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Abstract— A new algorithm for pitch extraction based on 
the Ensemble Empirical Mode Decomposition (EEMD) is 
presented. Applications to normal and pathological voices are 
considered. EEMD is a completely data-driven method for 
signal decomposition into a sum of AM - FM components, 
called Intrinsic Mode Functions (IMFs) or modes, which can 
be written as ( ) cos( ( ))A t tϕ . The voice fundamental frequency 
(F0) can be captured in a single IMF, allowing its extraction by 
means of well known AM-FM separating techniques. An en-
tropy based selection algorithm is here proposed, in order to 
determine the mode that holds the fundamental frequency. 
The behavior of the proposed method is compared with other 
two ones, both in normal and pathological sustained vowels. 

Keywords— Ensemble empirical mode decomposition, fun-
damental frequency, pathological voice, entropy. 

I. INTRODUCTION  

The fundamental period T0 of a voiced speech signal can 
be defined as the elapsed time between two successive la-
ryngeal pulses and the fundamental frequency or pitch is F0 
= 1/T0 [1]. Even if F0 is useful for a wide range of applica-
tions, its reliable estimation is still considered one of the 
most difficult tasks. In speech, F0 variations contribute to 
prosody, and in tonal languages, they also help to distin-
guish segmental categories. Current applications are related 
with speech and speaker recognition, speech based emotions 
classifications, voice morphing and the analysis of patho-
logical voices. 

In the clinical evaluation of disordered voices, the analy-
sis of F0 perturbation is a standard procedure in order to 
assess the severity of pathologies and in monitoring the 
patient progress [2]. For this application, a reliable and 
accurate estimation of F0 is essential. Conventional F0 ex-
traction algorithms are based on windowed segments, usual-
ly providing stair case time series [1]. These methods as-
sume that speech is produced by a linear system and that 
speech signals are locally stationary. However, in the above 
mentioned applications it is desirable to have a smooth and 
accurate F0 time series. 

In voice pathology assessment, several parameters ex-
tracted from pitch estimation are commonly used. Then, it is 

very important to have a good and reliable F0 estimation. 
Unfortunately, there is no F0 extraction method which oper-
ates consistently for pathological voices. This is due to the 
more serious and complex irregularities of vocal folds vi-
bration in pathological voices than in normal. Many diffi-
culties arise when estimating F0, especially when pathologi-
cal voices are analyzed, including period-doubling and 
period-halving. 

Empirical Mode Decomposition (EMD) has been recent-
ly proposed by Huang [3] for adaptively decomposing non-
linear and non stationary signals into a sum of well behaved 
AM - FM components, called intrinsic mode functions 
(IMFs). While in [4] six fixed band pass filters are used in 
order to obtain an AM FM model of speech, the EMD adap-
tively decomposes the speech signal into a sum of AM - FM 
components. A few EMD based algorithms have been pro-
posed for F0 extraction [5; 6], however they suffer the 
“mode mixing” problem. Wu and Huang [7] proposed a 
modification to the EMD algorithm, called Ensemble EMD 
(EEMD), which largely alleviates this effect. Here we 
present a new method based on EEMD which is able to 
extract the F0 in normal and pathological sustained vowels. 

II. MATERIALS AND METHODS 

A. Database 

As test database we use [8]. It includes 710 sustained 
phonation speech samples of the vowel /a/ from patients 
with a wide variety of organic, neuralgic, traumatic, and 
psychogenic voice disorders, as well as 53 normal subjects. 
For these normal voices, the average F0 is in the range from 
120.39 Hz to 316.50 Hz. All signals were downsampled to 
22050 Hz. 

B. Ensemble Empirical Mode Decomposition 

As already stated, EMD decomposes a signal x(t) into a 
(usually) small number of IMFs. They must satisfy two 
conditions: (i) the number of extrema and the number of 
zero crossings must either be equal or differ at most by one; 
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and (ii) at any point, the mean value of the upper and lower 
envelopes is almost zero. Given a signal x(t), the non-linear 
EMD algorithm is described as follows [3]: 

1. Find all extrema of x(t). 
2. Interpolate between minima (maxima), obtaining the 

envelope emin(t) (emax (t)) 
3. Compute the local mean m(t) = (emin(t) + emax(t) ) / 2. 
4. Extract the IMF candidate d(t) = x(t) - m(t). 
5. Check the properties of d(t): 

• if d(t) is not an IMF, replace x(t) with d(t) and go to 1. 
• if d(t) is an IMF, evaluate the residue r(t) = x(t) - d(t). 

6. Repeat the steps 1 to 5 by sifting the residual signal r(t). 

The sifting process ends when the residue satisfies a pre-
defined stopping criterion [9]. One of the most significant 
EMD drawbacks is the so called mode mixing, illustrated in 
the left column of Fig. 1, where a sustained vowel /a/ is 
analyzed by EMD. Only the four IMFs with higher energy 
are shown. It is clear the appearance of oscillations of quite 
different scales in IMF3. Another example can be observed 
in IMF6, where two oscillations, very similar to those on 
IMF5, are marked with circles.  

The EEMD algorithm [7] alleviates the mode mixing de-
fining the true IMF components as the mean of certain en-
semble of trials, each one obtained by adding Gaussian 
white noise of finite variance to the original signal. 

In the right column of Fig. 1 an example of the EEMD 
abilities can be seen, obtained with an ensemble of size Ne 
= 5000 and different additive noise with standard deviation 
ε = 0.2. The IMFs 3 to 6 are shown. Compared with the left 

column, they appear to be more regular. The fundamental 
period of the sustained vowel /a/ is captured by IMF6 as can 
be appreciated in Fig. 2.a, where the analyzed signal and 
IMF6 are shown. In Fig. 2.b the power spectral densities 
(PSD) of /a/ and IMF6 are plotted. The PSD of IMF6 have a 
well defined peak in the frequency F = 209.28 Hz. It can be 
understood as the mean fundamental frequency. 

C.  EEMD based F0 extraction algorithm 

In this section the main ideas for the EEMD based F0 ex-
traction algorithm are presented and discussed. 

Once the EEMD is computed, a first question arises 
about which mode holds F0. With this in mind, we perform 
a visual inspection to the decomposition of the normal voic-
es in our database and, as above, we select a candidate 
mode. With the purpose of eliminating spurious frequency 
components, a band-pass Chebyshev Type II filter is ap-
plied to the selected mode. The filter is centered in the fre-
quency corresponding to the maximum of the PSD of the 
selected mode. As shown in Fig. 2.b, this frequency is a 
good approximation to the mean of the F0. We use a 150 Hz 
filter bandwidth. Then, an AM – FM separation algorithm 
must be applied. We select DESA-1[10], which overcomes 
the Hilbert transform based techniques when applied to real-
world signals [11]. 

In the case of our 53 normal sustained vowels, F0 was 
found in the fifth, sixth or seventh IMF. In two occasions F0 
was found in IMF7, with averages 120.394 Hz and 121.102 
Hz; nineteen times in IMF6, with averages between 121.652 
Hz and 189.295 Hz; and in IMF5 in the 32 remaining voic-

Fig. 1 Sustained vowel /a/ analyzed by EMD (left column) and EEMD 
(right column). IMFs 4 to 6 are shown. In the left column, the circles indi-

cate two segments where “mode mixing” occurs. 

Fig. 2 a) Sustained vowel /a/ (blue) and IMF6, obtained by EEMD (red). b) 
PSD of the sustained vowel /a/ (blue) and its EEMD based IMF6 (red). The 

peak of the spectrum of the IMF6 is marked as F0 = 209.28 Hz. 
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es, averaging between 193.934 Hz and 316.504 Hz. It can 
be appreciated that the IMFs containing the F0 depends on 
its mean value. It is also in agreement with the studies of 
Flandrin et al., who showed that the EMD is an adaptive 
dyadic filter bank when applied to white noise [12]. 

An automatic method for selecting the mode where the 
F0 is present is needed. We explore the ability of entropies 
in this task, as information related measures. In Fig. 3.a, the 
box-plots of the discrete Shannon entropies (H) [13], esti-
mated with 500 bins, for the ten first modes of the sustained 
vowels /a/ in which F0 was encountered in IMF5, are 
shown. In Fig 3.b those corresponding to the voices in 
which F0 was encountered in IMF6 are shown. The first 
mode mainly contains the noise residuals (the one added 
and the one present in the original signal). It has a lower 
entropy than the next four (Fig 3.a) or five (Fig 3.b) modes. 
In case of voices in which F0 is in IMF5, the entropy has a 
step in mode 5, while there is a similar step in mode 6 for 
voices in which F0 is in IMF6. These steps have a lower 
overlap while using the differential entropy (DH) [13], also 
with 500 bins. The results are shown in Fig. 3.c (F0 in 
IMF5) and Fig. 3.d (F0 in IMF6). Here it must be empha-
sized that the IMFs obtained by EEMD for normal sustained 
vowels, have a sinusoid-like morphology. Indeed, their 
probability density functions are also similar. The DH of a 

sinusoid with amplitude A is given by DH = ( )ln / 2Aπ . 
Therefore, it is reasonable to think that the logarithm of the 
IMFs’ power could be also a good index for finding the 
mode which holds F0. This approach will be addressed in 
other works. 

Based on these results, for each mode = 5, 6, and 7, for 
normal voices we can propose the thresholds T5, T6, and T7 
as the followings: -3.365 < T5 < -3.234, -4.224 < T6 <-3.433, 
and -5.761 < T7 < -4.172. In this way, if the DH of IMF5 is 
higher than T5 while the one of IMF6 is lower than T5, then 
F0 is expected to be in IMF5. Otherwise, we test the exis-
tence of a step between IMF6 and 7 using T6, and next be-
tween IMFs7 and 8 using T7. In order to confirm this hypo-
thesis and to obtain optimum thresholds, this study should 
have to be carried on with a larger data set. 

III. RESULTS 

For illustration purposes, the F0 extracted with the me-
thod proposed in the previous section from a sustained vo-
wels /a/ in the database is presented in red in Fig. 4. For 
comparison, two additional pitch extraction methods – 
RAPT (black) [14], and an autocorrelation-based method 
(blue) [15] – are applied to the same normal voice records 
and also shown in Fig. 4. The parameters involved in these 
two algorithms are the defaults. It can be observed that the 
results are similar, although it must be remembered the 
stair-case nature of the two last methods. The Pearson corre-
lation coefficient between the mean F0 of the 53 healthy 
sustained vowels /a/ reported in [8] and the averaged instan-
taneous frequency obtained by our method was r = 
0.999995. 

In Fig. 5 the F0 of a sustained vowel /a/ from a patient 
suffering muscular tension dysphonia, obtained with the 
proposed method, is shown. As in Fig. 4, the F0 obtained 
with RAPT and auto-correlation based methods are super-
posed in blue and black. Even if the autocorrelation based 
method has been reported as being the best pitch estimation 
technique for the analysis of pathological sustained vowel 
/a/ [16], it can be observed in Fig. 5 that it fails. Also does 
RAPT algorithm, while the method here proposed exhibits a 
better behavior. In a study with 35 disordered sustained 
vowels /a/ (15 from patients suffering muscular tension 
dysphonia and 20 suffering adductor spasmodic dysphonia) 
we have observed that, in the task of a correct F0 extraction, 

Fig. 4  F0 of a healthy sustained vowel /a/. Autocorrelation method (black), 
RAPT (blue) and the EEMD based instantaneous F0 (red). 

Fig. 3 a, b) Boxplots of the discrete entropy of IMFs 1 to 10 of normal 
sustained vowels /a/ in which F0 is present in IMF5 and IMF6, respectively. 

c, d) Boxplots of the differential entropy of IMFs 1 to 10 of normal sus-
tained vowels /a/ in which F0 is present in IMF5 and IMF6, respectively 
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while RAPT and auto-correlation based methods both fail in 
22 voices (62.86%), the here proposed algorithm reduced 
the number of failures to only 10 voices (28.57%). The F0 
estimation was considered failed when at least one doubl-
ing- or halving-period event, or a “spike-like” artifact ap-
pear. In the method here proposed, we have observed that 
these spike-like artifacts were coincident with pathological 
voice segments of very low energy. In order to detect them 
and to prevent this kind of mistakes in the F0 estimation, we 
consider that a voice-activity detection method could be 
applied as a pre-processing stage. However, the failures of 
the other two algorithms were more evident. It is important 
to emphasize that the total length of the segments where the 
RAPT and autocorrelation-based methods fail, largely ex-
ceed the total length of all spike-like events related with the 
here propose method. For this reason, if another quantifier 
is used in the algorithms comparison, as for example the 
percentage of signal length where the F0 estimations are 
satisfactory, then the advantage of the EEMD based method 
would be more pronounced. These improvements will be 
addressed in future works. 

IV. DISCUSSION AND CONCLUSIONS 

In this work we have presented the abilities of EEMD for 
extracting the F0 from sustained vowels /a/ in combination 
with an instantaneous frequency estimator algorithm 
(DESA-1). Additionally, an entropy based technique for the 
automatic selection of the mode from which F0 can be ex-
tracted, was here proposed. The new method was success-
fully tested on normal and pathological sustained voices and 
compared with other algorithms. The EEMD based method 
has the advantage to be parameters free, what is an interest-
ing property for non-computational expert operators. These 
preliminary results suggest that the method here proposed 
provides important improvements to this task and encourage 
us to continue the research on these ideas. Although very 
promising, all the conclusions here presented need to be 
statistically tested on a larger database. Spontaneous speech 
and noisy signals will be addressed in future works. 
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