetized value of

d0 that it is not rejected.

The first two rows of Table 4.1 give g(d0) for HLDA and LAD. Though g(d0)

can be computed formally for each model, we can explain its terms easily. For

HLDA, for example, we have p parameters for the computation of the sample

mean µ; (h − 1)d0 for the computation of traslated means (µ − µy) for y =
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80 Discriminative dimension reduction: a sufficiency approach

1, 2, . . . , h; hd0(d0 + 1)/2 for estimation of Ωy, (p − d0)(p − d0 + 1)/2 for the

estimation of Ω0 and d0(p − d0) from the fact that ρHLDA ∈ Rp×d0 lies in the

Grassmann manifold of dimension d0 in Rp when considering a semi-orthogonal

basis matrix. Rearranging terms, we get the degrees of freedom shown in the

table. In computing the degrees of freedom is important to note that setting

orthogonality constraints on the projection matrix avoids estimating ρ0; it is just

computed as the orthogonal complement for ρHLDA. To the best of our knowledge,

this simple fact has not been used in previous implementations of HLDA.

For ρLAD2 = ρA as in Section 4.4.4, a joint hypothesis d = d0, u = u0 can

be tested by using the likelihood ratio statistic Λ(d0, u0) = 2{Lfull − L(d0, u0)},
where Lfull denotes the value of the maximized log likelihood for the full model

and L(d0, u0) = L(ρ̂|d0, u0) is the maximum value of the log likelihood (4.9) for

model (4.8). Under the null hypothesis, Λ(d0, u0) is distributed asymptotically

as a χ2 random variable with g(p, p)− g(u0, d0) degrees of freedom, with g(u, d)

given in the last row of Table 4.1. When there is only one dimension involved, it

is standard practice to use a sequence of hypothesis tests to aid in its selection,

as we did in HLDA and LAD before. However, in this case there seems no

natural way to order the pairs (d0, u0) for a sequence of such tests. One way

to proceed is to compare model (4.7) to the full model using the likelihood ratio

statistic Λ(u0) = 2{Lfull−L(u0)}, where L(u0) = L(ρ̂|u0) is the maximum value of

(4.3). Under the null hypothesis Λ(u0) has an asymptotic χ2 distribution with the

same degrees of freedom that in the LRT for HLDA. Once again, testing is done

sequentially, starting with u0 = 0 and estimating u as the first hypothesized value

that is not rejected. Having chosen an estimate û, d can be estimated similarly

treating û as known and using the likelihood ratio statistic Λ(d0, û) for 0 ≤ d0 ≤ û.

This method is inconsistent since there is a non-zero probability that the estimates

of d and u will exceed their population values asymptotically. This probability

depends on the levels of the tests. We do not regard mild overestimation of d or

u as a serious issue and, in any event, overestimation in this context is a lesser

problem than underestimation.

4.5.2 Information criteria

Simple information criteria like Akaike’s information criterion (AIC) and Bayes

information criterion (BIC) can also be used to find an estimate d̂ of the dimension

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



4.6. Experiments 81

of the central subspace. We can state both methods simultaneously. For d0 =

0, 1, . . . , p the selected dimension for HLDA or LAD is

d̂ = argmin
d0
{IC(d0) = −2L̂(d0) + h(N)g(d0)} , (4.13)

where N is the size of the sample, h(N) = log(N) for BIC, h(N) = 2 for AIC,

and g(d0) is the same as for likelihood-ratio tests.

For the LAD2 method, dimension selection is completely analogous, just that

both u and d are selected to minimize the information criterion IC(d0, u0) =

−2LLAD2(d0, u0) + h(N)g(d0, u0), with g(d0, u0) as given in the last row of Table

4.1 and h(N) as defined above for AIC and BIC.

4.5.3 Permutation tests

We can make inference on d by comparing the test statistic Λ(d0) = 2(L̂p−L̂d0)

defined previously for LRT to its permutation distribution rather than a chi-

squared distribution [23]. This allows us to get a better estimation of d when

assumptions are not completely accurate. For d0 = 0, 1, . . . , p− 1, a permutation

distribution for Λ(d0) is constructed sequentially using a number P of random

permutations of the sample. The observed statistic Λ̃(d0) is then compared to this

distribution to obtain a sequence of p-values for each dimension d0. The smallest

d0 that gives a p-value smaller than the test level α is taken to be d̂. Though this

method can give accurate inference on d for a large number of permutations of the

sample, the computational load can be even harder than with cross-validation.

4.6 Experiments

In this section we use simulations to illustrate that LAD gives a better solu-

tion than HLDA for normally distributed data when covariance matrices have

no special structure. We show that when data is distributed as in the HLDA

model, dimension reduction using LAD is as good as using HLDA, but for more

general data LAD usually needs a smaller subspace than HLDA to retain all the

class-specific information. We also illustrate the equivariance of LAD under full-

rank transformation of the features and the lack of this property for HLDA. We
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82 Discriminative dimension reduction: a sufficiency approach

exclude LDA from the analysis as the constant covariance assumption is usually

too restrictive in practice.

Throughout these experiments we work with semi-orthogonal projection ma-

trices and use optimization over the Grassmann manifold to compute their esti-

mators [61]. Despite this is the usual practice for LAD, it is not for HLDA for

which unconstrained optimization is typically used [56]. We checked that our

implementation estimates a basis matrix for the same reduction subspace than

the code in [56] by verifying that the angle between the subspaces spanned by

both estimates is zero [35]. Our implementation seems to require a smaller num-

ber of iterations until convergence. Nevertheless, neither of the codes are highly

optimized to allow for rigurous comparison of efficiency. More details on the code

used here can be found in [22].

4.6.1 HLDA vs LAD when d is known

Consider a three-class classification task and assume the data is normally dis-

tributed as X|(Y = y) ∼ N (µy,∆y) with

µy = ρ(νy − ν̄y),

∆y = ∆+∆ρ(Ωy −Ω)ρT∆,

for y = 1, 2, 3. Taking ∆ = ρΩρ′ + ρ0Ω0ρ
′
0, this simulation model satisfies (4.5)

and the HLDA constraints.

We first ran a simulation to compare the estimates of ρ obtained by the two

methods assuming we know the dimension d of the subspace spanned by ρ. We

took d = 2, p = 10 and choose ν1 = (1,−8)T , ν2 = (4, 4)T , ν3 = (6,−7)T for the

projected means. For the projected covariances, we took

Ω1 =

(
3.00 0.25

0.25 1.00

)
Ω2 =

(
2.0 0.10

0.1 5.00

)
Ω3 =

(
1.00 −0.25
−0.25 1.00

)
,

and we fixed a diagonal covariance matrix of dimension (p− d)× (p− d) as Ω0.

We used these models to generate samples with different sizes. For each sample
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Figure 4.1: Recognition rates for a standard quadratic classifier acting on the projected

features obtained with HLDA and LAD. (a) When projecting the original observations

X ; (b) when projecting the transformed observations Xη. Classification is carried out

on independent testing sets X T and X Tη, respectively.

size, we generated 100 replicates of a learning set X and an independent equally

sized testing set X T . For each replicate, we computed ρHLDA and ρLAD using the

learning set and assessed these estimates over the testing set. We first compared

the recognition rates achieved with a standard quadratic classifier acting on the

reduced subspace spanned by these estimates; that is, usingX TρHLDA andX TρLAD

as features. The obtained averaged recognition rates are shown in Figure 4.1-a).

It is clearly seen that both estimators achieve the same performance. Only for

very small sample sizes the projection with HLDA outperforms that with LAD,

as it is expected a priori from the data generation model, but even this difference

is very small.

Now consider the same experiment, but with the same data multiplied by an

arbitrary nonsingular matrix η ∈ Rp×p. Obtained averaged recognition rates are

shown in Figure 4.1-b). It is clearly seen that using LAD for dimension reduction

leads to the same results obtained before. However, the classifier acting on the

data projected with ρHLDA now achieves a significantly poorer performance.

To get further insight into this example, we measured how close these estimates

were to ρ by computing the angle between the projected data X Tρ and the

estimates X TρHLDA and X TρLAD for each replicate [35]. Figure 4.2 summarizes

the obtained results. It can be seen that ρHLDA is closer to ρ as it is expected,
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Figure 4.2: Angle between X Tρ and its estimates. a) Using HLDA; b) using LAD.
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Figure 4.3: Angle between X Tηρ and its estimates after transformation of the original

predictors with a nonsingular matrix η. a) Using HLDA; b) Using LAD.

given it is a more parsimonious model for the structure of the generated data.

Nevertheless, the improvement over ρLAD is important only for small sample sizes.

For Ny > 100 it is seen that the angles obtained by both estimates remain close by

around 2◦. Furthermore, boxplots show the variance of the estimates is roughly

the same provided the learning sample is not very small.

Now consider the same data, but multiplied by an arbitrary nonsingular matrix

η ∈ Rp×p as before. The angles between projected transformed data X Tηρ and

X TηρLAD and between X Tηρ and X TηρHLDA are shown in Figure 4.3. Whereas

angles obtained with LAD are roughly the same as before, those obtained with

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.
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HLDA are close to 90◦, which shows that ρHLDA is no longer close to ρ. Indeed,

the results show that there remains much information in the data that is not

captured by ρHLDA. This explains the drop in recognition rates obtained for the

HLDA projections in Figure 4.1-b).

It is important to note that after transforming the original data with η, the

covariance matrices are no longer structured as in HLDA. Thus, the latter exam-

ple also illustrates the performance of HLDA and LAD when data is normally

distributed but with an arbitrary covariance matrix.

4.6.2 Inference on the dimension of the sufficient subspace

We now take the simulation set up of the previous subsection to assess the

methods stated in Section 4.5 to infer about the dimension d of the minimal

sufficient reduction. We know that for these data the right choice is d = 2.

Figure 4.4 shows the fraction F (d̂ = 2) of the runs in which the dimension d̂

chosen with these methods is actually 2 as a function of sample size. We see

that the different criteria perform very similarly for LAD and HLDA. Inference

using BIC is found remarkably accurate, and much better than the choice given

by AIC. In addition, using a test level of 5%, LRT improves when the sample

size increases giving right choices more than 90% of the times when Ny > 100

in this example. Recall that the importance of LRT relies on the fact that it

is a sequential testing procedure that avoids assessing reductions for all possible

dimensions before picking the best choice for d.

We can also use these tools for infering about d to illustrate the minimality

issue with HLDA. We saw above that after multiplying the data with a matrix η

the angle between the subspace spanned by the true projection matrix ρ and the

estimate ρHLDA increased and that recognition rate dropped. Figure 4.5 shows

now what the fraction F (d̂ = 2) is for both LAD and HLDA projections of the

transformed features Xη. Again, the results obtained with LAD are the same

as those shown previously for the untransformed data. However, the fraction

of the times that a dimension d̂ = 2 is chosen using HLDA projections is now

much smaller than before. Even more, for the transformed data XηρHLDA this

fraction decreases for AIC and BIC as more observations are available to estimate

ρHLDA. For LRT at a 5% level, this fraction is zero for all sizes of the training
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Figure 4.4: Inference on the dimension of the smallest dimension reduction subspace:

a) using HLDA; b) using LAD. Figures show the fraction F (d̂ = 2) of the runs in which

the right dimension d̂ = 2 is chosen as the dimension of the central subspace.
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Figure 4.5: Inference on the dimension of the smallest dimension reduction subspace

after re-scaling the features with a matrix η. a) Using HLDA; b) using LAD. Figures

show the fraction F (d̂ = 2) of the runs in which a dimension d̂ = 2 is chosen as the

dimension of the central subspace.

sample. This strongly suggests that the subspace that retains all the class-specific

information has a dimension different from d = 2 when constrained to the HLDA

model. To find out what the chosen dimension was in these cases, we carried out

a ten-fold cross validation experiment for the sample of size Ny = 100 to infer

about d based on the minimum classification error estimate as a function of d.

The method selected d̂ = 9 in 46% of the times, d̂ = 3 in 42% of the times,
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Figure 4.6: Angle between the central subspace and several estimates for a sample of

size Ny = 500. Boxplots were constructed after 100 runs of the experiment, using data

with covariance structure as imposed in HLDA but that allows for further reduction

according to (4.9).

and the rest spread over different choices for d. As the same selection method

chooses d̂ = 2 in all the times for the original features, it becomes clear that after

a simple linear transformation HLDA needs more directions to retain the class

information. On the other hand, LAD continues on needing the same number of

directions to do it.

4.6.3 The minimality issue revisited

To further study the lack of minimality of the HLDA estimate and compare

it to LAD and the correction proposed in Section 4.4.3, we carried out another

simulation using data generated from a model that has the covariance constraint

of HLDA but allows for a further reduction according to (4.9). For this study we

took p = 20, u = 3 and d = 1, defined ρ ∈ Rp×u and α ∈ Rp×d and obtained

A = ρTα. The central subspace is span(α). Figure 4.6 shows obtained angles

between the central subspace and several estimates: ρHLDA ∈ Rp×u, ρHLDA ∈ Rp×d,

ρLAD ∈ Rp×d, and ρLAD2 ∈ Rp×d. These estimates are referred to as HLDAu,

HLDAd, LADd and LAD2u,d in the figure, respectively. This figure corresponds

to 100 replicates of the experiment, using a sample size of 500 observations per

class.
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Figure 4.7: Linear projection of pen-digits data to a two-dimensional subspace. a)

Using HLDA; b) using LAD.

It is seen that ρHLDA ∈ Rp×u is closer to the central subspace than all of the

other methods. This is not a surprise because it assumes the exact structure of

covariance matrices and contains the central subspace in the population. How-

ever, this reduction retains three directions to use as features. On the other hand,

the rest of the estimators retain only one transformed feature. Between them, it

is seen that ρHLDA ∈ Rp×d clearly fails to span the central subspace. Nevertheless,

both ρLAD and ρLAD2 remain very close to the central subspace.

In other simulations with less observations available, ρLAD2 showed a degraded

performance, as also did ρHLDA ∈ Rp×u (not shown). Boxplots of the angles be-

tween the central subspace and these estimates becomes larger, showing a greater

variablity in the obtained values compared to LAD. In addition, in a few replicates

the estimates for these methods correspond to local maxima of the log likelihood

function. These cases appear as outliers in the shown boxplots. Further investi-

gation is needed to find optimal initialization of the numerical algorithm.

4.6.4 Pen digits data

Let us take some real data to further illustrate the different performances of

LAD and HLDA. Consider the pen digits dataset from the UCI machine learning

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



4.7. Concluding remarks 89

repository3. The sample was taken from 44 subjects, who were asked to write 250

random digits. Using standard preprocessing techniques, each written digit yields

a 16-dimensional feature vector which is used for classification. The 44 subjects

were divided into two groups of size 30 and 14, in which the first formed the

training set and the second formed the test set. Figure 4.7 illustrate dimension

reduction of the feature vectors from the training set to a subspace of dimension

d = 2. This transformation would serve as a preparatory step for developing

the classifier. For clarity, we only took the digits 0, 6 and 9, which reduced

the sample to 2,219 cases. This subset has also been considered previously for

illustration purposes [97]. The data projected using LAD results in separate

clusters for each class, which could be well-modeled using Gaussian distributions.

HLDA projections, on the other hand, show a worse defined distribution and

some overlap over the classes. The different quality of these reductions impact

on the performance of the classifier. Using a standard quadratic classifier on the

two-dimensional subspace of the projected features, the error rate with HLDA

projections is 5%. Using LAD projections instead of HLDA projections, the error

rate reduces 60% down to 2%. To get an error rate close to that for LAD for this

dataset, HLDA needs to retain four directions instead of two.

4.7 Concluding remarks

In this chapter, we have focused on information retention when using likelihood-

based methods for dimension reduction of normally distributed data. LDA and

HLDA have been analyzed under the framework of likelihood-based sufficient di-

mension reduction and conditions on the data have been stated in order to allow

these methods to retain all the class information. It has been shown that HLDA

often needs to retain more directions than the strictly necessary, to account not

only for all the class information but also to satistfy the assumed structure in

the covariance matrices. On the other hand, it has been shown that the LAD

estimator provides a better solution for subspace projection of heteroscedastic

data without constraints, giving a reduction that is minimal and satisfies an im-

portant invariance property. In addition, a new estimator LAD2 was introduced

to deal with data that actually have a structured covariance matrix as assumed

3ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

; "
In

fo
rm

ac
ió

n 
D

is
cr

im
in

at
iv

a 
en

 C
la

si
fi

ca
do

re
s 

B
as

ad
os

 e
n 

M
od

el
os

 O
cu

lto
s 

de
 M

ar
ko

v"
U

ni
ve

rs
id

ad
 N

ac
io

na
l d

el
 L

ito
ra

l, 
20

10
.



90 Discriminative dimension reduction: a sufficiency approach

in HLDA. Unlike HLDA, however, the proposed method guarantees minimal re-

ductions and it is more efficient than LAD for this type of data. Understanding

existing methods under sufficiency has allowed us to state inference methods

about the dimension of the smallest reduction subspace that is sufficient to re-

tain class information. This interpretation has led also to new implementations

of the existing methods using matrix orthogonality constraints that seem to im-

prove computational efficiency and avoids explicit computation of the rejected

non-discriminant subspace.
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CHAPTER 5

SDR for hidden Markov models

5.1 Introduction

In Chapter 4 we discussed likelihood-based dimension reduction methods for

normal models. Using theory from the sufficiency framework, we gave theoretical

insight about information retention with projection methods commonly used in

HMM-based pattern recognition, such as LDA and HLDA. We discussed opti-

mality of these methods in avoiding information loss and, most important, we

showed that LAD is a better way than HLDA to deal with heteroscedastic data,

as it does not impose restrictive constraints on the covariance and usually needs

a smaller number of linear combinations of the original features to retain all the

information. It turns out that SDR for condional normal models is all we need

to use the SDR methodology for dimension reduction of GHMM. As exploited

previously in [57, 56, 83], the connection relies in using the EM algorithm for

maximum likelihood parameter estimation.

In this chapter we derive a SDR method for HMM with Gaussian observation

densities and propose a simplified algorithm for practical implementation. The

proposed method is compared against HLDA, which is the most widely used

alternative for dimension reduction for HMM.

91
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92 Sufficient dimension reduction for HMM

5.2 Derivation of the proposed method

Assume a HMM ϑi is used to model sequences of random vectors Xn = {xn
t }

from the i-th class, with xn
t be a realization of a random variable Xt. Let Qt be

the state of the underlying Markov chain at time t, and assume that Qt takes

one out of Ni values q = 1, 2, . . . , Ni. In addition, assume ϑi is homogeneous

and has Gaussian observation densities. This means that conditional on the

state Qt, the random vector of features Xt is normally distributed as p(Xt|Qt =

q, ϑi) = N (µq,∆q). In this scenario, ρ is a basis matrix for a dimension reduction

subspace if

Xt|(ρTXt, Qt = q, ϑi) ∼ Xt|ρTXt. (5.1)

In this way, ρTXt and Xt have the same information on the state Qt of the model

for class i, for every q and i. Thus, if we map (q, ϑi) onto a single index yq,i, we

recover the condition for SDR of normal data as discussed in Chapter 4.

Nevertheless, for each random vector of features Xt, the only label that is

available is the class i, as Qt remains hidden to the observer. Thus, SDR methods

for normal data cannot be used straightforwardly in this context. As a first

approach to get labels at the state level for each random vectorXt, each HMM can

be trained first with the standard training algorithm using the original features.

In a second step, these trained models can be used to make inference about

the optimal sequences of states to describe the feature vectors in the training

set, and the inferred states can be used as labels for the observed features. As

observations are assumed normally distributed given the state of the Markov

chain, LAD can be applied over this labeled dataset to obtain a basis matrix ρ̂

for the dimension reduction subspace. Once ρ̂ has been obtained, parameters for

observation densities in the HMM can be transformed using ρ̂ and classification

can be carried out in the reduced subspace after projection of the testing set with

ρ̂. This training scheme for the classifier will be used later for comparison and it

will be referred to as HMMEXT-LAD.

Despite the procedure described above being appealing to generate a labeled

dataset to apply the SDR methodology, it does not consider the central subspace

properly as another parameter to estimate. A better solution is to embed the

dimension reduction task into the Baum-Welch algorithm for estimation of the
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5.2. Derivation of the proposed method 93

full model parameters [4, 30]. In this case, to obtain a maximum likelihood

estimate of a semi-orthogonal basis matrix ρ of the dimension reduction subspace,

we should maximize the expectation

Q(ρ; {ϑi}) =
1

2

h∑
i=1

Ni∑
q=1

∑
Xk∈Xi

Tk∑
t=1

γk
t (yq,i) log

|ρT Σ̃ρ|
|ρT∆̃yq,iρ|

, (5.2)

where Xi denotes the training set for class i, comprising sequences of correlated

observations Xk = {xk1,xk2 . . . ,xkTk
}, γk

t (yq,i) = p(Qt = q|Xk, ϑi), and the num-

ber of observations Tk may be different for each sequence Xk. In addition,

µ̃yq,i
=

∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)x

k
t∑

Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)

, (5.3)

µ̃ =

∑h
i=1

∑Ni

q=1

∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)x

k
t∑h

i=1

∑Ni

q=1

∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)

, (5.4)

∆̃yq,i =

∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)(x

k
t − µ̃yq,i

)(xk
t − µ̃yq,i

)T∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)

, (5.5)

Σ̃ =

∑h
i=1

∑Ni

q=1

∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)(X

k
t − µ̃)(Xk

t − µ̃)T∑h
i=1

∑Ni

q=1

∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i)

. (5.6)

Note that (5.2) is analogous to the log-likelihood function (4.6) for the LAD

method. Nevertheless, here we do not have certainty about the true normal pop-

ulation from where the observations come. Instead, quantities γk
t (yq,i) estimate

the posterior probability of the random vector xk
t from the sequence Xk ∈ Xi

of coming from the normal observation model indexed by yq,i. Thus, the sums∑
Xk∈Xi

∑Tk

t=1 γ
k
t (yq,i) have an analogous meaning to Ny in (4.6). The posterior

probabilities γk
t (yq,i) are computed for each training sample and at each iteration

of the algorithm, using the current estimates of the parameters of model ϑi. In

this way, the statistics (8)-(11) vary also at each iteration of the algorithm. It

is important to stress that the different populations for the dimension reduction

task are all the conditional observation models in each HMM. Thus, the dimension

reduction task will involve
∑

iNi normal populations.

5.2.1 Simplified algorithm

As a simpler alternative to the training approach described above, we can use

Viterbi’s algorithm to make inference on the optimal sequences of hidden states
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94 Sufficient dimension reduction for HMM

Algorithm 1: Joint estimation of the reduction and model parameters

• Initialization

1. For each class i, set ϑ∗

i = ϑi and X ∗

i = Xi.

2. Let X ∗ =
S

i
X ∗

i be the whole training sample.

• Main loop: repeat until convergence

1. For each class i, infer the optimal sequences of states {Q∗

k}i to describe

the data X ∗

i according to ϑ∗

i .

2. Form the whole labeled dataset Υ =
S

i
({Q∗

k}i,Xi).

3. Estimate the semiorthogonal basis matrix ρ
∗ for LAD using Υ.

4. Compute ρ
∗

0
that spans a subspace orthogonal to span(ρ∗).

5. Build the orthogonal matrix Θ = (ρ∗

ρ
∗

0
).

6. Lineary transform the original dataset using Θ to obtain a new X ∗.

7. For each class i, update the observation model corresponding to each estate

q of ϑi, doing µ
∗

yq,i
= ΘT

µyq,i
and ∆∗

yq,i
= ΘT ∆yq,i

Θ.

• Finalization

1. Set bρ = ρ
∗.

2. For each class i, take the first d coordinates of the model parameters in ϑ∗

i

to build the final estimates of the models, bϑi.

to describe the observed data, instead of summing up all the possible paths as in

the Baum-Welch algorithm [6, 81]. Assume we have pre-initialized HMM models

ϑi, one for each data class and let X =
∪

iXi refer to the whole training set. The

proposed algorithm is shown in Figure 1. In each iteration, Viterbi’s algorithm

is used to infer the sequences of states Q∗
k = {Q∗

kt} that best describes each

sequence Xk in the training sample Xi, according to the corresponding HMM ϑi.

The obtained posteriors are used to label the training sample at the hidden-state

level. The LAD method is applied to the labeled dataset to estimate a basis

matrix ρ for the central subspace. After computing a basis matrix ρ0 for the

orthogonal complement to the estimated central subspace, the orthogonal matrix

(ρ,ρ0) is used to lineary transform the training set X and the initial estimates

of the parameters of the models. These steps are repeated until there is no

significant increase in the likelihood of the dataset. After convergence, only the

first d coordinates of the model parameters are retained. Classification is carried

out in this reduced subspace, after projecting the test samples with the estimated
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5.3. Experiments with synthetic data 95

basis matrix ρ̂.

It is important to note that inference about the optimal sequences of states

is carried out in a (transformed) feature space, without rejecting any coordinate.

This is aimed to avoid lossing important information in the first iterations of the

algorithm, when only rough estimates of model parameters are available to label

the observations. As the reduction is supervised according to this label assign-

ment and the later can be inaccurate in the beginning of the training, rejecting

coordinates may imply lossing relevant information that cannot be recovered in

next iterations. Furthermore, the update of both the dataset and the parame-

ters for the observation models of the HMM are computed transforming always

the original training sample and the initial estimates of model parameters, re-

spectively. Preliminary experiments with both synthetic and real data showed

that the algorithm implemented in this way is stable and it was found to reach

convergence typically after a few iterations.

5.3 Experiments with synthetic data

This section describes simulation studies aimed to illustrate the main proper-

ties of the proposed dimension reduction method for HMM-based classifiers.

5.3.1 Set up

We ran a simulation study for a two-class discrimination problem. For this

experiment, data for each class was generated using a corresponding HMM with

Gaussian observation densities. The number of hidden states was set to three

(Ni = 3) for both models i = 1, 2. Conditional on the state of the Markov chain,

observed data was generated from a normal population with parameters

µy = ρ(νy − ν̄),

∆y = ∆+∆ρ(Ωy −Ω)ρT∆,

with ν̄ =
∑

y νy/6, Ω =
∑

y Ωy/6 and ∆ = ρΩρT +ρ0Ω0ρ
T
0 . Comparison of this

normal model with (4.7) shows that it satisfies the conditions to make HLDA an
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96 Sufficient dimension reduction for HMM

HMM for class 1

A1 =

 0.60 0.35 0.05

0 0.75 0.25

0 0 1.00


state 1 state 2 state 3

ν1,1 = (1,−3)T ν2,1 = (4, 2)T ν3,1 = (3,−1)T

Ω1,1 =

(
1.00 −0.25
−0.25 3.00

)
Ω2,1 =

(
2.00 1.50

1.50 5.00

)
Ω3,1 =

(
1.00 −0.25
−0.25 1.00

)
HMM for class 2

A2 =

 0.75 0.15 0.10

0 0.75 0.25

0 0 1.00


state 1 state 2 state 3

ν1,2 = (−1, 0)T ν2,2 = (2, 2)T ν3,2 = (2,−3)T

Ω1,2 =

(
3.00 0.25

0.25 1.00

)
Ω2,2 =

(
2.00 1.50

1.50 5.00

)
Ω3,2 =

(
1.00 −0.45
−0.45 1.00

)

Table 5.1: HMM parameters used in the simulation. Notation λq,i refers to the pa-

rameter λ for the normal density corresponding to state q of the HMM for class i.

optimal method for dimension reduction. Our objective in choosing this is two-

fold: on the one hand, we want to show that when the data is exactly as assumed

by HLDA, the reduction obtained with LAD is as good as the one obtained

with HLDA. On the other hand, if this original data is lineary transformed with

a nonsingular matrix η, the covariance structure gets broken and HLDA is no

longer optimal. We want to show that in this case, which also accounts for a

general covariance matrix of the populations, LAD is significantly better than

HLDA. Furthermore, this condition should illustrate that error rates achieved

using LAD-derived estimators remains fairly the same after transforming the

features, due to the equivariance property of the estimator [20].

A feature space with dimension p = 10 was used, with a central subspace

of dimension d = 2. Table 5.1 shows the values set for HMM parameters in

the sufficient subspace. Matrices A1 and A2 have the probabilities of transition

between different states for the HMM corresponding to class 1 and 2, respectively.

That is, (A1)ij is the probability that the HMM for class 1 jumps from state

Qt−1 = j to Qt = i at any time t. Note that there is not anything special
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5.3. Experiments with synthetic data 97

Exp. Sample size HMMNORED HMMEXT-LAD HMMHLDA HMMLAD

2× 100 0.1465 0.0805 0.0425 0.0220

A 2× 1000 0.1080 0.0928 0.0424 0.0229

2× 5000 0.1949 0.1014 0.0571 0.0234

2× 100 0.1445 0.1045 0.2045 0.0235

B 2× 1000 0.1153 0.0954 0.1698 0.0222

2× 5000 0.1549 0.1043 0.1925 0.0237

Table 5.2: Error rate obtained with each classifier for different sizes of the training

set. Reported values are means over ten runs of the experiment. Exp. A: data was

generated using normal models as assumed in HLDA. Exp. B: data was obtained linearly

transforming the data used in A.

in the chosen values. They could have been set at random, but specific values

have been prefered to make the experiment easily reproducible. A training set

and an independent testing set were randomly generated for each class using the

model parameters stated above. Each generated sequence Xk had a number Tk of

feature vectors which varied randomly as 6 ≤ Tk ≤ 10. Each feature vector Xkt

was drawn from a Gaussian density conditional on the state of the related hidden

Markov chain at that time. For the dimension reduction stage, computations

were carried out using an extension to HMM of the software available from [?].

5.3.2 Results

The performance of the following classifiers was compared: i) HMMNORED, in

which each HMM was trained with the Baum-Welch algorithm using the original

10-dimensional feature space; ii) HMMEXT-LAD, which includes dimension reduc-

tion using LAD but it is not embedded in HMM training; iii) HMMLAD, in which

LAD is embedded in the iterative training process described in Algorithm 1; and

iv) HMMHLDA, in which HLDA replaces LAD in Algorithm 1.

We ran the experiment for different sizes of the training set. In all the cases,

classification was carried out over independent test sets with the same size as the

training set used in the given experiment. The same datasets and the same initial

estimates of the models were used for all the classifiers, so that random initializa-
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98 Sufficient dimension reduction for HMM
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Figure 5.1: Error rates achieved with classifiers HMMNORED, HMMEXT-LAD, HMMHLDA

and HMMLAD for different sizes of the training and testing samples. a) 100 sequences

per class; b) 1000 sequences per class; c) 5000 sequences per class; d)-f) same as a)-c),

respectively, but after linear transformation of the data with a matrix η.

tion has no effect on the relative performance of the tested schemes. Statistical

significance of the obtained mean scores were analyzed according to this random

block design. Experiment A in Table 5.2 shows the obtained results. Reported

error rates are mean values over ten runs. It can be seen that the embedded alter-

natives HMMHLDA and HMMLAD both outperform HMMEXT-LAD and HMMNORED.

On the one hand, these results confirm that the performance of the classifier can

be improved reducing the dimensionality of the feature space. In addition, the

magnitude of the improvement depends on the obtained reduction. Since the

projections depend on the labels assigned to the observed data, embedding the
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5.3. Experiments with synthetic data 99

dimension reduction into the estimation of the model parameters allows for a sin-

ergistic interplay between the estimated projection and the labelling process from

an iteration of the algorithm to the next. It is clearly seen also that HMMLAD

outperforms the other alternatives; results are significant at the 5% level for each

size of the training set. It is interesting to note that the superiority of HMMLAD

is significant even for the smallest training sample. The later result is important

since HLDA is a tighter model for the data by the design of the experiment. It

suggests that inference is actually harder for such structured model compared to

LAD. We explore this hypothesis more deeply below.

In addition to the mean scores, it is interesting to study the variability of the

achieved recognition rates using the different classifiers. Boxplots in Figure 5.1-a)

to c) show this information. As expected, the performance of classifiers including

dimension reduction presents smaller variability compared to that of HMMNORED.

More interesting, there is not a significant difference in the variablity achieved

by HMMEXT-LAD and HMMHLDA, but results for HMMLAD are much closer to their

mean value. The very small variance obtained with HMMLAD is found even for

the smallest sample size used to train the classifier. These results suggest that

the error rates achieved using HMMLAD are close to the minimum attainable for

the particular dataset using the common Bayes classification rule.

Finally, let us consider the effect of transforming the dataset with a nonsingular

matrix η ∈ Rp×p generated randomly. Obtained results are given in Experiment

B of Table 5.2. If we concentrate on the difference in error rate achieved with

each reduction method after transforming the features compared to its perfor-

mance with the original features, it is found that increments are not significant

for HMMNORED, HMMEXT-LAD and HMMLAD, but HMMHLDA is strongly affected by

the transformation. As the special covariance structure of the original data no

longer holds after the transformation with η, these results clearly illustrate that

for a fixed dimension of the dimension reduction subspace, HLDA is an optimal

reduction only for a very particular covariance structure. Thus, more directions

should have been retained using HLDA to conserve all the original information

and to avoid increasing the error rate.

The corresponding boxplots shown in Figure 5.1-d) to f) further illustrate

the comments above. It can be seen that boxplots remain fairly the same after

transforming the features for the reduction methods involving LAD, albeit there

is some increasement in variability for the non-embedded alternative when it is
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Figure 5.2: Comparison of error rates achieved when using inference on the sequences

of states that generated the observations (HMMHLDA and HMMLAD), against using the

true paths for labelling the data for the dimension reduction stage (HMMHLDAo and

HMMLADo).

used with the smallest training sample. Unlike this, the variablity of the scores

obtained using HMMHLDA raises remarkably after transformation of the original

data, for every size of the training sample. This greater variability of the error

rates is due to the different amounts of discriminant information that is present

in the retained directions.

5.3.3 Why does LAD perform better even for data with the covariance
structure of HLDA?

It is worth noting that the reduction method based on LAD seems to achieve

significant better results than HLDA even for data generated from conditional

normal models with the covariance structure assumed by HLDA. To get some

insight into this effect, we ran a simulation to analyze the hypothesis that LAD

allows actually for more accurate inference about the most probable sequences of

states in the models to describe the observed data. This would allow for a better

labelling of the data for the dimension reduction stage, which contributes to

getting a better estimate of the projection, that in turn will help in the inference

step at the next iteration of the algorithm. To check this, we compared the

performance of HMMLAD and HMMHLDA, implemented as proposed in Algorithm
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5.4. Experiments with real data 101

1, against classifiers HMMLADo and HMMHLDAo, respectively, which differ from the

formers just in that the true paths that generated the synthetic data are used,

instead of infering them from the data. As in previous simulations, independent

training and testing samples were used in each run. Results over ten runs of the

experiment are shown in Figure 5.2. It can be seen that HMMLAD achieves fairly

the same results as HMMLADo, meaning that inference on the most likely sequences

of states is very good and does not lead to an increase in error rates compared to

the exact labelling when using the true paths as in HMMLADo. On the other hand,

inference on the optimal sequence of states is shown to significantly reduce the

performance of HMMHLDA compared to HMMHLDAo. These results clearly agree

with the hypothesis stated above.

5.4 Experiments with real data

A phoneme recognition experiment using data from the TIMIT speech corpus

[99] was carried out to illustrate the performance of the proposed method with

real data. For this task, we used samples of phonemes /b/, /d/, /eh/, /ih/ and

/jh/. The voiced stops /b/ and /d/ have a very similar articulation and they have

different phonetic variants according to the context. Vowels /eh/ and /ih/ were

selected because their formants are very close [81]. All of this makes these pairs

very confusable. The affricate phoneme /jh/ was added as representative of the

voiceless group to complete the set. It is important to note that these phoneme

are not spoken isolatedly, but extracted from continuous speech. Because of that,

there is a large variability in both acoustic features and duration in the samples

of each phoneme, contributing to a more difficult discrimination task.

Speech signals were analyzed in frames of 30 ms length, using Hamming win-

dows with 50% overlap between consecutive frames. 12 cepstral coefficients in

the Mel frequency scale [28, 81] along with a log-energy coefficient were extracted

from each segment, thus giving sequences with xt ∈ R13. Random samples of 200

sequences per phoneme taken from the TIMIT training set were used for param-

eter estimation, and independent 200 sequences per phoneme from the testing

set were used for classification. For each class, a HMM with Ni = 3 was trained,

with observation densities given by a mixture of two normal densities; that is

we assume p(Xt|Qt = q, ϑi) = m1N (µyq,i,1
,∆yq,i,1) + (1 −m1)N (µyq,i,2

,∆yq,i,2).
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Figure 5.3: Error rates for several dimensions of the retained subspace. Shown results

are averages over ten runs of the experiment.

State-transition matrices for each HMM were initializaed at random, and initial

estimates for the Gaussian parameters were obtaiend using a standard k-means

algorithm. Ten runs of the experiment were carried out. In each run, the training

and test samples as well as the initial estimates for the models parameters were

fixed for all the classifiers, to reduce the influence of these factors in the achieved

recognition rates.

Figure 5.3 shows the obtained error rates for classifiers HMMNORED, HMMHLDA

and HMMLAD, as a function of the dimension of the retained subspace. Reported

results are the averages over the ten runs of the experiment. It can be seen that

when the retained subspace has dimension d < 3, both classifiers including di-

mension reduction perform poorer than the classifier that does not reduce the

dimensionality of the data, indicating that some important discriminant infor-

mation is lost if only such a few directions are retained. However, for d ≥ 3,

HMMLAD performs significantly better than HMMNORED. A one-tail paired t-test

between the scores for HMMNORED and HMMLAD for d = 4, dimension at which the

minimum error rate is attained, shows a p-value of 0.023, meaning that the im-

provement in error rate is significant. On the other hand, it can be seen that the

performance of HMMHLDA remains significantly poorer for all the assessed dimen-

sions of the retained subspace. In fact, for this example, using HLDA is shown to

be worst than not reducing at all the dimensionality of the feature space. Clearly,

HLDA needs to conserve more directions to avoid losing important features for

discrimination.
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5.5. Conluding remarks 103

5.5 Conluding remarks

The EM algorithm allows us to seamlessly integrate the SDR methods for nor-

mal models into the training process for HMM. As a result, consistent methods

for SDR of HMM-modeled data are obtained. In particular, a new projection

method based on LAD extends to HMM settings the better properties and theo-

retical background of this method as compared to HLDA. Simulations shown that

the proposed method based on LAD clearly outperforms HLDA when no further

structure in the covariance matrices is assumed, and that it is as good as HLDA

even under the condition that are most favorable for this method. Experiments

with real speech data sets showed that theoretical advantages of LAD translate

also to a superior performance in applications with real data. It is important

to note that the proposed method has the same computational complexity as

HLDA and does not require further adaptations to replace it in current software

for manipulation of HMM in large scale applications.
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CHAPTER 6

Conclusions and further research

In this thesis, discriminative information in HMM-based classifiers has been

addressed from two different points of view. On one hand, a new training method

for HMM-HMT models was proposed, which uses information from all the classes

to emphasize differences between the models in order to minimize the expected

classification error rate. On the other hand, retention of discriminative informa-

tion when applying linear dimension reduction in GHMM-based classifiers was

analyzed using the framework of sufficient dimension reduction. In this regard,

we advanced in understanding information loss when using existing methods,

and new reductions for HMM that are optimal in the sense of sufficiency were

proposed using results for normal populations as a building block.

The discriminative training method for HMM-HMT models introduced here

extended the minimum classification error approach to sequences of data observed

in the wavelet domain and modeled through HMT. An adaptation of the Viterbi

algorithm was used to define the set of discriminant functions. The training al-

gorithm also required special considerations about the HMT observation models

and the feature space to derive useful measures of misclassification to approx-

imate the decision risk of the classifier. In particular, comparing the order of

magnitud of the discriminant functions was found to be better than weighting

their actual values. The resulting algorithm does not only penalize confusability

of the training patterns to drive the learning process, as previous methods do,
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106 Conclusions and further research

but also do it with increased strength for misclassified observations. In this way,

it adds a corrective actuation that it is not usual in standard settings of MCE

training but proves to work well in this context.

Experiments in phoneme recognition showed that the proposed method consis-

tently outperforms traditional ML training for a given structure of the classifier,

reducing error rates up to 18%. It is interesting to note that improving perfor-

mance of HMM-HMT models in sequential pattern recognition tasks is impor-

tant because no engineered feature extraction stage is required in such classifiers.

Those feature extraction stages are often heuristic and very specific for the ap-

plication. In this regard, pattern recognizers based on HMM-HMT models would

be essentially similar for a broad range of applications.

Fully untied models were used in these developments and the specific structure

of the HMM-HMT models was assumed known. While this structure can be

chosen, for instance, using k-fold cross validation, having better alternatives for

selecting it automatically would be useful in practice. When the availability of

training data is too limited, tying parameters should also be useful to reduce

the number of parameters to estimate. Nevertheless, choosing what parameters

to tie should be carried out using rigurous tests that need to be developed for

these models. Both points will be addressed in future work. It should be noted,

nevertheless, that the same statements are valid for almost all types of HMM-

based classifiers.

From an applications point of view, up to date the proposed algorithm for

MCE training of HMM-HMT models has been used only with one-dimensional

sequences. As the most important applications of HMT lies in imaging science,

extensions of the proposed method to a bi-dimensional domain seems promising

and will also be explored.

In the second part of the thesis, linear dimension reduction for GHMM-based

classifiers was revisited, taking care of information loss that can be important

to discriminate between classes. The framework of sufficient dimension reduc-

tion, which explicitely accounts for information retention, allowed us to analyze

existing methods often used with GHMM-based classifiers and to propose new

methods that achieve optimality in the sense of sufficiency. Both LDA and HLDA

were analyzed in this framework and it was emphasized that the LAD estima-

tor provides a natural way to deal with normal data, as it does not impose any

restrictive constraint on the covariance structure of the populations.
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On one hand, understanding LDA under the SDR methodology confirmed that

LDA is optimal only when the Gaussian data have constant covariance matrix

over all the classes. In addition, this analysis provided a ML interpretation for

LDA that differs from the one that is commonly referred to in HMM-based ap-

plications. We have shown that such interpretation of LDA as a special case of

HLDA assumes additional structure on the covariance matrices, not just being

the same for all the populations.

Regarding HLDA, it was shown that this reduction method can always retain

all the class information provided it projects the original features to a subspace

that is large enough. Nevertheless, the needed directions may be significantly

more than the minimum attainable, as achieved using LAD. This can be seen from

another point of view. In applications, the dimension of the retained subspace

is often fixed a priori because of practical considerations. Because HLDA is

not optimal, it usually loses more relevant information than LAD for the fixed

dimension. In addition, the HLDA estimator has no invariance property, which

means that it changes completely under full-rank transformation of the features.

The lack of optimality of HLDA is due to the special covariance structure of

the normal populations assumed by the method, which results from imposing

strong independence in the transformed domain between the subset of discrimi-

native directions and the rest of the coordinates that are equally distributed over

all the classes. It turns out that this requirement of independence is not actually

needed to reject those equally distributed coordinates as being relevant for clas-

sification. That flexibility is exploited by LAD to achieve a reduction that loses

no information, is minimal, is equivariant and, unlike LDA and HLDA, imposes

no constraints on the covariance of the models.

To the best of our knowledge, the LAD estimator had not been used previ-

ously in applications, neither yet in HMM-based classifiers. Using simulations,

we strieved to emphasize the equivariance property of this estimator, which is

important in applications and it is not a claimed attribute of other methods.

Computational complexity for LAD is in the same order that for HLDA. Further-

more, it has been proved analytically that LAD performs well even when data

deviates from normality. Summing up all these good properties, it seems clear

that LAD is a better alternative to HLDA in GHMM-based applications. It was

shown also that extending the method from normal populations to HMM is rel-

atively easy. Though this extension follows the same guidelines as in HLDA, it
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108 Conclusions and further research

should be clear that the resulting method has a theoretical background, is opti-

mal in the sense of information retention and does not require a special structure

on the covariance matrix of the observation models of the HMM.

Nevertheless, if the data were normally distributed satisfying the covariance

structure assumed in HLDA but the minimal reduction were smaller than the

one provided for that method, LAD would estimate the minimal reduction but

lossing efficiency. To address this case, a new estimator LAD2 was introduced

that both exploits the covariance structure of the data and achieves a minimal

reduction.

On the computational side, the sufficiency approach led us to optimization

algorithms with orthogonality matrix constraints. Though this is the standard

practice in SDR, it was not in the implementations of LDA and HLDA used for in-

stance in speech recognition. Understanding these methods under the sufficiency

framework allowed us to implement them with the same tools used for SDR. These

orthogonality-constrained implementations showed improved efficiency over the

more standard unconstrained optimization.

Finally, it is important to emphasize that the methods and implementations

discussed here estimate the columns of the projection matrix jointly, not in a

sequential fashion. This is important to guarantee that the obtained estimate

actually achieves the MLE.

Understanding HLDA under the sufficiency framework also allowed us to derive

methods to infer about the dimension d of the reduced subspace that is sufficient

to retain all the class information. We explored Akaike and Bayes information

criteria, along with likelihood-ratio tests and permutation tests. Inference on d

by BIC was found specially good, taking into account computational load.

Simulations were used to highlight the main points of all of these develop-

ments, and an example using a real dataset of handwritten digits confirmed the

advantages of using LAD over HLDA. In this example, projecting the features

from a 16-dimensional space to a subspace of dimension 2 and classifying in this

smaller subspace, error rate was 5% for HLDA and 2% for LAD, which implies

an improvement of 60% using the latter.

Future work should address extensive experiments to quantify the performance

of LAD and LAD2 in HMM-based classifiers targeted to real-life applications, in

order to verify if their theoretical advantages translate into practical interest. In
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this regard, extensions of the methodology to allow for multiple subspace projec-

tions is also of importance. Furthermore, in current developments of the SDR

methodology, all the original features are linearly combined and then just a few

of those linear combinations are retained. In future work, it would be interesting

to explore adding variable selection procedures to reject some coordinates from

the linear combinations. In addition, nonlinear sufficient dimension reduction is

a field hardly addressed yet that can be explored.
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APPENDIX A

Proofs for Section 3.3.3

A.1 Updating formulas for observation models

Let us consider the training formulas for the Gaussian means. We begin noting

that the discriminant functions read:

gj(W; Θ) =

∣∣∣∣log(max
q,R

{
Lϑj

(W,q,R)
})∣∣∣∣

= − log

(
max
q,R

{
T∏
t=1

aqt−1qt

∏
∀u

ϵq
t

u,rtur
t
ρ(u)

f qt

u,rtu
(wt

u)

})
= −

∑
t

log aq̄t−1q̄t −
∑
t

∑
∀u

log ϵq̄
t

u,r̄tur̄
t
ρ(u)
−
∑
t

∑
∀u

log f q̄t

u,r̄tu
(wt

u) ,

where, q̄t and r̄t refer to states in the external HMM and the corresponding HMT

model, respectively, that achieve the maximum joint likelihood. To find (3.16),

we know that we need

∂ℓi(W; Θ)

∂µ̃
(j)k
u,m

=
dℓi(W; Θ)

ddi(W; Θ)

∂di(W; Θ)

∂gi(W; Θ)

∂gi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ ∂gi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂
∑

t

∑
∀u log f

q̄t

u,r̄tu
(wt

u)

∂µ̃
(j)k
u,m

.
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112 Proofs for Section 3.3.3

In the expression above, we used ζ defined in Section 3.3.3. As observations in a

node depends only on the state of that node, we have

∂ℓi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂
∑

t log f
q̄t

u,r̄tu
(wt

u)

∂µ̃
(j)k
u,m

.

As the sum takes into account only the most likely states in the node of the HMT

related to the most likely state of the HMM in a given frame, we write

∂ℓi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∑
t

δ(q̄t − k, r̄tu −m)
∂log f q̄t

u,r̄tu
(wt

u)

∂µ̃
(j)k
u,m

.

= −ζ
∑
t

δ(q̄t − k, r̄tu −m)
∂µ

(j)k
u,m

∂µ̃
(j)k
u,m

∂log f q̄t

u,r̄tu
(wt

u)

∂µ
(j)k
u,m

.

Noting that ∂µ
(j)k
u,m/∂µ̃

(j)k
u,m = σ

(j)k
u,m and that we are using an univariate Gaussian

distribution for f q̄t

u,r̄tu
(wt

u), we get (3.16).

The steps to derive the updating formulas for the Gaussian variances are com-

pletely analogous.

A.2 Updating formulas for transition probabilities

The procedure applied above also works well for transition probabilities, both

in each HMT and in the external HMM of the whole HMM-HMT. Let us consider

the estimation of the transition probabilities in the internal HMT. Reasoning as

above, we just need

∂ℓi(W; Θ)

∂ϵ̃
(i)k
u,mn

= −ζ

∑
t log ϵ

q̄t

u,r̄tur̄
t
ρ(u)

∂ϵ̃
(i)k
u,mn

.

Remembering of the transformation for this transition probabilities and proceed-

ing as before to account for the most likely states in each frame, we get

∂ℓi(W; Θ)

∂ϵ̃
(i)k
u,mn

= −ζ
∑
t

∑
p

∂ϵ
(i)k
u,pn

∂ϵ̃
(i)k
u,mn

∂ log ϵq̄
t

u,r̄tur̄
t
ρ(u)

∂ϵ
(i)k
u,pn

= −ζ
∑
t

∑
p

δ(q̄t − k, r̄tu − p, r̄tρ(u) − n)
∂ϵ

(i)k
u,pn

∂ϵ̃
(i)k
u,mn

∂ log ϵku,pn

∂ϵ
(i)k
u,pn

.
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A.2. Updating formulas for transition probabilities 113

We now see that for p ̸= m, we have ∂ϵ(i)ku,pn/∂ϵ̃
(i)k
u,mn = −ϵ(i)ku,pnϵ

(i)k
u,mn and for p = m

we have ∂ϵ(i)ku,pn/∂ϵ̃
(i)k
u,mn = ϵ

(i)k
u,mn(1− ϵ

(i)k
u,mn). Replacing these results in the formula

for the gradient and reordering, we get (3.18). An analogous procedure applies

to derive the updating formulas for transition probabilities in the external HMM.
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APPENDIX B

Proofs for Section 4.4.3

Let X|Y ∼ N (µy,∆y), with

µy = µ+ ρΩAνy ,

∆y = ρΩρT + ρ0Ω0ρ
T
0 + ρΩATyA

TΩρT ,

so that the central subspace is α = ρA. Estimation of the parameters in model

(B.1) is facilitated by centering so that the MLE of µ is X̄. The transformed

vectors ρTXy and ρT
0Xy are independent, with means ρTµ + ΩAνy and ρTµ,

and covariance matrices Ω+ΩATyA
TΩ and Ω0, respectivly. Thus the likelihood

factors in these quantities, and leads to the log-likelihood maximized over all the

parameters

L(ρ,A,Ω0,Ω|d, u) = L0 + L1(ρ0,Ω0|u) + L2(ρ,A,Ω|d, u)

where
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116 Proofs for Section 4.4.3

L0 = −(np/2) log(2π)
L1(ρ0,Ω0|u) = −(n/2) log |Ω0| −

−1

2

H∑
y=1

ny∑
i=1

{ρT
0 (Xyi − X̄)}TΩ−1

0 ρT
0 (Xyi − X̄)

L2(ρ,A,Ω|d, u) = −n

2
log |Ω+ΩATyA

TΩ| −

−1

2

H∑
y=1

ny∑
i=1

CT (Ω+ΩATyA
TΩ)−1C.

Here we have used C = ρT (Xyi − X̄) −ΩAνy. It follows that L1 is maximized

over Ω0 by Ω̂0 = ρT
0 Σ̃ρ0. Substituting back, we find the following partially

maximized form for L1:

L1(ρ0|u) = −(n/2) log |ρT
0 Σ̃ρ0| − n(p− u)/2.

For fixed ρ, the log likelihood summand L2 is in the same form as the likelihood

considered for LAD model, with the parameters and variables redefined as ∆→
Ω, p→ u, α→ A and (Xy − X̄)→ ρT (Xy − X̄). Thus for fixed ρ we have from

(4.6) a partially maximized version of L2:

L2(ρ|d, u) = −un/2 + n/2 log |ATρT Σ̃ρA|

−n/2 log |ρT Σ̃ρ| − 1/2
H∑
y=1

ny log |ATρT Σ̃yρA|.

Substituting back in L we get

L(ρ|d, u) = −(pn/2)[1 + log(2π)] + n/2 log |ATρT Σ̃ρA| −

−n/2 log |ρT Σ̃ρ| − 1/2
H∑
y=1

ny log |ATρT Σ̃yρA| −

−n/2 log |ρT Σ̃
−1
ρ|.
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