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ABSTRACT
In this work, a new instantaneous fundamental frequency

extraction method is presented, with the attention especially
focused on its robustness for pathological voices process-
ing. It is based on the Ensemble Empirical Mode Decom-
position (EEMD) algorithm, which is a completely data-
driven method for signal decomposition into a sum of AM
- FM components, called Intrinsic Mode Functions (IMFs)
or modes. Our results show that the speech fundamental fre-
quency can be captured in a single IMF. We also propose an
algorithm for selecting the mode where the fundamental fre-
quency can be found, based on the logarithm of the power
of the IMFs. The instantaneous frequency is then extracted
by means of well-known techniques. The behaviour of the
proposed method is compared with other two ones (Robust
Algorithm for Pitch Tracking -RAPT- and auto-correlation
based algorithms), both in normal and pathological sustained
vowels.

1. INTRODUCTION

The fundamental period T0 of a voiced speech signal can be
defined as the elapsed time between two successive laryn-
geal pulses and the fundamental frequency is F0 = 1/T0 [1].
Even if F0 is useful for a wide range of applications, its re-
liable estimation is still considered one of the most difficult
tasks. This is especially true in the presence of noise or in
pathological voices [1]. In speech, F0 variations contribute
to prosody, and in tonal languages, as in Mandarin Chinese,
they also help to distinguish segmental categories. Attempts
to use F0 in speech recognition systems have met with mixed
success. In part, this may be a consequence of the lack of re-
liable estimation algorithms. Other current applications are
related with speaker recognition, speech based emotion clas-
sification, voice morphing, singing and pathological voice
processing.

A reliable and accurate estimation of F0 is essential for
a correct frequency perturbation analysis (also known as jit-
ter). In the case of sustained vowel waveforms, this analysis
is a standard procedure in the clinical evaluation of disor-
dered voices, in assessing the severity of pathological voices,
and in monitoring patient progress during treatment [2].

Conventional F0 extraction algorithms are based on win-
dowed segments, usually providing stair-case time series [1].
However, in pathological voice analysis it is desirable to have
a smooth and accurate F0 time series. Additionally, these
methods assume that speech is produced by a linear system
and that speech signals are locally stationary, two inappro-
priate oversimplifications in the case of pathological voices.

EMD has been recently proposed by Huang [3] for adap-
tively decomposing nonlinear and non stationary signals into

a sum of well-behaved AM - FM components, called Intrin-
sic Mode Functions. This new technique has received the
attention of the scientific community, both in its understand-
ing and application. The method consists in a local and fully
data-driven splitting of a (possibly non-stationary) signal in
fast and slow oscillations. While in [4] six fixed band pass fil-
ters are used in order to obtain an AM FM model of speech,
the EMD adaptively decomposes the speech signal into a sum
of AM - FM components.

A few EMD based algorithms have been proposed for
F0 extraction [5; 6]. However, they suffer the well-known
“mode mixing” problem and they use a set of post-processing
rules with the intention of alleviate it [5].

The mode mixing is perhaps the major drawback of the
original EMD. This effect is defined as a single IMF either
consisting of signals of widely disparate scales (energies), or
a signal of a similar scale residing in different IMF compo-
nents [7]. Wu and Huang [7] proposed a modification to the
EMD algorithm. This new method, called Ensemble Em-
pirical Mode Decomposition (EEMD), largely alleviates the
mode mixing effect.

In this paper we present a new method based on EEMD
which is able to extract the instantaneous F0 in normal and
pathological sustained vowels.

2. MATERIALS AND METHODS

2.1 Database

The database [8] developed by Massachusetts Eye and Ear
Infirmary (MEEI) was used as test database. It contains voice
samples of 710 subjects. Included are sustained phonation
speech samples of the vowel /a/ from patients with a wide va-
riety of organic, neuralgic, traumatic, and psychogenic voice
disorders, as well as 53 normal subjects. There are both male
and female cases in each group of pathologies. In the case
of normal voices, the lowest mean fundamental frequency is
120.39 Hz and the highest mean fundamental frequency is
316.50 Hz. All signals were downsampled to 22050 Hz.

2.2 Ensemble Empirical Mode Decomposition

As it was stated in Sec. 1, EMD decomposes a signal x(t)
into a (usually) small number of IMFs. IMFs must satisfy
two conditions: (i) the number of extrema and the number of
zero crossings must either be equal or differ at most by one;
and (ii) at any point, the mean value of the upper and lower
envelopes is zero.

Given a signal x(t), the non-linear EMD algorithm, as
proposed in [3], is described by the following algorithm:
1. find all extrema of x(t),
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Figure 1: A sustained vowel /a/ analyzed by EMD (left col-
umn) and EEMD (right column). The corresponding IMFs
4 to 6 are shown. In IMF 6 corresponding to EMD two seg-
ments where “mode mixing” occurs are marked with circles.

2. interpolate between minima (maxima), obtaining the en-
velope emin(t) (emax (t)),

3. compute the local mean m(t) = (emin(t)+ emax(t))/2,
4. extract the IMF candidate d(t) = x(t)−m(t),
5. check the properties of d(t):
• if d(t) is not an IMF, replace x(t) with d(t) and go to

step 1,
• if d(t) is an IMF, evaluate r(t) = x(t)−d(t),

6. repeat the steps 1 to 5 by sifting the residual signal r(t).
The sifting process ends when the residue satisfies a pre-
defined stopping criterion [9].

As already pointed out, one of the most significant EMD
drawbacks is the so called mode mixing. It is illustrated in
the left column of Fig. 1, where a frame of 60 ms length of
a sustained vowel /a/ is analysed by EMD. The four IMFs
with higher energy are shown. The appearance of oscilla-
tions of dramatically disparate scales in IMF 3 is clear. An-
other example can be seen in IMF 6, where two oscillations
are marked with circles. These oscillations are very similar
to those on IMF 5.

EEMD1, is an extension of the previously described
EMD. It defines the true IMF components as the mean of cer-
tain ensemble of trials, each one obtained by adding white
noise of finite variance to the original signal. This method
provides a major improvement on the EMD algorithm, alle-
viating the mode mixing [7]. An example of the EEMD abil-
ities can be seen in the right column of Fig. 1. An ensemble
size of Ne = 5000 was used, and the added white Gaussian
noise in each ensemble member had a standard deviation of
ε = 0.2. In general a few hundred of ensemble members pro-
vide good results [7]. The remaining noise, defined as the dif-
ference between the original signal and the sum of the IMFs
obtained by EEMD, has a standard deviation εr = ε/Ne. For
a complete discussion about the number of ensemble mem-
bers and noise standard deviation, we refer to [7]. The IMFs

1Matlab software available at http://rcada.ncu.edu.tw/.
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Figure 2: a) Sustained vowel /a/ (blue) and IMF 6, obtained
by EEMD (red). b) PSD estimates of the sustained vowel
/a/ (blue) and its EEMD based IMF 6 (red). The peak of the
spectrum of the IMF 6 is marked as F0 = 209.28 Hz.

3 to 6 are shown in the right column of Fig. 1, below the sus-
tained vowel /a/. The IMFs obtained by EEMD seem to be
much more regular than the EMD version and, additionally,
we can appreciate that in IMF 6 the oscillations capture the
fundamental period of the sustained /a/.

This fact is remarked in Fig. 2.a, where the sustained
vowel /a/ is pictured and the EEMD related IMF 6 is super-
imposed in a red line. In Fig. 2.b the power spectral densities
(PSD) of vowel /a/ and its IMF 6 are plotted. The PSD of
IMF 6 have a well defined peak in the frequency F = 209.28
Hz, which can be understood as a mean fundamental fre-
quency. A visual inspection of the sonogram (Fig. 2.a) al-
lows estimating that the fundamental frequency is near 200
Hz, what is consistent with the PSD of IMF 6.

2.3 Discrete Energy Separation Algorithm (DESA-1)

Once the IMFs are obtained, a method must be selected in
order to separate the instantaneous amplitude and frequency.
Usually Hilbert transform (HT) based techniques are used.
However the Discrete Energy Separation Algorithm (DESA-
1) overcomes the HT methods when actual signals are con-
sidered [10].

Let dm(n) be a sampled version of a continuous IMF,
with n = 1, . . . ,N, for m = 1, . . . ,Mx, where Mx indicates the
number of modes in which x(t) is decomposed.

Then, we can define the discrete Teager energy operator
by [11] Ψ [dm(n)] = (dm(n))2−dm(n−1)dm(n+1), for n =
2, . . . ,N−1.

If dm(n) is a discrete time cosine with constant amplitude
A and frequency ω , dm(n) = A cos(Ωn+θ), with Ω = ω T
and T the sampling period, then:

Ψ [dm(n)] = A2
ω

2
(

sinΩ

Ω

)2

.

Based on these relations, we apply the DESA-1 for AM-
FM separation [11]. It estimates the instantaneous frequency

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

ch
lo

tth
au

er
, M

. E
. T

or
re

s 
&

 H
. L

. R
uf

in
er

; "
A

 n
ew

 a
lg

or
ith

m
 f

or
 in

st
an

ta
ne

ou
s 

F0
 s

pe
ec

h 
ex

tr
ac

tio
n 

ba
se

d 
on

 E
ns

em
bl

e 
E

m
pi

ri
ca

l M
od

e 
D

ec
om

po
si

tio
n"

Pr
oc

. o
f 

th
e 

17
th

 E
ur

op
ea

n 
Si

gn
al

 P
ro

ce
ss

in
g 

C
on

fe
re

nc
e 

(E
U

SI
PC

O
 2

00
9)

, p
p.

 2
34

7-
23

51
, A

ug
, 2

00
9.



0 0.5 1 1.5 2 2.5 3
210

215

220

225

F 0 (H
z)

0 0.5 1 1.5 2 2.5 3
270

280

290

300

310T

Time (s)

F 0 (H
z)

 

 

AC based
RAPT
EEMD based

b)

a)

Figure 3: F0 of two healthy sustained vowels /a/ from
database described in Sec. 2.1 are analyzed (a) EDC1NAL
and (b) JTH1NAL. The results obtained by the autocorre-
lation based method (black), RAPT (blue) and the instanta-
neous F0 estimated with the proposed EEMD based method
(red) are shown.

Ω(n) and the instantaneous envelope a(n) by:

Ω(n) = arccos
(

1− Ψ [y(n)]+Ψ [y(n+1)]
4Ψ [dm(n)]

)
,

|a(n)| =

√√√√ Ψ [dm(n)]

1−
(

1− Ψ[y(n)]+Ψ[y(n+1)]
4Ψ[dm(n)]

)2 ,

where y(n) = dm(n)−dm(n−1) for n = 2, . . . ,N.

3. RESULTS AND DISCUSSION

Visual inspection of each of the IMFs obtained by EEMD,
for each of the normal voices (see Sec. 2.1), was carried
out in order to find the mode that includes the instantaneous
frequency (see Fig. 2.a). For illustration purposes, F0 was
extracted with the method proposed in the previous section
from two sustained vowels /a/. These results are presented
in red in Figs. 3.a (EDC1NAL) and 3.b (JTH1NAL). For
comparison, two additional pitch extraction methods were
applied to the same normal voice records and also shown in
Fig. 3. The RAPT method (black) [12] was implemented
using the VOICEBOX Toolkit 2, while an autocorrelation-
based method (blue) [13] was implemented using the PRAAT
software 3. The parameters involved in these two algorithms
are the default ones. It can be observed that the results were
similar, although a carefully inspection reveals the above
mentioned stair-case nature of the last two methods. This
windowing artifact could be a problem for instantaneous fre-
quency estimation.

The Pearson correlation coefficient between the mean F0
of the 53 healthy sustained vowels /a/ reported in [8] and the

2VOICEBOX toolkit v. 1.18 (2008), available at http://www.ee.
ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

3PRAAT v. 5.0.32(2008), available at http://www.praat.org.
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Figure 4: Mean F0 of the 53 analyzed normal sustained vow-
els /a/. Red circles, blue stars, and black diamonds indicate
the records where F0 were founded in IMF 5, 6, and 7 respec-
tively.

Table 1: Relationship between mean F0 and the IMF.
Average F0 (min - max) Hz IMF Occurrences in DB

120.394 - 121.102 7 2
121.652 - 189.295 6 19
193.934 - 316.504 5 32

averaged instantaneous frequency obtained by our method
was r = 0.999995.

In the case of the 53 normal sustained vowels here con-
sidered, we obtained that the fundamental frequency was em-
bedded in the fifth, sixth or seventh IMF. In Fig. 4 we show
the average values of the instantaneous F0, estimated using
the proposed method, for indexes from 1 to 53, correspond-
ing to each one of the normal voices on the database. Voices
where the F0 was found in IMF 5 were represented with red
circles, while with blue stars and black diamonds were rep-
resented those voices where the F0 were respectively in the
IMFs 6 and 7. An interesting matching on the mean values
range can be observed in each case.

In agreement with the studies of Flandrin et al., which
showed that the EMD is effectively an adaptive dyadic filter
bank when applied to white noise [14], the IMFs containing
the F0 depends on its mean value.

This relationship is presented in Table 1, where the re-
sults of analyzing the normal sustained vowels /a/ from the
Kay Elemetrics database [8] are presented. In two occasions
the F0 was found in IMF 7, with averages 120.394 Hz and
121.102 Hz. The F0 was encountered in IMF 6 nineteen
times, with averages between 121.652 Hz and 189.295 Hz.
Finally, the F0 was in IMF 5 in the 32 remaining voices, av-
eraging between 193.934 Hz and 316.504 Hz.

In the case of a previously unobserved signal and with-
out information about the mean F0, a method is necessary in
order to decide what is the IMF containing the F0. In Fig.
5.a and Fig. 5.b, two boxplots graphics of the logarithm of
the IMFs powers are presented. The boxplot shown in Fig.
5.a was estimated with the 32 sustained vowels where F0 is
in IMF 5, while Fig. 5.b was estimated using the 19 sus-
tained vowels where F0 is in IMF 6. Indeed, a clear step
exists between the logarithm of the power of the mode where
the F0 is present and the next one. This finding can be used
as an indicator to point out at which mode the F0 should
be looked for. Based on these results, for each mode = 5,
6, and 7, we can propose the thresholds T5, T6, and T7 for
normal voices as the followings: −9.315 < T5 < −9.093,
−11.200 < T6 < −9.509, and −10.970 < T7 < −9.186. In
this way, if the logarithm of the power of IMF 5 is higher
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Figure 5: Boxplot of the logarithm of the powers of IMFs 1
to 10 of normal sustained vowels /a/ in which F0 is present in
IMF 5 (a) and in IMF 6 (b).

than T5 while the logarithm of the power of IMF 6 is lower
than T5, then F0 is expected to be in IMF 5. Otherwise, we
test the existence of a step between IMF 6 and 7 using T6,
and next between IMFs 7 and 8 using T7. In order to confirm
this hypothesis and to obtain optimum thresholds, this study
should have to be carried on with a larger data set.

Once we found the mode where F0 is included, and with
the purpose of eliminating spurious frequency components, a
band-pass Chebyshev Type II filter is applied on it. This filter
is centered in the frequency corresponding to the maximum
of the PSD of the selected IMF. As in the example shown
in Fig. 2.b, this frequency is a good approximation to the
mean of the F0. We selected a 150 Hz filter bandwidth. The
complete algorithm here proposed is in this way obtained. In
Fig. 6 the corresponding flow diagram is presented.

In voice pathology assessment, several parameters ex-
tracted from pitch estimation are commonly used [2]. Then,
it is very important to have a good and reliable F0 estima-
tion. Unfortunately, there is no F0 extraction method which
operates consistently for pathological voices. This is due to
the more serious and complex irregularities of vocal folds vi-
bration in pathological voices than in normal. Many difficul-
ties arise when estimating F0, especially when pathological
voices are analyzed, including period-doubling and period-
halving.

In Fig. 7 the F0 corresponding to two pathological voices
are presented. In Fig. 7.a the fundamental frequency of a
sustained vowel /a/ from a patient suffering muscular tension
dysphonia is analyzed with the proposed method. On the
other hand, in Fig. 7.b a voice with adductor spasmodic dys-
phonia is studied. As in Fig. 3, the F0 obtained with RAPT
and auto-correlation based methods are also superposed in
blue and black. Even if the autocorrelation based method
had been reported to be the best pitch estimation technique
for the analysis of pathological sustained vowel /a/ [15], it
can be observed that it fails several times (see Fig. 7). Also
does RAPT algorithm, while the method here proposed, ex-
hibits the best behaviour.

In a study with 35 disordered sustained vowels /a/ (15

Is 
Lp(K+1) <TK<Lp(K)

?

Apply EEMD (IMFs 
1 to 10 extraction)

Sustained vowel 
signal  x(n)

Lp(K)= Log (Sum(IMF K)2/N),
K=5, 6, 7, 8. 

K=5

K=K+1NO

Find an 
approximated Fmean

YES

Band-pass filtering 
(Chebyschev II 

centered in Fmean)

END

Find F0 using DESA-1

Figure 6: EEMD based F0 extraction algorithm.

from patients suffering muscular tension dysphonia and 20
suffering adductor spasmodic dysphonia), we have observed
that, in the task of a correct F0 extraction, while RAPT
and auto-correlation based methods fail both in 22 voices
(62.86%), the here proposed algorithm reduced the number
of fails to only 10 voices (28.57%). It must be cleared that in
this study, we have considered as a failure any “spike-like”
event as the one displayed in Fig. 8. In this figure, the F0 of
a sustained vowel /a/ from a patient suffering muscular ten-
sion dysphonia was extracted using the EEMD based, auto-
correlation and RAPT methods. These kind of “spike-like”
events are present in voice segments where the energy is very
low. The instantaneous amplitude could be estimated as a
pre-processing in order to detect these voice segments and
to prevent this kind of mistakes in the F0 estimation. These
improvements will be addressed in future works. However,
the failures of the other two algorithms are more evident. To
address period-doubling problems, other performance quan-
tifier score, like the period of time where the F0 estimations
are satisfactory, should be applied. Then the advantage of
our EEMD based method would be much more pronounced.

4. CONCLUSIONS AND FUTURE WORK

In this work we have presented the abilities of EEMD for
extracting the F0 from sustained vowels /a/ in combination
with an instantaneous frequency estimator (DESA-1) algo-
rithm. Additionally, a technique for the automatic selection
of the mode from which F0 can be extracted was here pro-
posed. The new method was successfully tested on normal
and pathological sustained voices and compared with other
algorithms. The EEMD based method has the advantage to
be parameters free, what is an interesting property for non-
computational expert operators. As a drawback, the pro-
posed method has a high computational cost. However, we
are mainly concerned with its utility in research and clinical
applications without the need of on-line F0 estimation.
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Figure 7: F0 of two pathological sustained vowels /a/ with
a) muscular tension dysphonia and b) spasmodic dysphonia.
The results obtained by the autocorrelation based method
(black), RAPT (blue) and the instantaneous F0 estimated
with the proposed EEMD based method (red) are shown.
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Figure 8: F0 of a pathological sustained vowel /a/. The results
obtained by the autocorrelation based method (black), RAPT
(blue) and the instantaneous F0 estimated with the proposed
EEMD based method (red) are shown. Even if a failure in
the EEMD based method can be observed around t = 2.1 s,
the two other methods fail in a more obvious way, evidenced
by the period-doubling phenomena.

These preliminary results suggest important advantages
of the method here proposed and encourage us to continue
the research on these ideas. Although very promising, all the
conclusions here presented need to be statistically tested on
a larger database. An extension to spontaneous speech and
noisy signals will be addressed in future works.
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