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Abstract. In the last years there has been increasing interest in devel-
oping discriminative training methods for hidden Markov models, with
the aim to improve their performance in classification and pattern recog-
nition tasks. Although several advances have been made in this area,
they have been targeted almost exclusively to standard models whose
conditional observations are given by a Gaussian mixture density. In
parallel with this development, a special kind of hidden Markov models
defined in the wavelet domain has found wide-spread use in the sig-
nal and image processing community. Nevertheless, these models have
been typically restricted to fully-tied parameter training using a single
sequence and maximum likelihood estimates. This paper takes a step
forward in the development of sequential pattern recognizers based on
wavelet-domain hidden Markov models by introducing a new discrim-
inative training method. The learning strategy relies on the minimum
classification error approach and provides reestimation formulas for fully
non-tied models. Numerical experiments on a simple phoneme recogni-
tion task show important improvement over the recognition rate achieved
by the same models trained under the maximum likelihood estimation
approach.

1 Introduction

Hidden Markov models have been proven successful in dealing with sequen-
tial data, being at the core of state of the art methods for applications such as
speech recognition [1] and sequence alignment in bioinformatics [2]. Within this
modeling framework, maximum likelihood estimation has been the standard ap-
proach for learning parameters from data, taking advantage of the efficiency of
the expectation-maximization algorithm (EM) [3]. The rationale behind this is
that minimum Bayes risk can be attained by picking the class which maximizes
the posterior probability given the observation sequence. This probability can
be further replaced via Bayes’ rule by the likelihood and an estimation of the
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class prior. Thus, within this framework the classifier design involves in fact a
distribution approximation task.

The key observation to be noticed is that what is actually used in most cases
is a plug-in maximum a posteriori approach: true class posterior probabilities
are supposed to equal those for the models linked to each class. When this is
true and the set of training signals is large enough, the above approach is in fact
the best we can do. However, these assumptions usually do not hold for pattern
classification tasks involving real-world data. When there is high variability in
data or when training samples are limited, models posteriors cannot be expected
to match the true class posteriors and Bayes risk becomes an unattainable lower
bound.

To overcome these limitations, in recent years there has been a growing inter-
est in discriminative training of hidden Markov models [4]. Unlike the previous
distribution approach to parameter estimation, these methods aim to reduce the
classification error by using training samples from all classes simultaneously and
to maximize the dissimilarity between models of different classes. Several criteria
have been proposed to drive the learning process, giving rise to methods such as
Maximum Mutual Information [5] and Minimum Classification Error [6, 7].

The most widely used of those methods is Minimum Classification Error
training (MCE). When applied to parameter estimation in hidden Markov mod-
els, this is a HMM-based discriminant analysis approach in which a soft func-
tional approximation of the 0-1 loss is used to model the decision risk of the
classifier. The learning problem becomes an optimization problem which di-
rectly links the design of the classifier to its expected performance and it is
usually carried out by the generalized probabilistic descent (GPD) method [8].

MCE training has shown to outperform the conventional maximum likelihood
approach in many applications. This success has also stimulated several efforts
both to ground the method on a more principled basis [9, 10] and to improve its
efficiency in real-world applications [11]. Nevertheless, most of these works deal
only with standard hidden Markov models whose observation densities are given
by Gaussian mixtures.

A very special kind of hidden Markov models comprises those defined in the
wavelet domain. The best known of these models is the hidden Markov tree
(HMT), which was introduced in [12] to account for statistical dependencies
between coefficients in wavelet representations of signals and images. Although
the HMT has found widespread use in applications, it is not well suited to
sequential pattern recognition tasks because it cannot handle variable-lenght
sequences. This is due to the use of the discrete wavelet transform, which makes
the structure of the representation depend on the length of the signal. To relax
this limitation, a composite HMM-HMT architecture was proposed in [13], in
which an HMT models the observation density of each state of an external HMM.
An EM algorithm for parameter estimation was derived in [13] for fully-coupled
non-tied models and promising preliminary results both for signal denoising and
classification were reported in [14] and [13], respectively.
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In this paper we take a step forward in the development of sequential pattern
classifiers in the wavelet domain by introducing a new discriminative training
algorithm for the HMM-HMT model. It relies on the minimum classification
error criterion and it is solved through the GPD approach. The proposed al-
gorithm focusses in fully non-tied models in the wavelet domain. Use of them
instead of Gaussian mixtures as observation densities requires the introduction
of modifications to the standard MCE approach in order to avoid numerical is-
sues. We provide reestimation formulas for all the parameters in the model and
carry out simple phoneme recognition experiments to compare the performance
of the proposed algorithm against the same model trained by the standard EM
approach.

The paper is organized as follows: Section 2 reviews the composite HMM-
HMT model and notation; reestimation formulas for the proposed algorithm are
given in Section 3 and experimental results for phoneme recognition are shown
in Section 4. Main conclusions and future works are outlined in Section 5.

2 The HMM-HMT model

The HMM-HMT architecture is a composition of two Markovian models in
which the HMT serves as observation density for each state of the HMM. Long-
term dependencies are modeled by the external HMM, while the HMT models
short-term dependencies in the wavelet domain. To make the following sections
clear, we summarize next the main definitions and notation for the HMM-HMT
model. Further details can be found in [13].

2.1 Model definition and notation

In order to model a sequence W = w1,w2, . . . ,wT , with wt ∈ RN , we define
a continuous HMM with the structure ϑ = 〈Q,A,π,B〉, where Q is the set of
states, A = {aij} is the matrix of state transition probabilities so that aij is the
probability of transition from state i to state j; π is the initial state probability
vector; and B = {bk (wt)}, is the set of observation densities. We will suppose
that Q takes values q ∈ 1, 2, . . . , NQ. In addition, let wt = [wt1, w

t
2, . . . , w

t
N ],

with wtn ∈ R, be the vector of coefficients of the wavelet representation of a
signal 3. The HMT in the state k of the HMM can be defined with the structure
θk = 〈Uk,Rk,κk, εk,Fk〉, where Uk is the set of nodes in the tree; Rk is the
set of states in all the nodes of the tree; κk are the probabilities for the initial
states in the root node; εk =

[
εku,mn

]
is the array whose elements hold the

conditional probability of node u being in state m given that the state in its
parent node ρ(u) is n; and Fk =

{
fku,m(wu)

}
is the set of observation densities

for the wavelet coefficients, that is, fku,m(wtu) is the probability of observing the
wavelet coefficient wtu with the state m (in the node u). In particular, we assume

3 For a wavelet analysis up to J levels and skipping the coarser approximation coeffi-
cient, N = 2J − 1.
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that wavelet coefficients are conditionally Gaussian given the state in the node
of the tree; so fku,m(wtu) = N (wtu;µku,m, σ

k
u,m), where N (·) denotes the Gaussian

density. In later developments we will also denote with Rku the set of states in
the node u, which takes values ru ∈ 1, 2, . . . ,M .

2.2 Likelihood of the observations

The likelihood of the first order HMM for conditionally independent obser-
vations is given by [1]:

LΘ(W) =
∑
∀q

∏
t

aqt−1qtbqt(wt) , (1)

where the observation density for each HMM state is given by (see [12]):

bqt(wt) =
∑
∀r

∏
∀u

εq
t

u,rurρ(u)
fq

t

u,ru(wtu) , (2)

with r = [r1, r2, . . . , rN ] a combination of hidden states in the HMT nodes. Thus,
the complete likelihood for the joint HMM-HMT model is:

LΘ(W) =
∑
∀q

∏
t

aqt−1qt

∑
∀r

∏
∀u

εq
t

u,rtur
t
ρ(u)

fq
t

u,rtu
(wtu) (3)

=
∑
∀q

∑
∀R

∏
t

aqt−1qt

∏
∀u

εq
t

u,rtur
t
ρ(u)

fq
t

u,rtu
(wtu) (4)

,
∑
∀q

∑
∀R

LΘ(W,q,R) , (5)

where a01 = π1 = 1. The sign ∀q denotes that the sum is over all possible state
sequences q = q1, q2, . . . , qT and ∀R accounts for all possible sequences of all
possible combinations of hidden states r1, r2, . . . , rT in the nodes of each tree. See
[13] for details about the HMM-HMT model and the EM algorithm for training
it. We will refer to LΘ(W,q,R) as the joint likelihood of the observations and
the states of the model.

3 Algorithm formulation

The MCE approach for classifier design involves a set of discriminant func-
tions optimized in a competitive way in order to achieve the least classification
error over the training sample. Discriminant functions are those functions which
measure the degree of membership of an observation to a given class, thus char-
acterizing the decision rule of the classifier. Let {gj(W;Λ)} be a parameterized
set of such discriminant functions for a classification task at hand, W be an
observation, Λ be the whole parameter set, and C(W) be the decision of the
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classifier. The classifier will decide that observation W belongs to class i when
the following condition holds:

C(W) = arg max
j
gj(W;Λ) = i . (6)

To train a set of HMMs within this framework, the discriminant function of each
class is chosen to be a function of the joint likelihood for the HMM of that class.
In order to put in context the proposed algorithm for HMM-HMT models, we
first review the basics of the MCE approach.

3.1 General MCE approach

A main feature of the MCE training method is that model update is compet-
itive with regard to classes. That is, all models are updated simultaneously and
the strenght of the update depends on how confusing the decision is to the clas-
sifier. Within this framework, minimization of the classification error is pursued
through a three-step process:

1. Simulation of the classifier decision. This is carried out defining a function
di(W;Λ) : R→ R which is usually chosen to take a negative value when the
classifier decision is right and a positive one otherwise. Following the decision
rule (6), for a training sequence that belongs to class i, this function can be
written as

di(W;Λ) = −gi(W;Λ) + max
j 6=i

gj(W;Λ) .

However, the max operation is not differentiable and so what is used in
practice is a soft approximation of it. Function di(W;Λ) is often referred to
as the missclassification function.

2. Soft approximation of the 0-1 loss: the simulated classifier decision is embed-
ded in a soft differentiable function which approximates the noncontinuous
0-1 loss. A common choice for this approximation is the sigmoid function
defined as:

`(di(W;Λ)) = `i(W;Λ) =
1

1 + exp (−γdi(W;Λ) + β)
. (7)

Parameter γ controls the sharpness of the sigmoid and the bias β is usually
set to zero.

3. Minimization of the empirical classification risk : let M be the number of
classes in the problem. Let Ωi stand for the set of patterns which belong to
class i. The classification risk conditioned on W can be written as

`(W;Λ) =
M∑
i=1

`i(W;Λ) I(W ∈ Ωi) , (8)

where I(·) is the indicator function. The expected risk then reads

L(Λ) = EW [`(W;Λ)] . (9)
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The GPD approach for MCE training is an on-line scheme which aims at
minimizing (9) by updating the whole set of parameters Λ in the steepest-descent
direction of the loss. Starting from an initial estimate Λ̂0, the τ -th iteration of
the algorithm can be summarized as:

Λ̂←− Λ̂− ατ
∂`(Wτ ;Λ)

∂Λ

∣∣∣∣
Λ=Λ̂τ

. (10)

The updating process is often carried out with each training signal. Under some
regularity conditions, it is shown that Λ̂ converges to Λ∗ with probability one
provided the learning rate ατ → 0 as τ →∞ [8].

3.2 Proposed algorithm

We start by choosing the functional form for the discrimination functions
gj(W;Λ). In order for the method to be useful for training the model, we must
preserve some link between these functions and the HMM. A common choice is
to define gj(W;Λ) as a function of the joint likelihood LΘ(W,q,R) [7]. In par-
ticular, we will initially consider the following functional form based on Viterbi
decoding:

g(W|Λ) = log
(

max
q,R
{LΘ(W,q,R)}

)
=
∑
t

log aq̄t−1q̄t +
∑
t

∑
∀u

log εq̄
t

u,r̄tur̄
t
ρ(u)

+
∑
t

∑
∀u

log f q̄
t

u,r̄tu
(wtu) .

In the expression above, q̄t and r̄t refer to states that achieve maximum joint
likelihood. Next, we must define the missclassification function di(W;Λ). For
HMMs with Gaussian mixture observations and the discriminant functions de-
fined as above, it is a standard practice to choose it as

di(W) = −gi(W;Λ) + log

 1
M− 1

∑
j 6=i

egj(W;Λ)η

1/η

. (11)

As η becomes arbitrarily large the term in brackets approximates, up to a con-
stant, the supremum of {gj(W;Λ)} for all j different than i. However, likelihoods
for the HMT model are tipically much smaller than those found for Gaussian
mixtures. As a result, gj(W;Λ) often takes extremely low values for W /∈ Ωj
and the exponentiation gives rise to numerical underflow. Therefore, we define
the missclassification function to be:

di(W;Λ) = 1−

[
1
M−1

∑
j 6=i gj(W;Λ)−η

]−1/η

gi(W;Λ)
. (12)

To avoid restricting η to be an even integer, we also redefine the discriminant
functions to be positive-valued:

gi(W;Λ) = − log
(

max
q,R
{LΘ(W,q,R)}

)
. (13)
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For an approximation of the 0-1 loss, we follow the standard practice and choose
a sigmoid function as defined in (7).

As GPD is a gradient-based optimization method, we must introduce some
transformation of the parameters to allow for such an unconstrained optimiza-
tion to be valid [6]. To constrain aij to be a probability measure, we define
ãij so that aij = exp ãij/

∑
m exp ãim. A similar transformation is needed for

the analogous probabilities in the internal HMTs. So, we define ε̃ku,mn so that
εku,mn = exp ε̃ku,mn/

∑
p exp ε̃ku,pn. We also need to constrain the Gaussian vari-

ances to be positive-valued. Thus, we define σ̃ku,m so that σ̃ku,m = log σku,m. Fi-
nally, we scale the Gaussian means in the conditional densities for the wavelet
coefficients in order to improve numerical computations [7]. Following previous
works, we define the transformed means µ̃ku,m to be µ̃ku,m = µku,m/σ

k
u,m.

3.3 Estimation of Gaussian means

Let assume that the τ -th training sequence Wτ belongs to Ωi and denote by
Λ(j) the subset of Λ corresponding to the model for class j. To simplify notation,
allow `i, dj and gj stand for `i(W;Λ), dj(W;Λ) and gj(W;Λ), respectively. The
updating process works upon the transformed parameters µ̃(j)k

u,m and is given by

µ̃(j)k
u,m ←− µ̃(j)k

u,m − ατ
∂`i(Wτ ;Λ)

∂µ̃
(j)k
u,m

∣∣∣∣∣
Λ=Λ̂τ

. (14)

Applying the chain rule of differentiation we get for j = i:

µ̃(j)k
u,m ←−µ̃(j)k

u,m − ατγ`i(1− `i)
di − 1
gi
×

×
∑
t

δ(q̄t − k, r̄tu −m)

[
wtu − µ̂

(i)k
u,m

σ̂
(i)k
u,m

]
.

(15)

For j 6= i, the same procedure leads to:

µ̃(j)k
u,m ←−µ̃(j)k

u,m − ατγ`i(1− `i)(1− di)
g−η−1
j∑
k 6=i g

−η
k

×

×
∑
t

δ(q̄t − k, r̄tu −m)

[
wtu − µ̂

(j)k
u,m

σ̂
(j)k
u,m

]
.

(16)

3.4 Estimation of Gaussian variances

The updating process for Gaussian variances is completely analogous to the
one shown above for means. Assuming again that the τ -th training sequence Wτ
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belongs to Ωi, the updating process for j = i reads:

σ̃(j)k
u,m ←−σ̃(j)k

u,m − ατγ`i(1− `i)
di − 1
gi
×

×
∑
t

δ(q̄t − k, r̄tu −m)

(wtu − µ̂(i)k
u,m

σ̂
(i)k
u,m

)2

− 1

 . (17)

For j 6= i, we get:

σ̃(j)k
u,m ←−σ̃(j)k

u,m − ατγ`i(1− `i)(1− di)
g−η−1
j∑
k 6=i g

−η
k

×

×
∑
t

δ(q̄t − k, r̄tu −m)

(wtu − µ̂(j)k
u,m

σ̂
(j)k
u,m

)2

− 1

 . (18)

3.5 Estimation of state-transition probabilities in the HMT

Working as above, it can be shown that the updating formulas for the trans-
formed parameters ε̃(j)ku,mn reads for j = i:

ε̃(i)ku,mn ←−ε̃(i)ku,mn − ατγ`i(1− `i)
di − 1
gi
×

×

{∑
t

δ(q̄t − k, r̄tu −m, r̄tρ(u) − n)−

−
∑
t

∑
p

δ(q̄t − k, r̄tu − p, r̄tρ(u) − n)ε̂(i)ku,mn

}
,

(19)

and for j 6= i:

ε̃(j)ku,mn ←−ε̃(j)ku,mn − ατγ`i(1− `i)(1− di)
g−η−1
j∑
k 6=i g

−η
k

×

×

{∑
t

δ(q̄t − k, r̄tu −m, r̄tρ(u) − n)−

−
∑
t

∑
p

δ(q̄t − k, r̄tu − p, r̄tρ(u) − n)ε̂(j)ku,mn

}
.

(20)
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3.6 Estimation of state transition probabilities in the HMM

Similarly to section (3.5), updating formulas for the transformed state tran-
sition probabilities ã(j)

sj using an i-class sequence reads:

ã
(i)
sj ←−ã

(i)
sj − ατγ`i(1− `i)

di − 1
gi
×

×

{
T∑
t=1

δ(q̄t−1 − s, q̄t − j)−
T∑
t=1

δ(q̄t−1 − s)â(i)
sj

}
.

(21)

and for j 6= i:

ã
(j)
sj ←−ã

(j)
sj − ατγ`i(1− `i)(1− di)

g−η−1
j∑
k 6=i g

−η
k

×

×

{
T∑
t=1

δ(q̄t−1 − s, q̄t − j)−
T∑
t=1

δ(q̄t−1 − s)â(j)
sj

}
.

(22)

4 Experimental results

In order to assess the proposed training method, we carry out a simple auto-
matic speech recognition test using phonemes from the TIMIT database [15]. In
particular, we use phonemes ‘eh’, ‘ih’ and ‘jh’ and compare recognition rates
achieved by the proposed method against those for the same models trained only
by the EM algorithm. In all the experiments we use left-to-right hidden Markov
models with NQ = 3. The observation density for each state is given by an HMT
with two states per node. The sequence analysis is performed on a short-term
basis using Hamming windows of 256-samples length, with 50% overlap between
consecutive frames. On each frame, a full dyadic discrete wavelet decomposition
is carried out using Daubechies wavelets with four vanishing moments [16].

In a first set of experiments, we show numerically that the recognition rate
achieved with the EM algorithm attains an upper bound which cannot be sur-
passed neither increasing the number of reestimations of the algorithm neither
enlarging the training set. We next test the improvement in recognition rate
after adding a discriminative stage to the training process.

4.1 How much improvement can the EM algorithm achieve?

Discriminative training methods usually use maximum-likelihood estimates
provided by the EM algorithm as initial values for the competitive process. Thus,
it is fair to ask if better performance could be achieved just using more train-
ing sequences or increasing the number of reestimations in the EM algorithm
only. To answer this question we first perform a two-phoneme recognition task
using models trained with the EM algorithm only and training sets of increas-
ing sizes. The number of reestimations was fixed to 5. Obtained results for the
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Fig. 1. Recognition rates for EM training only: a) varying the size of the training set;
b) increasing the number of reestimations.

{‘eh’,‘ih’} pair are given in Fig. 1.a). Shown results are averages over ten tri-
als for each size of the training set and error bars indicate standard deviations.
Results suggest that performance is in fact improved when we enlarge very small
training sets. However, adding sequences to the training set beyond 50 samples
does not translate into models achieving higher recognition rates.

The effect of fixing the size of the training set and increasing the number
of reestimations used in the EM algorithm is shown in Fig. 1.b). Given values
correspond to a training sample comprising 50 sequences. It can be seen that
recognition rates remain fairly the same with the increase in the number of
reestimations. All of these results confirm that for models trained only with the
EM algorithm, performance is upper bounded and no significant improvement
can be expected just increasing the number of reestimations or adding sequences
to the training set.

4.2 MCE training for phoneme recognition

In order to get some insight into the learning process, we first consider a
classification task comprising only two phonemes. It is straightforward to see
that the proposed missclassification function reduces to

d1(W;Λ) = 1− g2(W;Λ)
g1(W;Λ)

.

When the classifier decision is right, the second term in the rightside of the
above expression is bigger than one and the missclassification function takes a
negative value. As this decision is stronger, d1(W;Λ) becomes more negative
and the resulting loss (7) goes to zero. We then see from the updating formulas
in Sects. 3.3-3.6 that no updating is performed in such a case. So, the algorithm
preserves model parameters that do well when classifying the current training
signal. On the other hand, if the current training sequence is strongly miss-
classified, d1(W;Λ) will tend to 1. In this case, were the algorithm update the
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Table 1. Recognition rates vs. MCE iterations over the whole training set.

Phoneme EM MCE Iterations
Set Baseline 5 15 25 35 50

{‘eh’,‘ih’} 57.5 72.5 67.5 70.0 72.5 70.0
{‘ih’,‘jh’} 90.0 92.5 95.0 97.5 97.5 97.5
{‘eh’,‘jh’} 90.0 92.5 95.0 97.5 97.5 97.5

{‘eh’,‘ih’,‘jh’} 65.0 75.0 73.3 75.0 73.3 68.3

parameters or not will depend on the value of γ in (7). As γ becomes larger, the
loss approximation will go to one faster and even though the classifier is taking
a wrong decision no parameter update is carried out. Thus, parameter update
takes place only when models are confusable and it is the strongest when the
current training sequence is equally likely for both of them.

Numerical experiments were carried out for each pair of the considered pho-
nemes. Fifty sequences from each class were used for training and another set of
twenty sequences from each class were used for testing. Five reestimation steps
were used in the EM algorithm, along with Viterbi flat start. Parameters for
the MCE learning stage were set to γ = 1, β = 0, and η = 4. The learning
rate ατ was linearly decreased during training, starting from α0 = 2.5. Five
trials were performed, varying the number of competitive iterations through the
whole training set. The first three rows in Table 1 show the recognition rates
achieved for each pair of phonemes. Consistent performance improvements are
obtained for the three pairs of phonemes. For pairs {‘eh’,‘jh’} and {‘ih’,‘jh’}
the recognition rate increases monotonically to an upper bound as the number
of iterations of the algorithm increases. Recognition rate for pair {‘eh’,‘ih’}
shows some oscillations as the number of iterations increases. Nevertheless, it is
clearly seen that discriminatively training the models significantly improves the
recognition rate of the classifier.

We next repeat the above experiment to consider the three phonemes jointly.
Obtained results are shown in the last row in Table 1. Despite the recognition rate
oscillates for increasing number of iterations, improvements remain bigger than
10% up to 35 iterations. Further MCE iterations seem to decrease performance.
It should be noticed that adding phoneme ‘jh’ to the classification task results
in higher recognition rates over the {‘eh’,‘ih’} pair alone. This is because the
former is an unvoiced phoneme and it is easier to discriminate from the pair of
voiced phonemes.

5 Conclusions

This paper introduces a new method for discriminative training of hidden
Markov models whose observations are sequences in the wavelet domain. The
algorithm is based on the MCE/GPD approach and it allows for training of
fully non-tied HMM-HMT models. Simple speech recognition experiments show
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that the proposed method achieves important improvements on recognition rates
over training with the standard EM algorithm only. More extensive numerical
experiments should be carried out in order to test the model with other speech
material as well as with other patterns. In addition, further work should be
targeted to optimally set the parameters for GPD optimization.
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