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Abstract

Wavelet analysis has found widespread use in signal processing and many clas-

sification tasks. Nevertheless, its use in dynamic pattern recognition have been

much more restricted since most of wavelet models cannot handle variable length

sequences properly. Recently, composite hidden Markov models which observe

structured data in the wavelet domain were proposed to deal with this kind of

sequences. In these models, hidden Markov trees account for local dynamics

in a multiresolution framework, while standard hidden Markov models capture

longer correlations in time. Despite these models have shown promising re-

sults in simple applications, only generative approaches have been used so far

for parameter estimation. The goal of this work is to take a step forward in

the development of dynamic pattern recognizers using wavelet features by in-

troducing a new discriminative training method for this Markov models. The

learning strategy relies on the minimum classification error approach and pro-

vides re-estimation formulas for fully non-tied models. Numerical experiments

on phoneme recognition show important improvement over the recognition rate

achieved by the same models trained using maximum likelihood estimation.
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training; minimum classification error; wavelet transform.

1. Introduction

Multiscale analysis using wavelets is a well-established tool for signal and

image representation. The multiresolution property of the wavelet transform

and its flexibility to deal with local features simultaneously in time/space and

frequency provide a suitable scenario for many signal processing and pattern

recognition tasks. Initial interest in these representations was largely driven

by powerful non-linear methods which relied on simple scalar transformations

of coefficients. Many posterior developments kept in mind the idea of some

decorrelation property of the wavelet transform or assumed very simple statis-

tical models for the coefficients. Nevertheless, in practical applications signals

and images usually show sparse representations and some dependence struc-

ture between coefficients which cannot be described with such models. Simply

speaking, coefficients typically are not normally distributed and large ones tend

to form clusters along scales and to propagate across scales.

As both coefficients magnitude and statistical dependencies between them

carry relevant information about signals and their underlying distribution, an

ideal approach to exploit these features for pattern recognition would be to know

the joint distribution of the coefficients. Nevertheless, complete knowledge of

this probability is infeasible, so that we should replace it with some suitable

model. A nice example of such model was introduced by Crouse et al. [1].

It aims at providing a concise statistical description of the wavelet transform

and its main properties. In their framework, the marginal probability of each

coefficient is modeled as a Gaussian mixture driven by a hidden state variable in

order to account for sparseness. Then, markovian dependencies between hidden

states allow to account for the dependencies between coefficients; they give rise

to a probabilistic graph which takes advantage of the natural tree structure

of the wavelet transform. The resulting structure is a hidden Markov model

(HMM) on the wavelet domain which is usually referred to as hidden Markov
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tree (HMT).

In the last years this model has received considerable attention for several

applications, including signal processing [2–4], image processing [5–8], texture

classification [9, 10], computer vision [11, 12] and writer identification [13]. For

classification tasks, however, it can deal only with static patterns. This limita-

tion arises from the use of the discrete wavelet transform (DWT), which makes

the structure of representations depend on the size of signals or images. To over-

come this we could think of tying parameters along scales, but it would come

at the price of reducing modeling power. In a typical scenario we have multiple

observations available and we would want to use the whole information in order

to train a full model. In these cases, the HMT should be trained and used only

with signals or images with the same size; otherwise, a warping preprocessing

would be required to match different sizes and that would be difficult to achieve

on-line.

A different approach to deal with variable length signals in the wavelet do-

main was introduced by Milone et al. [14]. They exploit the probabilistic

nature of the HMT to embed it as the observation model for a standard HMM.

An adapted version of the expectation-maximization (EM) algorithm1 was de-

rived to drive the parameter estimation of fully coupled models. The resulting

structure is a composite hidden Markov model in which the HMT accounts for

local features in a multiresolution framework while the external HMM handles

dependencies in a larger time scale and adds flexibility to deal with sequential

data. The HMM-HMT model was shown to achieve promising results both for

pattern recognition and for denoising tasks [14, 16]. Nevertheless, it is worth

noting that training algorithms used so far provide maximum likelihood (ML)

estimates of model parameters. For classifier design, it is well-known that this

learning approach minimizes the expected classification error only when mod-

els can accurately describe true class distributions and when the training set

1The specific formultation of the EM algorithm to deal with hidden Markov models is also

known as the Baum-Welch algorithm [15].
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is large enough to achieve asymptotic optimality of the estimators. However,

these assumptions hardly ever hold in many pattern classification applications.

Models posteriors usually cannot be expected to match the true class posteriors

and sample availability for parameter estimation often is too small to account

for large variability in data. Thus, this approach to classifier design becomes

suboptimal and minimization of expected classification error cannot be guaran-

teed.

These limitations are common to all classifiers based on HMMs. To overcome

them, in recent years there has been a growing interest in discriminative training

of hidden Markov models [17]. Unlike the previous approach that focused on

the generative power of the model for each class considered independently, these

methods aim to exploit the dissimilarity between models using training samples

from all classes simultaneously. Several criteria have been proposed under this

framework to drive the learning process, giving rise to different methods. As

examples, Maximum mutual information [18] seeks to maximize the mutual

information between the observations and their labels. This criterion inherits

several properties from information theory, but cannot guarantee, a priori, to

achieve the least error rate. On the other hand, Minimum classification error

(MCE) [19] sets minimization of the error rate explicitely as the optimization

task, allowing for a more direct link between the design stage of the classifier and

its expected performance. Minimum phone error (MPE) [20] is another criterion

widely known in the speech recognition community. It is conceptually similar

to MCE, but when the data is structured at several hierarchical levels it allows

to consider smaller units of the sequences to account for the classification error.

For example, sentences in speech contain words and words contain phonemes.

MCE would account for errors at the sentence level regardless of how many

errors occured within the sentence, whereas MPE would account for errors at

the phoneme level.

In this paper we will focus in MCE training. It is a discriminant analysis

approach that relies in a soft approximation of the decision risk of the classifier.

The learning problem becomes an optimization problem which aims to find the
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parameter estimates for the set of HMMs that minimize that risk, and it is fre-

quently solved using a gradient-based method known as generalized probabilistic

descent (GPD) [21]. MCE training has shown to outperform the conventional

maximum likelihood approach in many applications. This success has also trig-

gered several efforts both to ground the method on a more principled basis

[22, 23] and to improve its efficiency in large-scale applications [24]. Neverthe-

less, most of these works deal only with standard hidden Markov models and

are not suitable for wavelet representations.

The goal of this paper is to take a step forward in the development of se-

quential pattern recognizers in the wavelet domain by extending the MCE/GPD

discriminative learning approach to this different scenario in which data is ob-

served in the transformed domain. Direct application of standard procedures

used with Gaussian mixture-HMMs is shown not to be effective for the HMM-

HMT model, requiring a modification of the way rival candidates are weighted

during the classification process. To deal with this, we propose a new approx-

imation to the misclassification loss that penalizes differences in the order of

magnitude of model likelihoods rather than in their values. The advantage

of the proposed learning approach over the fully generative one is assessed in

a phoneme recognition experiment with highly confusable phonemes from the

TIMIT speech corpus [25]. Recognition rates show important improvements on

performance compared to the same models trained using the traditional maxi-

mum likelihood approach.

Related work. Many multiresolution Markov models are reviewed in [26], with

special emphasis on signal and image processing. The HMT model [1], used

as a building block for the model in this work, has been further improved in

several ways since its introduction, for example, enlarging the state space [27],

considering more general multiscale transforms [28, 29], and developing more

efficient algorithms for initialization and training [30]. Hidden Markov mod-

els are widely used to model sequential data, due to their capability to handle

both correlations in time and data with different sizes. The most common

5

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

, D
. H

. M
ilo

ne
 &

 L
. F

or
za

ni
; "

M
in

im
um

 C
la

ss
if

ic
at

io
n 

E
rr

or
 L

ea
rn

in
g 

fo
r 

Se
qu

en
tia

l D
at

a 
in

 th
e 

W
av

el
et

 D
om

ai
n"

Pa
tte

rn
 R

ec
og

ni
tio

n,
 V

ol
. 4

3,
 N

o.
 1

2,
 p

p.
 3

99
8-

40
10

, 2
01

0.



observation densities used with HMM are Gaussian mixtures, but many other

models have been proposed as well [31]. In [32], an EM algorithm was de-

rived for fully coupled Markov models whose observation densities are Gaussian

mixtures-HMMs. A dual Markov model for wavelet-domain data was also pro-

posed by Dasgupta et al [33]. Nevertheless, the learning algorithm proposed

by the authors considers the external HMM independently of the HMMs that

serve as observation models. In contrast, the learning algorithm developed in

[14] takes the external HMM and the conditional HMTs in a trully coupled way.

We use this composite model as the starting point for this work and contribute

here a new discriminative learning strategy for parameter estimation based on

the minimum classification error approach.

The paper is organized as follows. We start by reviewing the basics of

the MCE approach for classifier design in Section 2 and the definition of the

composite HMM-HMT model in Section 3. We then introduce the proposed

algorithm and give re-estimation formulas for all the parameters in Section 4.

Experimental results for phoneme recognition are shown in Section 5 and main

conclusions and future works are outlined in Section 6.

2. MCE approach for classifier design

Pattern recognition usually involves a feature extraction stage to give a suit-

able representation for data and a classification stage to decide the class where

an unlabeled observation comes from. Such decision depends on a parameterized

set of functions or models, one for each class, to measure the degree of member-

ship of an observation to that class. Let {gj(W; Θ)}Mj=1 be that parameterized

set of functions for a classification task comprisingM classes c1, c2, . . . , cM, W

be an observation, and Θ = {ϑj}Mj=1 be the whole parameter set. An unla-

beled observation W will be said to belong to class ci when the decision of the

classifier is

C(W; Θ) , argmax
j
{gj(W; Θ)} = i . (1)

The classifier design involves the estimation of an optimum parameter set Θ∗
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that minimizes the expected classification error over all the observation space. In

traditional generative learning, the model for each class is trained independently

of the others, using training samples for that class only in order to maximize

the likelihood of the observations. Unlike this approach, in a framework of

discriminative learning all models are updated simultaneously in a competitive

way. This process aims to exploit differences between classes that can lead to a

reduction in the error rate of the classifier. In MCE training in particular, min-

imization of the classification error is set formally as a goal. We now summarize

the main topics of the method and provide simulation examples with a simple

Gaussian model in order to motivate our developments.

2.1. Derivation of the MCE criterion

The main ingredient of the MCE approach for classifier design is a soft

approximation of the misclassification risk over the set of samples available

for training. Although in advance we would not guarantee minimum expected

error over all possible observations working just on a finite (possibly small)

training set, the method has shown to generalize well over validation sets [34, 35].

Recent works have also explained the generalization property of MCE methods

by linking them with large margin estimation [23, 36]. For an observation W,

the conditional risk of misclassification is given by

R(Θ|W) =

M
∑

j=1

ℓ(C(W; Θ), cj)P(cj |W),

where ℓ(C(W; Θ), cj) is a loss function which penalizes a wrong decision when

classifying an observation Wτ from class cj . The usual choice for the loss

function is the zero-one loss which assigns ℓ(C(W), cj ; Θ) = 1 for C(W) 6= cj

and zero for correct classification [37]. In the training process, we look for a

parameter set Θ∗ that minimizes the risk

R(Θ) =

∫ M
∑

j=1

ℓ(C(W; Θ), cj)P(cj |W)dP(W),

where the integral extends over the entire signal space. Nevertheless, when

designing a classifier we only have the labeled observations in the training set.
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Let Ωj stand for the subset of observations in this set which belong to class cj .

The expectation above can be replaced with an average of the loss with all the

observations given equal probability mass

R̃(Θ) =
1

T

T
∑

τ=1

M
∑

j=1

ℓ(C(Wτ ; Θ), cj)I(Wτ ∈ Ωj).

In the equation above I(·) is the indicator function and T is the size of the

training set.

The MCE approach minimizes a smoothed version of this empirical risk

which is differentiable respect to model parameters [19]. Let us write this ap-

proximation ℓ(C(W; Θ), cj) = ℓ(dj(W; Θ)), where function dj(W; Θ) simulates

the decision of the classifier. Consider the current training observation comes

from class ci. A common choice for ℓ(di(W; Θ)) is the sigmoid [19, 38]

ℓ(di(W; Θ)) = ℓi(W; Θ) = {1 + exp (−γdi(W; Θ) + β)}−1 . (2)

Parameter γ controls the sharpness of the sigmoid and the bias β is usually set

to zero. To complete the picture we must specify function di(W; Θ), which is

often referred to as the misclassification function [19, 21, 38]. In order to allow

ℓ(di(W; Θ)) to behave close to the zero-one loss, it must give a large enough

positive value for strongly misclassified observations and a small negative value

when the decision is right. In addition, very confusing samples should give a

value close to zero so that their related loss fall in the raising segment of the

sigmoid. Remembering (1), an obvious candidate for di(W; Θ) is

di(W; Θ) = max
j 6=i
{gj(W; Θ)} − gi(W; Θ) .

However, the maximum operation is not differentiable. As we are looking for a

smoothed version of the risk, what is used in practice is a soft approximation like

an ℓp-norm with p large. However, different selections of the misclassification

function are possible (see, for example, [21]) and they can have important effects

on the performance of the algorithm as we will see below.
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2.2. GPD optimization

In the preceding section we have described the approximation of the em-

pirical risk which serves as the optimization criterion for MCE learning. The

simplest approach to find the parameter estimates is a gradient-based optimiza-

tion technique often known as Generalized Probabilistic Descent (GPD), which

is a special case of stochastic approximation [21, 38, 39]. This is simply an

on-line scheme which aims at minimizing the smoothed approximation of the

classification risk by updating the whole set of parameters Θ in the steepest-

descent direction of the loss. Starting from an initial estimate Θ̂0, the τ -th

iteration of the algorithm can be summarized as

Θ̂←− Θ̂− ατ ∇Θℓ(Wτ ; Θ)|Θ=Θ̂τ
, (3)

where ατ is the learning rate which decreases gradually as iterations proceed

in order to assure convergence [21]. Usually, Θ̂0 is chosen to be the maximum

likelihood estimate of Θ and the updating process is carried out for each training

signal [38]. Batch implementations can also be used to exploit parallelization

[34, 36]. It is important to see that the strength of the update depends on how

confusing the training observation is to the classifier and not on the correctness

of the decision. This way, patterns that are similarly likely to belong to different

classes induce the update of the parameter set, even if they are well classified.

2.3. An example with Gaussian models

In order to show the potential of discriminative learning over traditional

maximum likelihood estimation of model parameters, let us consider a simula-

tion example for a binary classification problem. We assume Gaussian models

for both classes, but allow data from one of them, say class A, to be drawn

actually from a two-component Gaussian mixture with weights 0.9 and 0.1, re-

spectively. This is a simple example of a model not fitting the real distribution

of observed data. To make the decision task more difficult, suppose also that the

real distribution of class B data is a Gaussian with mean and variance very close

to the global mean and variance for class A. Figure 1 illustrates the proposed
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−20 −10 0 10 20

Figure 1: Distribution of the data for the proposed experiment. The solid line

shows the distribution of class A while the dotted line shows the one of class B.

situation. It is clear that this is a very demanding task for a quadratic classifier

based on maximum likelihood estimation. In fact, we expect it to discriminate

very poorly and we are interested in seeing how much improvement can the

MCE approach achieve.

Obtained results varying the number of MCE iterations are shown in Figure

2. Ten runs were carried out for each tested condition. For every run, data

was generated randomly for class A first and its sample estimates for mean

and variance were used to generate data from class B. A thousand samples

from each class were used in both the training set and a separate testing set.

Maximum likelihood estimates were used as initial guesses for the discriminative

training, and standard settings were used for the MCE criterion [22]. Figure

shows important improvement in recognition rate with only a few iterations

of the algorithm. After five iterations, the discriminative approach reduces the

error rate from 38% to 31%. Further iterations do not seem to provide significant

improvements for this case.

Figure 3 compares the trained models obtained with maximum likelihood

only against those estimated discriminatingly. The competitive updating pro-
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Figure 2: Recognition rates over the testing set as a function of the number

of MCE iterations. Shown scores are averages over ten runs for each tested

condition.

cess modifies initial model parameters so that the Gaussian for class A concen-

trates around the mean for the most likely component in the original mixture.

On the other hand, the model for class B widens a lot to account for all other

values in data. The final models used for classification are very different from the

real data distributions. Thus, unlike with the maximum likelihood approach,

obtained parameter estimates do not try to explain the data but only to improve

the classifier performance emphasizing differences between distributions.

3. The HMM-HMT model

The HMM-HMT is a composite hidden Markov model proposed to allow

modeling wavelet representations of signals with different lengths [14, 40]. In

this model, signals are seen as realizations of a random process which emits

wavelet coefficients in a short term basis driven by a hidden Markov chain. The

emitted coefficients are not independent, but obey probabilistic dependencies

structured as a tree. To make following sections more clear, we review the

definition of the model along with notation and its likelihood next.
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Figure 3: Comparison of the trained classifiers, showing the models they use

for classification. a) Models obtained with maximum likelihood estimation. b)

Models obtained with MCE training after five iterations over the whole training

set. Solid lines show the model for class A and dotted lines show the one for

class B.

3.1. Model definition and notation

Let wt ∈ R
N be the set of coefficients emitted at time t and W = {w1, . . . ,

wT } be the entire wavelet sequence. The observation is modeled by a continuous

HMM defined with the structure ϑ = 〈Q,A, π,B〉. Q is the set of states, which

takes values q ∈ {1, 2, . . . , NQ}; A =
{

aij = P(qt = i|qt−1 = j)
}

is the matrix

of transition probabilities from some state j to state i; π is the initial state

probability vector; and B = {bk (wt) = P (wt|q = k)} is the set of observation

(or emission) densities.

In the assumed model, for every state k of the chain, observed coefficients

are drawn from a hidden Markov tree, so that bk (wt) is itself a hidden Markov

structure. Figure 4 shows a sketch of the full model. We regard hidden variables

in this observation model as nodes and denote with U the set of nodes in the

tree. For future references, the set of states in all the nodes of the tree will

be denoted with R, and Ru will denote the set of states in the node u, taking

values ru ∈ {1, 2, . . . , M}. A main assumption in the HMT is that the state in
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Figure 4: The HMM-HMT model. A left-to-right hidden Markov model uses

hidden Markov trees as models for the observed data in the wavelet domain.

a given node depends strongly on the state in its parent node in the tree. We

will denote ǫu,mn = P(ru = m|ρ(u) = n) the conditional probability of node u

being in state m given that the state in its parent node ρ(u) is n. The whole

set of these probabilities will be denoted by ǫ and κ will denote the initial state

probabilities in the root node. We recall that the observed coefficients wu are

drawn from an observation model fu,m(wu) conditioned on the state m of the

node. We assume scalar Gaussian models N (wt
u; µu,m, σu,m) for all of them

and denote the set of all observation densities with F . Finally, we will use

superscript k to sign parameters of bk (wt), so that it is completely defined with

the structure θk = 〈Uk,Rk, κk, ǫk,Fk〉.

3.2. Likelihood of the observations

The likelihood of the first order HMM for conditionally independent obser-

vations is given by [41]

Lϑ(W) =
∑

∀q

∏

t

aqt−1qtbqt(wt) . (4)

Similarly, for the HMT is usual to assume first order dependencies on the states

of the nodes and conditionally independent observations for all of them too, so

that the observation density for each HMM state reads (see [1])

bqt(wt) =
∑

∀r

∏

∀u

ǫqt

u,rurρ(u)
f qt

u,ru
(wt

u) , (5)
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with r = [r1, r2, . . . , rN ] a combination of hidden states in the HMT nodes.

At a first glance, this expression for the likelihood of the HMT may resemble

that for the standard HMM. Nevertheless, we must keep in mind that transition

probabilities in the time-domain HMM have very different meaning than time-

scale transitions in the HMT which are either supposed to be the same across

the tree. Thus, any analogy between wavelet nodes and time instants fall short

despite the similar expressions. Replacing (5) in (4), the complete likelihood for

the joint HMM-HMT model is:

Lϑ(W) =
∑

∀q

∏

t

aqt−1qtbqt(wt),

=
∑

∀q

∏

t

aqt−1qt

∑

∀r

∏

∀u

ǫqt

u,rt
urt

ρ(u)

f qt

u,rt
u
(wt

u)

=
∑

∀q

∑

∀R

∏

t

aqt−1qt

∏

∀u

ǫqt

u,rt
urt

ρ(u)

f qt

u,rt
u
(wt

u)

,
∑

∀q

∑

∀R

Lϑ(W,q,R) , (6)

where a01 = π1 = 1. In these expressions, ∀q denotes that the sum is over

all possible state sequences q = q1, q2, . . . , qT and ∀R accounts for all possible

sequences of all possible combinations of hidden states r1, r2, . . . , rT in the nodes

of each tree. See [14] for further details about the HMM-HMT model. In the

following we will refer to Lϑ(W,q,R) as the joint likelihood of the observations

and the states of the model.

4. Algorithm formulation

It is clear from our discussion of the general aspects of the MCE/GPD ap-

proach in Section 2 that the key points to be defined when designing a classifier

under this framework are: i) the parametrized form for the discriminant func-

tions; ii) suitable transformations of the parameters in order to account for

constraints; and iii) the misclassification function di(W; Θ). We will follow

rather conventional choices for i) and ii) in Section 4.1, but we will go apart

from the mainstream when considering iii) in Section 4.2. Updating formulas
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are outlined in Section 4.3, while details about their derivation are left to the

appendix.

4.1. Discriminant functions and parameter transformations

For a HMM-based discriminant function approach to pattern recognition,

it is a usual practice to define gj(W; Θ) as a function of the joint likelihood

Lϑj
(W,q,R) [38]. In particular, due to the efficiency of Viterbi’s decoding

algorithm for both HMM and HMT [30], it is attractive to define

gj(W; Θ) =

∣

∣

∣

∣

log

(

max
q,R

{

Lϑj
(W,q,R)

}

)∣

∣

∣

∣

(7)

= −
∑

t

log aq̄t−1 q̄t −
∑

t

∑

∀u

log ǫq̄t

u,r̄t
ur̄t

ρ(u)

−
∑

t

∑

∀u

log f q̄t

u,r̄t
u
(wt

u) ,

where, q̄t and r̄t refer to states in the external HMM and the corresponding

HMT model, respectively, that achieve maximum joint likelihood. It should

be noticed that this definition involves a little change in what we have said

about the decision of the classifier in (1). Now this decision is ruled by the

minimum (rather than the maximum) of the discriminant functions, valued at

the unlabeled observation.

Despite of discriminant functions using standard model parameters, we must

introduce some parameter transformations to account for restrictions if we are to

use a gradient-based optimization technique such as GPD [19, 38]. To constrain

aij to be a probability, we define ãij so that

asj =
exp ãsj

∑

m exp ãsm
. (8)

Exponentiation assures aij is non-negative and normalization makes it less or

equal to one. A similar transformation is needed for the transition probabilities

in the internal HMTs. With analogous arguments, we define ǫ̃k
u,mn so that

ǫk
u,mn =

exp ǫ̃k
u,mn

∑

p exp ǫ̃k
u,pn

. (9)

We also need to constrain the Gaussian variances to be positive-valued. To do so,

we define σ̃k
u,m so that σ̃k

u,m = log σk
u,m. In addition, we scale the means of the

Gaussian distributions as µ̃k
u,m = µk

u,m/σk
u,m. Note that these transformations

are rather standard in the literature [19, 38].
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4.2. Misclassification function

For HMMs with Gaussian mixture observations and discriminant functions

defined as the negative of those stated above, the frequent choice for MCE

training has been simulating the decision of the classifier with the function [38]

d̃i(W; Θ) = −g̃i(W; Θ) + log





1

M− 1

∑

j 6=i

eg̃j(W;Θ)η





1/η

. (10)

As η becomes arbitrarily large the term in brackets approximates, up to a con-

stant, the supremum of {g̃j(W; Θ)} for all j different than i. This definition of

the misclassification function, composed with a zero-bias approximation to the

zero-one loss, penalizes confussing patterns rather than a wrong classifcation.

Thus, a strong decision of the classifier implies no update of the parameter set,

whether this decision is right or not. Despite it can look counterintuitive at

first, it is in fact a conservative statement which avoids modifying parameter

estimates due to bad data.

Nevertheless, likelihoods for the HMT model are tipically much smaller than

those found for Gaussian mixtures in standard feature spaces. We can expect

this noting that the joint likelihood for the HMM-HMT model involves many

products which are probabilities often being very small. As a result, gj(W; Θ)

takes extremely low values for W /∈ Ωj and the exponentiation leads to nu-

merical underflow. A natural option to look for a similar behaviour of the

misclassification function but avoiding those numerical issues is to define it as

d̄i(W; Θ) = gi(W; Θ)−





1

M− 1

∑

j 6=i

gj(W; Θ)−η





−1/η

. (11)

Roughly speaking, both of these functions account for the decision margin be-

tween the true model and the best competing ones. They weight rival candi-

dates, but do not introduce any special corrective penalty in case of a wrong

classification. Because of this, we will refer to them as symmetric misclassifica-

tion functions and will use the acronym SMF to refer to (11) in what follows.

Due to the behaviour of the likelihoods for the HMM-HMT model discussed

above, also their dispersion is much larger than in the Gaussian mixture-HMM
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case. In this situation, similarity could be better measured comparing the order

of magnitude between discriminant functions rather than their difference. To

do so, we define an alternative form for discriminant functions as

di(W; Θ) = 1−

[

1
M−1

∑

j 6=i gj(W; Θ)−η
]−1/η

gi(W; Θ)
. (12)

As above, η is supposed to be a large positive scalar so that the sum in the

numerator approaches the minimum of the terms as η grows. When the classifier

takes a right decision, this minimum will be larger than gi(W; Θ) and di(W; Θ)

will take a negative value as required. If the observation makes decision hard for

the classifier, di(W; Θ) will be close to zero. However, it must be noticed that

di(W; Θ) will take no value larger than one. This implies that all misclassified

observations will fall in the raising segment of the approximation to the zero-

one loss if it is not too sharp. This simple fact has a very important effect

in practice because it determines that every misclassified observation in the

training set induces an update of the parameter set. To stress this lack of

symmetry in dealing with correct and wrong classifications, we will refer to (12)

as a no-symmetric misclassification function and will use the acronym nSMF to

denote it in the following.

Now, we can go back to the simple Gaussian model to explore whether

this always-updating feature of di(W; Θ) for misclassified sequences could affect

convergence of the algorithm. We repeated the simulation experiment in Section

2.3, just replacing the standard definition for the misclassification function with

nSMF.

In this experiment, the recognition rate improves a bit more slowly than in

the previous case. Nevertheless, after five iterations of the whole training set

performance for both choices of the misclassification function does not show

significant differences. Thus, convergence is not hammered by the proposed

alternative for the misclassification function. Furthermore, the variance of the

error rates remains fairly the same with both methods. Therefore, at least as

far as this simple experiment concerns, there is no evidence against using nSMF
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in the MCE formulation. Though it would be meaningless in the Gaussian

example, we will find it very important for the models we are interested in.

4.3. Updating formulas

In the following, let assume that the τ -th training sequence Wτ belongs to

Ωi. To simplify notation, allow ℓi, dj and gj stand for ℓi(W; Θ), dj(W; Θ) and

gj(W; Θ), respectively. For convenience, define also

ζii ,
dℓi(W; Θ)

ddi(W; Θ)

∂di(W; Θ)

∂gi(W; Θ)
,

and

ζij ,
dℓi(W; Θ)

ddi(W; Θ)

∂di(W; Θ)

∂gj(W; Θ)
,

where in the last expression we assume i 6= j. For the misclassification function

SMF, these quantities take values

ζii = γℓi(1 − ℓi) (13)

ζij = γℓi(1 − ℓi)(di − gi)
g−η−1

j
∑

k 6=i g−η
k

. (14)

Note that ζij = −ζii for a binary classification problem. For the misclassification

function nSMF, we have

ζii = γℓi(1− ℓi)
di − 1

gi
(15)

ζij = γℓi(1− ℓi)(1− di)
g−η−1

j
∑

k 6=i g−η
k

. (16)

Again, ζii and ζij always have opposite sign, but their absolute value it is not

the same even for a two-classes only task.

The updating process works upon the transformed parameters to assure the

original ones remain in their feasibility range. For the Gaussian mean associated

to the state m in the node u of the HMT linked to the state k of the HMM for

class cj , the updating step is given by

µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατ
∂ℓi(Wτ ; Θ)

∂µ̃
(j)k
u,m

∣

∣

∣

∣

∣

Θ=Θ̂τ

, (17)
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where Θ̂τ refers to the estimates of parameters obtained in the previous itera-

tion. Applying the chain rule of differentiation and using the variables defined

above, we get (see details in Appendix A):

µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατζ
∑

t

δ(q̄t − k, r̄t
u −m)

[

wt
u − µ̂

(j)k
u,m

σ̂
(j)k
u,m

]

, (18)

where ζ takes the value ζii or ζij depending on whether we are dealing with

a training pattern from the same class as the model or not. The delta func-

tion δ(·, ·) is typical of Viterbi decoding. As the factor in brackets depends on

the time frame through wt
u, this function states that we only consider for the

updating process the standardized observed coefficient for the node in those

frames when the most likely state in the external model is k and the most likely

state in the node is m. Then, to restore the original parameters we just compute

µ
(j)k
u,m(τ +1) = σ

(j)k
u,m(τ)µ̃

(j)k
u,m(τ +1). The updating process for Gaussian variances

is completely analogous to the one shown above for the means. The working

expression for training reads:

σ̃(j)k
u,m ←− σ̃(j)k

u,m − ατ ζ
∑

t

δ(q̄t − k, r̄t
u −m)





(

wt
u − µ̂

(j)k
u,m

σ̂
(j)k
u,m

)2

− 1



 , (19)

where ζ and δ(·, ·) have the same meaning as above. Once again, Viterbi decod-

ing acting on the Markovian dependencies decouples all the nodes and the final

formula resembles just the derivative of a log-normal on its standard deviation.

Then, original variances are restored doing σ
(j)k
u,m(τ + 1) = exp(σ̃

(j)k
u,m (τ + 1)).

The above strategy works for updating the transition probabilities too. It

is shown in the Appendix B that the updating formula for the transformed

probaility ǫ̃
(j)k
u,mn reads:

ǫ̃(j)ku,mn ←−ǫ̃(j)ku,mn − ατ ζ

{

∑

t

δ(q̄t − k, r̄t
u −m, r̄t

ρ(u) − n)−

−
∑

t

∑

p

δ(q̄t − k, r̄t
u − p, r̄t

ρ(u) − n)ǫ̂(j)ku,mn

}

.

(20)

The first sum in brackets counts how many times the most likely state in the

node is m given that the most likely state in its parent node is n and the state
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in the HMM is most likely to be k. For the double sum, note that ǫ̂
(i)k
u,mn is a

common factor and the sum actually counts all the frames when the most likely

state in the parent of the given node is n and the most likely state in the external

HMM is that related to the corresponding HMT, k in this case. Restoration of

the original parameters is straightforward from the definition of ǫ̃
(j)k
u,mn.

Finally, following identical procedures we find the updating formulas for the

transformed state transition probabilities ã
(j)
sj given by:

ã
(i)
sj ←−ã

(i)
sj − ατ ζ

{

T
∑

t=1

δ(q̄t−1 − s, q̄t − j)−
T
∑

t=1

δ(q̄t−1 − s)â
(i)
sj

}

. (21)

Once again, we can interprete the sumations in the above formula as counters

acting on the sequence of most likely states in the external HMM, as given by

Viterbi decoding. Original parameters a
(j)
sj (τ + 1) are easily restored using the

definition of ã
(j)
sj .

5. Experimental results

In order to assess the proposed training method, we carry out automatic

speech recognition tests using phonemes from the TIMIT database [25]. This is

a well known corpus in the field and it has already been used in previous works

dealing with similar schemes [14, 40]. In particular, we use samples of phonemes

/b/, /d/, /eh/, /ih/ and /jh/. The voiced stops /b/ and /d/ have a very similar

articulation and different phonetic variants according to the context. Vowels

/eh/ and /ih/ were selected because their formants are very close. Thus, these

pairs of phonemes are very confusable. The affricate phoneme /jh/ was added

as representative of the voiceless group to complete the set. It must be remarked

that this signals are not spoken isolatedly but extracted from continuous speech.

As a result, there is a large variability in both acoustic features and duration in

the dataset. All of these contribute to a very demanding task for a classifier.

As a measure of performance, we compare recognition rates achieved with

the proposed method against those for the same models trained only using the
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EM algorithm. In all the experiments we model each phoneme with a left-to-

right hidden Markov model with three states (NQ = 3). The observation density

for each state is given by an HMT with two states per node. This is the standard

setting for the state space in most HMT applications [1]. The sequence analysis

is performed on a short-term basis using Hamming windows 256-samples long,

with 50% overlap between consecutive frames. On each frame, a full dyadic

discrete wavelet decomposition is carried out using Daubechies wavelets with

four vanishing moments [14, 42].

In a first set of experiments, we show numerically that the recognition rate

achieved with the EM algorithm attains an upper bound for the given models

and dataset. This bound is shown not to be surpassed neither increasing the

number of reestimations of the algorithm nor enlarging the training set. We

next carry out a two-phoneme recognition task using the approach developed

in Section 4. The re-estimation formulas are reduced to much simpler expres-

sions in this case, allowing to get further insight into the discriminative training

process. It also serves us to compare the misclassification functions proposed in

Section 4.2. Finally, we carry out a multiclass speech recognition experiment to

assess the error rate reduction after adding a discriminative stage to the training

process.

5.1. Limits on performance for ML estimators

Discriminative training methods usually use maximum-likelihood estimates

computed via the EM algorithm as initial values for model parameters [36, 38].

Thus, it is fair to ask if better performance could be achieved just using more

training sequences in the pure ML approach or increasing the number of re-

estimations in the EM algorithm, without adding a discriminative stage. To

answer this question empirically for our data and our particular model, we first

perform a two-phoneme recognition task using models trained with the EM

algorithm proposed in [14, 40]. We ran the experiment using training sets of

increasing sizes, from 25 sequences to 200. Each training set was picked at

random from the whole training partition of the dataset. A separate testing set
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Figure 5: Recognition rates for EM training. a) Increasing the size of the train-

ing set. Shown results are the median over ten runs for each tested condition.

Error-bars are given by the first and third quartiles of the obtained scores. b)

Increasing the number of reestimations. The {/b/,/d/} pair was used in both

experiments.

with 200 sequences remained fixed for all trials. Each tested condition was run

ten times and the number of re-estimations used for the EM algorithm was fixed

at 6 in all of them. Obtained results for the {/b/,/d/} pair are given in Figure

5.a). It is clear from the figure that increasing the number of training samples

does not lead to a significant improvement in the recognition rate when only

the EM algorithm is used for training. In fact, analysis of results shows that

the p-value for the {/b/,/d/} pair is 0.4476, which is far from the critical value

to reject the null hypothesis of all means being statistically the same. Similar

comments apply for the {/eh/,/ih/} pair.

On the other hand, the effect of fixing the size of the training set and increas-

ing the number of re-estimations used in the EM algorithm is shown in Figure

5.b). Given values correspond to training sets with 200 sequences. It can be

seen that recognition rates remain fairly the same with the increase in the num-

ber of re-estimations. For the {/b/,/d/} pair and the specific set of sequences

used in the experiment, there is a slowly improvement in performance up to ten
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re-estimations. Beyond that there is no benefit in adding re-estimations steps

in the EM algorithm. For the {/eh/,/ih/} pair of phonemes there is a little im-

provement up to five re-estimations but no further improvement is seen either

adding more re-estimations.

Observed results in this experiment reproduce a typical scenario when work-

ing with “real” data. Always the proposed model it is obviously not the true

model for the data in that case. Increasing the training set or adding re-

estimations to the EM algorithm can only contribute to find better estimates

for the parameters in those models. If models were the true ones, this would

help for classification. But as models do not give the true distribution of data,

we cannot expect this to translate into better discrimination. Note that this is

not a statement on the goodness of fit of the model itself. For complex real data

(like speech, in this case), hardly any model we propose would suffer from this.

Here is when discriminative training becomes so important.

5.2. MCE training for two-class phoneme recognition

In order to get some insight into the learning process, we first consider a

classification task comprising only two phonemes. In this case, for a training

sequence W ∈ Ω1, the misclassification function SMF reduces to

d̄1(W; Θ) = g1(W; Θ)− g2(W; Θ) .

Aside from the change in sign to account for the different definition of the dis-

criminant functions we made in (8), this is the same as the frequently used

function (10) for a binary classification problem [22]. When the classifier deci-

sion is right, g1(W; Θ) < g2(W; Θ) and the misclassification function takes a

negative value. As this decision is stronger, d̄1(W; Θ) becomes more negative

and the resulting loss (2) goes to zero. We then see from the updating formulas

in Section 4.3 that no updating is performed in such a case. So, the algorithm

preserves model parameters that do well when classifying the current training

signal. Furthermore, for strongly confused patterns d̄1(W; Θ) becomes a large

positive value and no update is introduced either.
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On the other hand, the missclassification function nSMF reduces to

d1(W; Θ) = 1−
g2(W; Θ)

g1(W; Θ)
.

When the classifier decision is right, it behaves closely to d̄1(W; Θ). Neverthe-

less, if the current training sequence is strongly misclassified, d1(W; Θ) will tend

to 1. Unlike the previous case, parameters will be updated unless γ is too large.

Therefore, this definition of the misclassification function adds a corrective fea-

ture to the learning process. In both cases, parameter update takes place when

models are confusable and it is the strongest when the current training sequence

is equally likely for both of them. With the second definition, however, we can

also expect an updating step even for strongly misclassified patterns.

We can get an idea of the strength of the updating steps looking at the

distribution of γℓi(1 − ℓi). For a given pattern, this factor scales the gradients

in the re-estimation formulas according to how confusable the pattern is for the

classifier, as told by the misclassification function. Figure 6 compares the distri-

bution of this factor at the beginning of the iterative process, obtained for the

same training set but choosing a different training method in each case. Figure

6.a) corresponds to standard MCE training for HMMs with Gaussian mixtures

as observation densities on a cepstral-based feature space. Figure 6.b) comes

from a classifier based on HMM-HMTs, using the misclassification function SMF

to derive the MCE criterion; and Figure 6.c) comes from a classifier based on

HMM-HMTs, but using nSMF as the misclassification function. In these later

histograms, the bin that includes the value γℓi(1− ℓi) = 0 was removed to keep

figures at a similar scale. It is interesting to see that despite of (10) and SMF

sharing the same misclassification function for a binary problem like this, it is

the criterion based on the misclassification function nSMF which generates the

distribution of factors more similar to the standard case shown in plot a) when

using the HMM-HMT. This finding remains valid for a wide range of useful

values of γ chosen to adapt the sigmoid to each case. Therefore, changing the

feature space used to represent the data can induce important modifications in

the way the updating process is driven by a given approximation of the loss.
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Figure 6: Distribution of the loss and the factor γℓi(1− ℓi) at the beginning of

different settings of the MCE training. Upper figures show the location of the

loss for each sequence in the training set, while figures at the bottom show the

resulting histogram for the factor γℓi(1− ℓi). a) and d) using cepstral features

and Gaussian mixture-HMMs along with a standard misclassification function

as in (10); b) and d) using the HMM-HMT and the misclassification function

SMF; c) and e) using the HMM-HMT and the misclassification function nSMF.

To compare the performance achieved by the proposed misclassification func-

tions, we carried out numerical experiments with phonemes {/b/,/d/} and

{/eh/,/ih/}, which are the most confused pairs in the set. Two hundred se-

quences from each class were used for training and another set of two hundred

sequences from each class were used for testing. Five re-estimation steps were

used in the EM algorithm, along with Viterbi flat start [41]. Parameters for the

MCE learning stage were set following informal tests on a validation test, aimed

to find the values that give better performance for each pair of phonemes and

for each choice of misclassification function. When using SMF we set α0 = 2.5
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Figure 7: Recognition rates for phonemes /b/ and /d/: a) using SMF; b) using

nSMF. Shown results are the median over ten runs for each tested condition.

Error-bars are given by the first and third quartiles of the obtained scores.

and γ = 0.01, while we set α0 = 0.5 and γ = 1 for the algorithm derived using

nSMF. In all cases, the learning rate was decreased from ατ = α0 at the be-

ginning of the run to ατ = 0 at its end. The number of iterations of the MCE

algorithm through the whole training set was varied as 5, 15, 25 and 35. Ten

runs were performed for each tested condition, varying the training set in each

one but keeping fixed the set for testing.

Obtained results for each pair of phonemes and each choice of the misclassifi-

cation function are shown in Figure 7 and Figure 8. Figure 7 shows the achieved

recognition rates for the pair {/b/,/d/}. Performance for zero iterations of the

MCE algorithm refers to the case when the classifier is trained using ML esti-

mation and serves as the baseline for comparison. It can be seen that the scores

using discriminative steps are significantly higher than the baseline with both

MCE criteria for all tested conditions with more than five iterations. For five

MCE iterations there is no significant improvement on the average. Figure also

shows that the training method using the misclassification function nSMF out-

performs that based on SMF. With 35 iterations of the algorithm, the former

achieves an average reduction of about 30% in the error rate, whereas the later
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Figure 8: Recognition rates for phonemes /eh/ and /ih/: a) using the misclas-

sification function SMF; b) using nSMF. Shown results are the median over

ten runs for each tested condition. Error-bars are given by the first and third

quartiles of the obtained scores.

does a 14%. In addition, there seems to be a trend to continue rising the recog-

nition rate in Figure 7.b), while in 7.a) improvements appear to have reached a

bound. Furthermore, the variance of the obtained scores remain very similar as

they go better for the method using the misclassification function nSMF, while

it increases significantly for the method using SMF.

The difference in performance achieved with a different choice of the misclas-

sification function is stressed in the results for phonemes {/eh/,/ih/} shown in

Figure 8. Scores obtained here with the method based on nSMF are markedly

better than those achieved using SMF. For the former the average improvement

in the error rate is around 45%, whereas for the latter it is about 20%. A pos-

sible explanation of these results relies on the wide dispersion of discriminant

function values. As SMF is based just on a difference between these values,

it also has a large variability that makes it very difficult to choose a suitable

sigmoid to capture many confusable samples to drive the competitive update

without picking too much of them. The selected value for γ becomes conserva-

tive and then only a small subset of confusable samples are used to trigger the
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updates, which results in a poorer performance. It must be noticed that this

effect is expected to be emphasized as the duration of sequences increases, so

that is natural to have better results for the shorter samples from {/b/,/d/}.

On the other hand, the misclassification function nSMF introduces a scaling

that avoids it to have so much variation in its values, which makes it easier to

find a suitable sigmoid to drive the selection of confusable patterns.

5.3. Sensitivity to parameters of the algorithm

It is interesting to see the effect on the recognition rate when changing the

parameters of the MCE/GPD algorithm. Consider the problem of classifying

phonemes {/eh/,/ih/}. We first carried out a simple experiment setting η = 4

and γ = 1 as in previous tests, and changed α0 to take values {0.25, 0.50, 1.0,

2.0}. Obtained results are shown in Figure 9.a). It can be seen that for this

dataset recognition rates attain a bound at 67.5% for all conditions, but they

differ in the speed they do it with. The smaller learning rate shows the lowest

increase in recognition rate when increasing the number of iterations of the

learning algorithm. Increasing α0 speeds up the process, but it can be seen also

that it can lead to overfitting. This situation is common to all gradient-based

techniques as the one proposed here. The optimal value of α0 depends on the

data and the size of the training sample. Some rough guidelines to choose this

parameter are stated in [34], taking into account the variability of the sample.

A similar effect can be seen in Figure 9.b), but varying γ and letting α0 and

η fixed. Nevertheless, the reason is quite different. Parameter γ determines the

rate of change of the loss aproximation. For small values of γ, the signoid grows

slowly from ℓ = 0 to ℓ = 1 and much of the training samples result in values of

the misclassification function that fall in the raising segment of the sigmoid. In

this case, even well classified sequences trigger strong updates. As γ becomes

large, the raising segment of the sigmoid gets sharper and less cases fall in this

region. Thus, well classified observations introduce a much weaker change on

the parameters. At the same time, when nSMF is used as the misclassification

function, small values of γ make misclassified cases fall in a narrow segment
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Figure 9: Sensitivity of recognition rate to changes on the parameters of the

MCE/GPD algorithm. a) Varying α0, with γ and η fixed. b) Varying γ, with

α0 and η fixed.

of the sigmoid, as seen in Figure 10. They give rise to updates with similar

strength regardless the confusability of the training sequence. As γ becomes

larger, misclassified cases occupy a broader region of the sigmoid, triggering

updates that depend more on confusability.

5.4. Multiclass phoneme recognition

To further assess the proposed discriminative training method for the HMM-

HMT model, a new speech recognition task including the whole set of phonemes

was carried out. In this experiment, only the MCE approach based on the

misclassification function nSMF was taken into account, as consistently better

results were found for this choice in the previous task. Ten training sets picked

at random were considered and a replicate of the experiment was run for each

of them. The testing set remained fixed for all runs. Both the training sets and

the testing set were build randomly taking 200 sequences from each class. The

same learning rate was used for all the parameters in the models. The initial

rate α0 was chosen to be the largest value that gave a monotonic improvement in

recognition rate as a function of the number of iterations of the MCE algorithm,
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Figure 10: Location of the training sequences on the loss function for different

values of parameter γ, using nSMF: a) γ = 0.5, b) γ = 1; and c) γ = 2.

when using a separate set of sequences both for training and testing. This was

checked in preliminary runs. During the experiments, this learning rate was

linearly decreased from ατ = α0 at the first iteration to ατ = 0 at the end of

the training process.

Obtained results are shown in Figure 11. A monotonic improvement in the

error rate is achieved as more iterations over the whole training set are added to

the discriminative training process. After 35 iterations, the average error rate

reduction is about 18%. Most of the improvement, however, occurs up to 25

iterations of the MCE algorithm, reducing the error rate around a 17.25% at

this level. The variance in the obtained rates remains fairly the same with the

increased number of iterations. Analysis of individual runs reveals that for some

training sets performance degrades with the first iterations of the algorithm and

then starts to improve as more iterations are carried out. Furthermore, three

of the ten runs show that the achieved score starts to decrease slowly at 35

iterations, suggesting that overfitting could be taking place after this point.

This difficult classification task show a consistent improvement in recognition

rate using discriminative parameter estimation for the HMM-HMT model.
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Figure 11: Error rate improvement over standard ML training using the pro-

posed MCE approach to train the classifier for the set of five phonemes. The

misclassification function nSMF was used in this experiment. Initial recognition

rates using maximum likelihood estimates are around 37% for the considered

phoneme set.

6. Conclusions

This paper introduces a new method for discriminative training of hidden

Markov models whose observations are sequences in the wavelet domain. The

algorithm is based on the MCE/GPD approach and it allows for training fully

non-tied HMM-HMT models. This observation model and feature space re-

quired special considerations. It was shown that standard procedures were nu-

merically unfeasible in this scenario, and alternative choices were needed to

simulate the classifier decision when the MCE criterion was derived. Assess-

ment of proposed misclassification functions in a simple phoneme recognition

task showed that comparing the order of magnitude of the log-likelihoods for

competing models was more appealing to this context than simple comparison

of their value. This important modification results in a stronger penalty for mis-
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classified patterns, giving rise to a corrective characteristic that works well in

this context. Speech recognition experiments show that the proposed method

achieves consistent improvements on recognition rates over training with the

standard EM algorithm only. The average error rate reduction for this task was

found to be around 18% using 35 iterations of the algorithm.

Obtained results are promising and there is plenty of room for further im-

provements. In particular, only plain HMM-HMTs were used in this work.

Strategies to account for shift invariance has shown to be effective when work-

ing with HMTs and could also be introduced in this conext. Future works will

address this issue along with more efficient optimization approaches in order to

speed up convergence.

AppendixA. Updating of Gaussian observations

In this section, we review the main steps for deriving the updating formulas

for the Gaussian distributions in the observation model for each HMT of the

composite HMM-HMT. Let us consider the training formulas for the Gaussian

means first. We begin noting that the discriminant functions read:

gj(W; Θ) =

∣

∣

∣

∣

log

(

max
q,R

{

Lϑj
(W,q,R)

}

)∣

∣

∣

∣

= − log

(

max
q,R

{

T
∏

t=1

aqt−1qt

∏

∀u

ǫqt

u,rt
urt

ρ(u)

f qt

u,rt
u
(wt

u)

})

= −
∑

t

log aq̄t−1 q̄t −
∑

t

∑

∀u

log ǫq̄t

u,r̄t
ur̄t

ρ(u)

−
∑

t

∑

∀u

log f q̄t

u,r̄t
u
(wt

u) ,

where, q̄t and r̄t refer to states in the external HMM and the corresponding

HMT model, respectively, that achieve the maximum joint likelihood. To find

(18), we know from (20) that we need

∂ℓi(W; Θ)

∂µ̃
(j)k
u,m

=
dℓi(W; Θ)

ddi(W; Θ)

∂di(W; Θ)

∂gi(W; Θ)

∂gi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂gi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂
∑

t

∑

∀u log f q̄t

u,r̄t
u
(wt

u)

∂µ̃
(j)k
u,m

.
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In the expression above, we used ζ defined in Section 4.3. As observations in a

node depends only on the state of that node, we have

∂ℓi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∂
∑

t log f q̄t

u,r̄t
u
(wt

u)

∂µ̃
(j)k
u,m

.

As the sum takes into account only the most likely states in the node of the

HMT related to the most likely state of the HMM in a given frame, we write

∂ℓi(W; Θ)

∂µ̃
(j)k
u,m

= −ζ
∑

t

δ(q̄t − k, r̄t
u −m)

∂log f q̄t

u,r̄t
u
(wt

u)

∂µ̃
(j)k
u,m

.

= −ζ
∑

t

δ(q̄t − k, r̄t
u −m)

∂µ
(j)k
u,m

∂µ̃
(j)k
u,m

∂log f q̄t

u,r̄t
u
(wt

u)

∂µ
(j)k
u,m

.

Noting that ∂µ
(j)k
u,m/∂µ̃

(j)k
u,m = σ

(j)k
u,m and that we are using an univariate Gaussian

distribution for f q̄t

u,r̄t
u
(wt

u), we get (18).

The steps to derive the updating formulas for the Gaussian variances are

completely analogous.

AppendixB. Updating of transition probabilities

The procedure applied above also works well for transition probabilities,

both in each HMT and in the external HMM of the whole HMM-HMT. Let

us consider the estimation of the transition probabilities in the internal HMT.

Reasoning as above, we just need

∂ℓi(W; Θ)

∂ǫ̃
(i)k
u,mn

= −ζ

∑

t log ǫq̄t

u,r̄t
ur̄t

ρ(u)

∂ǫ̃
(i)k
u,mn

.

Remembering of the transformation for this transition probabilities and pro-

ceeding as before to account for the most likely states in each frame, we get

∂ℓi(W; Θ)

∂ǫ̃
(i)k
u,mn

= −ζ
∑

t

∑

p

∂ǫ
(i)k
u,pn

∂ǫ̃
(i)k
u,mn

∂ log ǫq̄t

u,r̄t
ur̄t

ρ(u)

∂ǫ
(i)k
u,pn

= −ζ
∑

t

∑

p

δ(q̄t − k, r̄t
u − p, r̄t

ρ(u) − n)
∂ǫ

(i)k
u,pn

∂ǫ̃
(i)k
u,mn

∂ log ǫk
u,pn

∂ǫ
(i)k
u,pn

.
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We now see that for p 6= m, we have ∂ǫ(i)ku,pn/∂ǫ̃
(i)k
u,mn = −ǫ

(i)k
u,pnǫ

(i)k
u,mn and for

p = m we have ∂ǫ(i)ku,pn/∂ǫ̃
(i)k
u,mn = ǫ

(i)k
u,mn(1 − ǫ

(i)k
u,mn). Replacing these results

in the formula for the gradient and reordering, we get (20). An analogous

procedure applies to derive the updating formulas for transition probabilities in

the external HMM.
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