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Abstract— Model compression is a required task when slow
and large models are used, for example, for classification, but
there are transmissions, space, time or computing capabilities
constraints that have to be fulfilled. Multilayer Perceptron
(MLP) models have been traditionally used as classifiers.
Depending on the problem, they may need a large number
of parameters (neuron functions, weights and bias) to obtain
an acceptable performance. This work proposes a technique
to compress an MLP model preserving, at the same time, its
classification performance, through the kernels of a Volterra
series model. The Volterra kernels can be used to represent the
information that a Neural Network (NN) model has learnt with
almost the same accuracy but compressed into less parameters.
The Volterra-NN approach proposed in this work has two
parts. First of all, it allows extracting the Volterra kernels
from the NN parameters after training, which will contain
the classifier knowledge. Second, it allows building different
orders Volterra series model for the original problem using the
Volterra kernels, significantly reducing the number of neural
parameters involved to a very few Volterra-NN parameters
(kernels). Experimental results are presented over the standard
Iris classification problem, showing the good Volterra-NN model
compression capabilities.

I. INTRODUCTION

The purpose of model compression is to find a fast and
compact model, in comparison to a slow and large model, to
approximate a function learned by, for example, a classifier.
Moreover, it is desirable to achieve this without significant
loss in performance [1]. Often the best performing models
that use supervised learning are combinations of complex
and large classifiers. However, in some situations, it is not
enough for a classifier to be highly accurate, it also has to
meet some requirements regarding on-line execution time,
storage space and limited computational power.

It is well-known that Multilayer Perceptron (MLP) models
are usually considered as a powerful classification model.
However, they easily became large models just by the ad-
dition of hidden neurons (this has a direct effect over the
number of model weights) or more information to the model
(more input variables), in order to better learn the training
data and to improve its classification ability.

In fact, there are several proposals in literature for approx-
imating a complex analytical model [2] [3], compressing an
ensemble of classifiers [4] [5] and even extracting knowledge
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from trained neural network models [6] [7]. All of these
cases use a neural model to learn another model. However,
the authors are not aware of a technique that actually allows
compressing the neural model itself.

It has been recently shown that a Volterra series model can
be extracted from the parameters of a trained neural network
(NN) based model. This has proven to be particularly useful
for reproducing the nonlinear and dynamic behavior of new
wireless communications devices [8]. The Volterra series and
Volterra theorem was developed in 1887 by Vito Volterra.
It is a model for representing nonlinear dynamic behavior,
similar to the Taylor series, frequently used in system identi-
fication [9]. In [10][8] several formulas for the extraction of
Volterra kernels, independently of the neural model topology,
activation functions, number of variables involved in the
problem and nonlinearity of the system, have been presented.
Those proposals are based on architectures having any kind
of nonlinear or polynomial activation functions in the hidden
nodes, trained with a classical backpropagation algorithm
[11], for multi-input, multi-output systems. The MLP model
is trained using the available training data and, after that,
the Volterra kernels are obtained from the trained network
parameters.

This work presents a novel application of the Volterra ker-
nels extraction method for model compression of a classical
multilayer perceptron classifier. That is to say, we will show
how a MLP model which has learnt a classification problem
with a certain (high) accuracy, can be compressed into a
more compact representation using a Volterra model and
its parameters (named Volterra kernels). This new proposed
representation involves less parameters, maintaining how-
ever a high classification accuracy. The proposed approach
(named Volterra-NN) for neural model compression will be
exemplified with the Iris database problem. It will be shown
that several MLP topologies can be well-compressed into the
first, second and third order Volterra kernels. The obtained
results show also that these kernels can be used to build
a Volterra model that needs less parameters than the MLP
model and, however, has the same high accuracy than the
trained neural model.

The organization of this paper is the following. Section II
explains the proposed algorithm for neural model compres-
sion through the use of Volterra series approximations of
different orders. Section III shows the case study and mea-
sures used for performance comparison. Section IV presents
the analysis of results obtained and finally, the conclusions
and future work can be found on Section V.
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II. VOLTERRA-NN MODEL ALGORITHM: COMPRESSING
NN MODEL THROUGH VOLTERRA KERNELS

This section presents a novel algorithm for NN model
compression, based on the extraction of the Volterra kernels
from a trained NN model. It will be shown that different
order Volterra-NN outputs can be obtained, according to
the number and order of kernels considered. These facts
will influence on the model compression rate obtained.
However, we will also show that the classification rate can be
maintained, even when high compression rates are achieved.

The following subsections explain some basics concepts
on Volterra models necessary to understand the proposed
approach; after that, the Volterra kernels extraction method
is explained. Finally, the Volterra-NN model and its use for
a classification problem are presented.

A. Algorithm basics

For representing a multiple-input single-output nonlinear
time-invariant system, a Volterra series model can be used.
For example, if a third order approximation is considered as
enough to describe exactly the problem under study, a third-
order discrete-time Volterra model relates the system inputs
x(t) and output y(t) as follows

y(t) = h0 + (1)
∞∑

k1=0

h1(k1)x(t− k1) +

∞∑
k1=0

∞∑
k2=0

h2(k1, k2)x(t− k1)x(t− k2) +

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

h3(k1, k2, k3)x(t− k1)x(t− k2)x(t− k3).

where h0, h1(.), h2(.) and h3(.) are known as the Volterra
kernels. As can be seen, the Volterra kernels can be combined
with the system inputs to obtain the system output. It is
generally assumed that the Volterra kernels are symmetrical,
that is to say, for any order p ≥ 2

hp(ki, · · · , kp) = hp(π(ki, · · · , kp)) (2)

where π(.) is any permutation of (k1, · · · , kp) [12].

B. Volterra kernels extraction

In a previous work [8] it has been shown that the Volterra
kernels can be extracted from the parameters of a MLP model
trained with data D that represents the behavior of the system
(or problem) y(t) = f(x1(t), x2(t)). For example, let us
consider a MLP model that has two inputs (NI = 2), one
linear output neuron (NO = 1) with a corresponding output
neuron bias bo, any number of hidden neurons (NH ) having
any nonlinear function (φ) and an associated bias (bh). For
simplifying the notation, time will not be considered in what
follows. The MLP model equation is the following

y = bo +

NH∑
h=1

w2
h φ

(
bh +

NI∑
i=1

w1
h,i xi

)
. (3)

Once this model has been trained on a problem, using sig-
moidal hidden functions

(
φ(bh) =

1
1+e−bh

)
, the following

formulas allow the calculus of zero, first, second and third
order Volterra kernels using the parameters of the trained
MLP model,

h0 = bo +

NH∑
h=1

w2
h

1

(1 + e−bh)
(4)

h1(.) =

NH∑
h=1

w2
hw

1
h,i

e−bh

(1 + e−bh)2
(5)

h2(.) =

NH∑
h=1

w2
hw

1
h,iw

1
h,j

e−bh (e−bh−1)
(1+e−bh )3

2!
(6)

h3(.) =

NH∑
h=1

w2
hw

1
h,iw

1
h,jw

1
h,k

−e−bh (−e−2bh+4e−1−1)
(1+e−bh )4

3!
(7)

for i, j, k = [1, · · · , NI ].
This work proposes a novel application of this Volterra

kernels extraction method for neural model compression
through a Volterra-NN model. This model is built using
Volterra weights, that we define as follows: V (0) = h0,
v
(1)
i = h1(ki), v

(2)
i,j = h2(ki, kj) and v(3)i,j,k = h3(ki, kj , kk).

We also define the following Volterra-NN parameters: V(1)

is a vector that contains all the first-order Volterra weights
v
(1)
i ; V(2) is a matrix that has the second-order Volterra

weights v(2)i,j ; and finally V(3) is a matrix having the third-
order Volterra weights v(3)i,j,k.

Algorithm 1 shows in detail the Volterra weights extraction
procedure. The input is the training data and the outputs are
the Volterra weights. The first step consists in training a MLP
classifier model with the training data D as it is possible to
see in line 2. From the trained neural model M the Volterra
weights can be calculated. According to (4), the zero-order
Volterra weight is obtained (line 3). Similarly, by applying
(5), (6) and (7), it is possible to compute the first (lines 4
to 5), second (lines 6 to 8) and third-order Volterra weights
(lines 9 to 12) respectively.

C. Volterra-NN model forward computation

The proposed Volterra-NN model for NN compression is
depicted graphically in Figure 1. The boxes represent the
input variables (x1 and x2) and the arrows that join them
symbolize their product with their corresponding Volterra
weight. The white circles act as summarizing all the products
between input variables and Volterra weigths, plus the lower
N th-order Volterra series model (SN−1). As a result, a new
N th-order Volterra approximation (SN ) is obtained. It is
important to highlight that the different cross-products com-
binations between the input variables are shown in the figure
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Algorithm 1: Volterra weights extraction.
Data:

D: training data
Results:

V (0): 0-order Volterra weight
V(1): 1st-order Volterra weigths
V(2): 2nd-order Volterra weigths
V(3): 3rd-order Volterra weigths

begin1

M ← train MLP model with D2

V (0) ← calculate zero-order Volterra weight from3

M using (4)
for 1 ≤ i ≤ NI do4

v
(1)
i ← calculate first-order Volterra weight5

from M using (5)

V(1) ← v
(1)
i6

for 1 ≤ i ≤ NI do7

for 1 ≤ j ≤ NI do8

v
(2)
i,j ← calculate second-order Volterra9

weight from M using (6)

V(2) ← v
(2)
i,j10

for 1 ≤ i ≤ NI do11

for 1 ≤ j ≤ NI do12

for 1 ≤ k ≤ NI do13

v
(3)
i,j,k ← calculate third-order Volterra14

weight from M using (7)

V(3) ← v
(3)
i,j,k15

end16

inside a rectangular box, in an effort to clarify the process for
obtaining the different order Volterra outputs. For instance,
the 1st-order Volterra output S1 can be obtained by adding
the 0-order Volterra weight V (0) to the product between each
input variable (x1 and x2) and their corresponding 1st-order
Volterra weight

S1 = V (0) + v
(1)
1 x1 + v

(1)
2 x2. (8)

The second order Volterra output S2 is obtained by adding
S1 together with the products among x21, x22, the cross-
product x1x2 and their corresponding 2nd-order Volterra
weights, resulting in:

S2 = S1 + v
(2)
1,1 x

2
1 + v

(2)
2,2 x

2
2 + v

(2)
1,2 x1x2. (9)

The third order output S3 is obtained similarly:

S3 = S2 + v
(3)
1,1,1 x

3
1 + v

(3)
2,2,2 x

3
2 + v

(3)
1,1,2 x

2
1x2 + v

(3)
1,2,2 x1x

2
2.

(10)
As can be seen, each high order Volterra output includes its
own parameters (Volterra weights) plus the lower order ones.

The Volterra-NN forward computation is presented in
detail in Algorithm 2. It receives the classification problem

Algorithm 2: Volterra-NN forward computation.
Data:

x: input point to classify
V (0): 0-order Volterra weight
V(1): 1st-order Volterra weights
V(2): 2nd-order Volterra weights
V(3): 3rd-order Volterra weights

Results:
S1: 1st order Volterra series output
S2: 2nd order Volterra series output
S3: 3rd order Volterra series output

begin1

S1 ← V (0)2

for 1 ≤ i ≤ NI do3

S1 = S1 + v
(1)
i xi4

S2 ← S15

for 1 ≤ i ≤ NI do6

for 1 ≤ j ≤ NI do7

S2 = S2 + v
(2)
i,j xixj8

S3 ← S29

for 1 ≤ i ≤ NI do10

for 1 ≤ j ≤ NI do11

for 1 ≤ k ≤ NI do12

S3 = S3 + v
(3)
i,j,k xixjxk13

end14

data D, from where the number of input variables NI is de-
termined, and the Volterra weights matrixes V (0), V(1), V(2)

and V(3)), which have been obtained by using Algorithm
1. The Volterra-NN model outputs are the first-order (S1),
second-order (S2) and third-order (S3) Volterra outputs for
the classification problem, that provide different compressed
versions of the original MLP classifier.

D. Volterra-NN model for classification

This subsection explains how Volterra-NN can be applied
to a classification problem. The class-limits have to be
calculated over the training data and are applied testing data,
for the classification rate calculus. This allows us to identify
the different classes when unknown data is be presented to
each model (MLP and/or Volterra-NN model).

Training data is shown in an ordered way, from the first
to the third class samples. That is to say, first of all the data
corresponding to the first class is introduced to the model;
then the second-class data and the third-class data at last. In
this way, the model output can be considered as a signal
having three different levels, with bounds between levels
corresponding to class limits [13].

In order to calculate them, the minimum and the maximum
values of each classes are measured in order to determine the
mean point between the level output-signal changes. These
changes (thresholds) will allow us to identify to which class
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x2

x1

S1

V(0)

v(1)
1

v(1)
2

S2

S3

x1x2

x1
2

x2
2

x1x2
2

x1
2x2

x1
3

x2
3

x1

x2

v(2)
1,2

v(2)
1,1

v(2)
2,2

v(3)
1,2,2

v(3)
1,1,2

v(3)
1,1,1

v(3)
2,2,2

Fig. 1. Volterra-NN model.

belongs a new data point when received for classification. For
instance, a dataset can have three different levels representing
the three possible classes to identify, as it is possible to see
in Figure 2 where vertical dot lines set the class limit. In
order to establish horizontal class limits, the minimum and
maximum values for each neighboring classes are detected
(horizontal dash lines show these value level). The new class
limit will be located at the mean level between the maximum
and minimum value, what can be seen as the horizontal dot
lines. Therefore, depending on the level where the testing
output value will be set down, it will be the class where this
point will be classified.

III. CASE STUDY AND PERFORMANCE MEASURES

This section presents the case study used to test the
Volterra-NN compression capabilities proposed in this paper.
First, the data set used for training a neural classifier is pre-
sented, as well as the MLP classifier architectures evaluated.
After that, the performance measures used to evaluate the
proposed method performance are explained.

A. Classification dataset and neural topologies

The Iris dataset1 has been used for training and testing the
proposed algorithm. It is perhaps the best known database to
be found in the pattern recognition literature [14]. The dataset
contains 3 classes of 50 instances each, where each class
refers to a type of Northern American species of Iris plant

1http://archive.ics.uci.edu/ml/datasets/Iris

Fig. 2. Class limits calculation.

(Iris setosa, Iris versicolor and Iris virginica). The first class
is linearly separable from the other two; the Iris versicolor
is not linearly separable from the Iris virginica. Each pattern
has four numeric attributes for each flower: length and width,
of sepal and petal.

We have used a k-fold cross-validation procedure [15],
with 80% of each class data for training and 20% for testing.
The complete dataset has been randomly split into k = 5
mutually exclusive subsets of equal size, repeating the exper-
iments three times in each fold. The cross validation estimate
of the overall accuracy of a model has been calculated by
simply averaging the accuracy measures over the five test
datasets.

Several MLP topologies have been evaluated, from where
the corresponding Volterra kernels have been extracted after
training. Each tested MLP model has four input variables
(NI = 4), corresponding to class attributes; and one output
neuron indicating the class label (NO = 1). Different number
of neurons has been used for the hidden layer (NH =
[4, 8, 12]). For all cases, the hidden units have a sigmoidal
activation function. The initial weights and bias values for
the model have been set using a random function that throws
a scalar value drawn from a uniform distribution on the unit
interval [0;1].

In each experiment and repetition, MLP models having
less than 90% classification rate for each class have not
been considered for the analysis and Volterra kernels ex-
traction. We have imposed this restriction for the classifier
performance because we need to be able to measure precisely
any loss of accuracy originated by the proposed Volterra-NN
compression method.

B. Performance measures

From each MLP classifier trained over the Iris problem,
three Volterra-NN outputs have been extracted: S1, that
only includes the zeror and first-order Volterra weights; S2,
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including up to the second-order Volterra weights; and finally
S3 that corresponds to a third-order output.

For comparing the proposed Volterra-NN against a clas-
sical MLP classifier, two performance measures are used:
recognition rate (R) and data space savings (SS). In classi-
fication problems, the primary source of performance mea-
surements is the overall accuracy of a classifier estimated
through the classification or recognition rate (R).

For measuring compression power, data compression ratio
is used to quantify the reduction in data representation size
produced by a compression algorithm. However, sometimes
the space savings (SS) measure is given instead, defined as
the reduction in size relative to the uncompressed size. To
estimate how much is the compression level obtained by the
method proposed in this paper, we define SS as the relation
between the number of parameters of a MLP architecture (the
weights and biases) and the number of parameters needed
for each corresponding Volterra-NN output (the Volterra
weights).

It is well-known that for a MLP model, the number of
model parameters can be calculated as follows:

PMLP = NI ×NH +NBH +NH ×NO +NBO (11)

where NI , NH and NO are the number of neurons at input,
hidden and output layers, respectively; and NBH and NBO

are the number of bias for each neuron in the hidden and
output layers, respectively.

The different Volterra-NN outputs are built according to
the order of the Volterra weights involved in their construc-
tion. The following equations show the number of parameters
necessary to build a first-order, second-order and third-order
Volterra-NN outputs for a given training set.

For the first-order output S1 we have

PS1 = 1 +NI . (12)

In this case, the number of parameters necessary to build
S1 are the zero-order weight (V (0) that is always a constant
number), plus each first-order Volterra weight that multiplies
each input variable.

For the second-order output S2 we have

PS2 = PS1 +N2
I −

N2
I −NI

2
. (13)

In this case, the number of parameters necessary to build
S1 are summed up together with the number of parameters
necessary for S2 (the second-order Volterra weights). There
is a second-order weight for each input variable squared, plus
the cross-products between each input variable. With respect
to these last ones, and as stated before, since the symmetrical
kernels are equivalent, they are considered only once. That
is why half of the cross-product kernels are counted.

The number of parameters necessary to build S3 are

PS3
= PS2

+N2
I , (14)

that is to say, the number of kernels associated with S2 plus
the product of each third-order weight corresponding to each
input variable, counting only once the symmetrical kernels.

Therefore, we define the space saving measure SS as
follows:

SS = 1− PSi

PMLP
(15)

where PSi
is the number of parameters (Volterra weights or

kernels) necessary to build the ith-order Volterra-NN output,
computed from (12), (13) or (14); and PMLP is the number
of parameters necessary to obtain the neural approximation,
calculated using (11).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results obtained for the case study presented
above are shown in this section. Table I presents the results
obtained for the models classification rate (Ri) for each
class i = 1, 2, 3 over the Iris dataset problem. From each
MLP model considered in this study (MLP4,4,1,MLP4,8,1

and MLP4,12,1), their corresponding zero-order, first-order,
second-order and third-order Volterra weights have been
extracted according to Algorithm 1 and their corresponding
Volterra-NN outputs S1, S2 and S3 have been obtained using
Algorithm 2.

The three MLP models show similar high classification
rates, between 95% and 100% for each class, with a global
average value over all classes of approximately 98%. When
the MLP classifier has 4 hidden neurons (MLP4,4,1), the R
values regarding class 1 are 100% for all vNN -S1, vNN -
S2 and vNN -S3; for the second class, these values vary
from 94% to 96%; they are between 88% and approximately
93% for the third class. From Table II it is possible to see
that mean values for these Volterra-NN outputs vary between
94% and 95%. This means that, for this MLP architecture, a
high average classifier performance can be maintained if it is
replaced with a Volterra-NN output of order 1, 2 or 3. It can
be seen that a worse R rate is obtained for the classification
problem if vNN -S1 is used instead of the original MLP,
specially for class 3. This lower R is, still, of almost 90%.
Furthermore, as will be shown in Table II, the vNN -S1

Volterra-NN model requires a significant lower number of
parameters than the original MLP4,4,1 classifier (a relation
of 1 : 5). Another important fact to take into account is that
although the R values for vNN -S3 are the highest, there is no
compression in this case because the number of parameters
necessaries to build it are more than the MLP ones.

With respect to the MLP4,8,1 classifier, the vNN -S1

Volterra-NN model has a low classification rate in com-
parison to the original neural architecture considering all
the classes. A clear trend can be noticed with respect to
the fact that, as more Volterra weights are included into
the Volterra-NN output (the output-order is increased), the
recognition rate improves, almost reaching the original clas-
sifier rate. This is achieved, however, at the cost of including
more parameters in the output and therefore obtaining less
compression. This trend can be also seen at the 4-hidden-
neurons model, in spite of the very low differences between
R values for the Volterra-NN outputs. Similar conclusions
can be stated for the MLP4,12,1 classifier. However, for this
MLP model and their corresponding Volterra-NN results, the
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TABLE I
RECOGNITION RATES (R) FOR THREE MLP CLASSIFIERS AND THEIR CORRESPONDING FIRST-ORDER, SECOND-ORDER AND THIRD-ORDER

VOLTERRA-NN OUTPUTS.

MLP4,4,1 MLP4,8,1 MLP4,12,1

R1 R2 R3 R1 R2 R3 R1 R2 R3

MLP 100.00% 96.00% 98.00% 100.00% 96.00% 95.33% 100.00% 97.33% 96.00%
vNN -S1 100.00% 94.00% 88.00% 80.00% 66.00% 76.00% 50.00% 36.00% 52.67%
vNN -S2 100.00% 94.00% 88.67% 94.67% 88.67% 95.33% 66.67% 46.00% 67.33%
vNN -S3 100.00% 94.67% 92.67% 99.33% 94.67% 96.00% 99.33% 90.00% 93.33%

R obtained are very low for low-order Volterra-NN outputs.
This means that this particular classifier topology cannot be
efficiently reproduced by low-order Volterra-NN outputs, and
therefore, by using such a small number of parameters. In
spite of this fact, it can be said that, in general, as more
parameters are used to build the Volterra-NN outputs, the
recognition rates become higher, getting even very close to
the original MLP model performance.

But if we consider that the three MLP4,H,1-model topolo-
gies (H = 4, 8, 12) are proposed as solutions to the same
problem, actually it is not necessary to consider MLP4,12,1

topology because the best solution is given by MLP4,4,1

topology. This means that there are a number of unnecessary
weights at MLP4,12,1 topology which are contributing to the
overtraining of the model causing a recognition rate decline
on the testing dataset. This weights can not be compressed
efficiently with Volterra-NN model, throwing low recongition
rates for this model solutions.

Table II shows the space savings rate (SS) for the models
discussed in this paper and the mean values of the recognition
rate (R) for these models. The upper part of the table shows
the number of parameters and global R measure for the
three MLP topologies. The second part of the table shows
parameters and performance measure values related to the
Volterra-NN outputs. First of all, the number of parameters
needed for each the neural classifier architecture (PMLP )
involved in this study is shown at the first row, while the
number of Volterra weights needed for each Volterra-NN
output PSi

is shown in the first column. The values which
fill the R and SS columns are the recognition rate and space
saving capabilities for each combination between a MLP
classifier and a corresponding Volterra-NN output.

As stated in 11, the number of parameters necessary for
each neural classifier depends not only on NI but also
on the number of neurons at the hidden layer (NH ). The
number of parameters for MLP4,4,1 is 25; for MLP4,8,1 it
is 49; and the MLP4,12,1 model has 73 parameters. In the
case of the different order Volterra-NN outputs, the number
of parameters only depends of the number of inputs. The
number of parameters for S1 is 5 according to 12. By
applying 13 and 14 the number of parameters needed for the
Volterra-NN outputs S2 and S3 is 15 and 31, respectively.

It is possible to see that when using the 1st-order Volterra-
NN model vNN -S1 instead of the MLP4,4,1 classifier, a
global recognition rate for the Iris problem of 94% can be

obtained and a compression or space saving rate of 80% can
be achieved. Half of this space saving rate is obtained if
the vNN -S2 model is used, and there is no compression by
using vNN -S3. This lack of compression is due to the fact
that the number of parameters needed for vNN -S3 is higher
than the number of parameters necessaries for the MLP4,4,1

model. For the MLP4,8,1 model, the compression achieved
by the Volterra-NN outputs is higher because of the amount
of parameters associated with this model; in this case, the SS
value achieves a maximum close to 90% when the smallest
number of parameters is considered (a first-order Volterra-
NN). A similar case is related to MLP4,12,1 model, where
this trend is also verified.

From Table II it is possible to conclude that a MLP classi-
fier can be well-compressed using a Volterra-NN model; and
this compression can be, in some cases, even higher than
90%. In fact, the MLP model architecture can be even more
and more complex, can have many more hidden units, but the
number of weights needed to build each Volterra-NN output
will remain the same while the number of input variables of
the problems are the same, and this will certainly be reflected
in even higher space saving rates values.

However, in some cases, these high compression rates have
to be payed by lower model classification rates. Analyzing
this table, the direct influence of the compression rate over
the classification task can be noticed. For the MLP4,4,1

model in this experience, the best R value is related to
the vNN -S3 Volterra-NN model, achieving 95.11% but,
as explained before, there is no compression in this case.
Therefore, although vNN -S2 can be considered as a better
option with its corresponding SS of 40%, it is better to select
the vNN -S1 Volterra-NN model that has almost the same R
value but a higher SS value: 80%. Considering the MLP4,8,1

case, the best R value is associated with the vNN -S3 model,
which has only a SS of 36, 73%. But if a better compression
is necessary for this topology, it is possible to choose the
vNN -S2 model which has a SS of 69.39% and preserves a
high R value of 92.89%.

For the MLP4,12,1 model, the best R value is associated
with the vNN -S3 Volterra-NN model and it is possible to
achieve a SS of 57.53%. This is a very interesting result,
however, because with approximately half the number of
parameters than the original MLP classifier, the classification
capacity of the vNN -S3 model is high (94.22%) and very
close to the MLP model. This particular case can be consid-
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TABLE II
GLOBAL RECOGNITION RATE (R) AND SPACE SAVING(SS) COMPARISON FOR THREE MLP CLASSIFIERS AND THEIR CORRESPONDING FIRST-ORDER,

SECOND-ORDER AND THIRD-ORDER VOLTERRA-NN OUTPUTS.

MLP4,4,1 MLP4,8,1 MLP4,12,1

PMLP → 25 49 73
R→ 98.00% 97.11% 97.78%

PSi R SS R SS R SS
vNN -S1 5 94.00% 80.00% 74.00% 89.90% 46.22% 93.15%
vNN -S2 15 94.22% 40.00% 92.89% 69.39% 60.00% 79.45%
vNN -S3 31 95.11% −24.00% 96.67% 36.73% 94.22% 57.53%

ered as one of the best overall results obtained in this study,
where the MLP4,12,1 classifier can be compressed almost a
60% using the corresponding vNN -S3 Volterra-NN model
without significantly loosing recognition capability. But, as
was previously concluded, this topology (MLP4,12,1) can
not be considered as the best MLP solution for this problem
because it has too many parameters, causing a probable
overtraining problem and affecting the recognition rate of
the associated Volterra-NN model.

The best compromise is reached by vNN -S1 when the
topology of the MLP model is MLP4,4,1, which has a
recognition rate almost equal (94%) to vNN -S3 model in
MLP4,12,1 topology case, but with a space savings rate of
80%. This can also be seen by comparing these two cases in
terms of absolute number of parameters. That is, while for
vNN -S1 model only 5 parameters are required in MLP4,4,1

case, 31 parameters are necessaries for vNN -S3 model when
MLP4,12,1 topology is considered.

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a new approach to neural
network compression through the use of Volterra kernels.
We have shown a method to obtain a compact representation
of a NN model using the proposed Volterra-NN model and
their corresponding different-order outputs. The Volterra-NN
model has been tested on a pattern recognition task, obtaining
almost the same accuracy than three different MLP classifiers
that have been significantly compressed into less parameters.

Two algorithms that implement the proposed approach
have been presented. Algorithm 1 allowed extracting the
Volterra kernels from the NN parameters after training, which
will contain the classifier knowledge and are named Volterra
weights. Algorithm 2 allowed obtaining different Volterra-
NN outputs using the Volterra weights when a new data point
to be classified is received.

The experimental results, performed over the Iris database
classification problem, have highlighted the Volterra-NN
model compression capabilities, allowing to maintain in
some cases the same recognition rate as the MLP model
achieving, at the same time, very high compression rates.

Future work involves further application of the proposed
method to other kind of problems that may involve a MLP
model, not only classification. Additionally, different exper-
iments may be done considering another NN architectures

such us a MLP model having 3 neurons at the output layer
allowing to specialize each output neuron with each class
behavior. Furthermore, an array of three NN models may
be used in order to better learn each class behaviour. These
different MLP classifier topologies should be further studied
in order to establish their impact on the compression capabil-
ities offered by the proposed Volterra-NN model approach.
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