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Abstract— The pseudoanechoic model was
proposed recently to simplify the parameter
estimation in blind source separation based
on frequency-domain independent component
analysis. In the method, after separation based
in the pseudoanechoic model a time-frequency
Wiener postfilter to improve the separation is
applied. In this contribution, a deeper analysis
of the working principles of the Wiener post-
filter is presented. Furthermore, a variation
of this postfilter to improve the performance
using the information of previous frames is in-
troduced. The improvements obtained through
the new method are evaluated in an automatic
speech recognition task and with the PESQ ob-
jective quality measure. The results show an
increased robustness and stability of the pro-
posed method.

Keywords— Pseudoanechoic model, Blind
source separation, Automatic speech recogni-
tion, Wiener postfilter

1. INTRODUCTION

The speech recognition systems trained under labora-
tory conditions, suffer a strong degradation in their
performance when used in real environments [9, 13].
Several aspects contribute to this degrading effect.
One of them is related to the use of distant micro-
phones that allows for other sources to arrive with
equivalent powers to the microphones, and moreover,
allows the arrival of echoes of the desired source [11].
This effect is known as reverberation, and it affects
the performance of ASR systems even if there are no
other sound sources and if the system was trained with
speech recorded in the same conditions [2].

There are several approaches that try to mitigate
the competing noise effect. Basically the alternatives
are applied at different levels of the speech recognition
system [7]. This work is focused in the preprocessing
of the audio signal to produce a desired speech signal

∗This work was supported by ANPCYT under projects
PICT 12700 and PICT 25984, CONICET, and UNL under
project CAI+D 012-72

as clean as possible. In particular, this is done using
multiple input signals captured through a microphone
array.

This work is focused in a recently proposed
frequency-domain independent component analysis
(fd-ICA) algorithm, which uses a pseudoanechoic mix-
ing model, under the assumption of closely spaced
microphones. This separation method, named pseu-
doanechoic model blind source separation (PMBSS)
was shown to be very effective in environments where
other approaches fail, and with a very high processing
speed [6]. This contribution will be focused in produc-
ing an improvement in the postfiltering stage of the
PMBSS method.

In the following section, a revision of PMBSS will
be presented, including a new analysis of the working
principles of the Wiener postfilter. Next, an alterna-
tive method for the Wiener postfilter, exploiting the
temporal information to improve the noise estimation
will be introduced. This section is followed by a series
of experiments to show the improvements introduced
by the proposed method. Then, general conclusions
are presented.

2. PSEUDOANECHOIC MODEL FOR BSS

The blind source separation task in the microphone
array context consist in the extraction of the sources
that originated the sound field, given a set of measure-
ments obtained through an array of microphones [8].
A brief mathematical description of the problem will
be presented in the following.

2. 1. Convolutive BSS problem

Consider the case in which there are M active sound
sources, and the sound field generated by them is cap-
tured by N microphones, as shown in Fig. 1. From
source j to microphone i, an impulse response hij

characterizes the room. Using the notation sj for
the sources and xi for the microphone signals, with
i = 1, . . . , N and j = 1, . . . , M , the mixture can be
represented at each instant t as [3]:

xi(t) =
∑

j

hij(t) ∗ sj(t) , (1)
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Figure 1: A case of cocktail party with M sources and
N microphones.

where ∗ stands for convolution.
Let us form a vector of sources,

s(t) = [s1(t), · · · , sM (t)]T

and the same for the vector of mixtures x(t) measured
by the microphones, where [·]T stands for transposi-
tion. Then Eq. (1) can be written as:

x(t) = H ∗ s(t) (2)

where the “matrix” H has as each element a filter
given by the impulse response from one source loca-
tion to one microphone location. The equation must
be understood as a simple matrix-vector product, but
replacing the multiplications by a filtering operation
via convolution.

One of the most successful approaches to solve this
problem is based on the search of statistical indepen-
dence of the obtained sources in the time-frequency
domain. This is called the frequency-domain indepen-
dent component analysis method (fd-ICA) [14]. If a
short time Fourier transform (STFT) is applied to Eq.
(2), the mixture can be written as [2, chapter 13]

x (ω, τ) = H (ω) s (ω, τ) , (3)

where the variable τ represents the time localization
given by the sliding window in the STFT, and ω is the
frequency. It should be noted that, as the mixing sys-
tem was assumed to be LTI, the matrix H(ω) is not
a function of the time. Also note that the convolution
operations have been replaced by ordinary multiplica-
tion, which makes the problem simpler in this domain.

The classical solution alternative is to apply an ICA
algorithm to each frequency bin, producing separa-
tion on each of them. After separation, the separated
sources in each bin need to be reordered due to the
permutation ambiguity inherent to ICA methods, and
then an inverse STFT is used for the time-domain re-
construction.

2. 2. The pseudoanechoic model

In a previous development [6], the pseudoanechoic
model was proposed as an alternative to solve this

problem. If the microphones are closely spaced, it can
be assumed that the impulse response from a source to
all the microphones will be delayed and scaled versions
of it. Using the notation of Fig. 1, with M = N = 2,
the mixture can be expressed as

x1 (t) = s1 (t) ∗ h11 (t) + s2 (t) ∗ h12 (t)
x2 (t) = s1 (t) ∗ h21 (t) + s2 (t) ∗ h22 (t) . (4)

Under the assumption of closely spaced micro-
phones, the crossing impulse response can be expressed
as a delayed and scaled version of the direct impulse
response, approximating h21(t) � αh11 (t− d1) and
h12(t) � βh22 (t− d2). This simplification is impor-
tant because it allows to write the mixing matrix of
Eq. (3) in a simpler way

x (ω, τ) =
[

1 βe−jd2ω

αe−jd1ω 1

]
z (ω, τ) , (5)

where now the z(ω, τ) contains the reverberant
sources, zi(ω, τ) = hii(ω)si(ω, τ). The pseudoanechoic
model concentrate the effect of the room in a general
impulse response for each channel which introduces
distortion to that signal, and a simpler mixing (sim-
ilar to the one used in the anechoic model) which is
applied on these reverberant signals. It was shown
that this model is plausible for microphones separated
even by 5 cm, in moderate reverberant conditions.

Based on the pseudoanechoic mixing model, the
PMBSS algorithm was introduced. Simply speaking,
this method aims to produce the z sources mentioned
before. In Eq. (5), the mixing matrix is easy to syn-
thesize. For all frequencies, the parameters α, β, d1
and d2 have constant values, if they can be robustly
identified for one frequency, they can be used to syn-
thesize the mixing matrix and the separation matrix
for all the frequencies. Basically, the PMBSS method
has three stages: 1) Estimation of the Mixing parame-
ters for a given frequency bin, using ICA; 2) Synthesis
of the separation matrices for all frequencies using the
estimated parameters, and separation; 3) Application
of a time-frequency Wiener postfilter.

One interesting aspect of this method was the in-
troduction of a time-frequency Wiener filter estimated
using the information obtained after the separation
stage. At this point, an estimation of the reverber-
ant sources z(ω, τ) = [z1(ω, τ) z2(ω, τ)] was obtained.
As the estimations for the two sources are available,
this means that to improve the separation of one of the
sources, the other can be used as an estimation of the
noise. In this way, the time-frequency Wiener filter to
improve the source z1 using z2 as an estimation of the
noise is given by

FW,1(ω, τ) =
|z1(ω, τ)|2

|z1(ω, τ)|2 + |z2(ω, τ)|2 , (6)
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with an equivalent definition for the filter to enhance
the other source.

This postfilter was shown to produce an important
increase in the separation quality, and also it was
shown to be a better alternative than other approaches
like binary masks. Nevertheless, the Wiener postfilter
is a very simple case, and more interesting approaches
can be used.

2. 3. Reverberation reduction by Wiener
postfilter

In this section a deeper analysis of the Wiener post-
filter in a 2 by 2 case is performed. To this end, it
is necessary to study the beampatterns generated by
the separation matrix. As was shown in [1], the sep-
aration matrix generated by ICA works as a pair of
null beamformers, where each beamformer reject the
signals arriving from the estimated direction of arrival
of each of the sources.

In an environment with no reverberation, if one
of the sources is eliminated, the resulting signal will
have information only of the other source, and a good
separation will be obtained. But in reverberant en-
vironments, there are echoes arriving to the array
from other directions that the main propagation path.
As the separation can only eliminate the signal from
the main direction, the echoes from both, the desired
source and the competing source, will remain in the
separated signal.

A uniform linear array of N microphones in the
far field is characterized by its array response vector,
which is a function of the frequency f and the angle
of arrival φ, given by

v(f, φ) =
[
1, e

−j2πfd sin(φ)
c , · · · , e

−j2πf(N−1)d sin(φ)
c

]T

,

(7)
where d is the microphone spacing and c the sound
speed. This array response vector characterices the
microphone array as it explain the relation among
the outputs of each of the microphones. If the out-
puts of the array are linearly combined (as in a de-
lay and sum beamformer), weighted with coefficients
a = [a1, a2, . . . , aN ]T , then the beamformer response
r(f, φ) will be given by

r(f, φ) = aHv(f, φ) , (8)

where [·]H is the conjugate transposed operation. The
magnitude of the beamformer response is the array
gain or beampattern, which shows for each frequency,
how the magnitude of the output signal change with
the angle of arrival of the input signals.

Let us assume that there is a sound field produced
by white and stationary signals, with equal power from
all directions. In this case, the behaviour of the com-
bined separation and Wiener filter process can be an-
alyzed using the beampatterns, as the beampattern
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Figure 2: Effect of the Wiener postfilter on the beam-
patterns. a) the beampatterns generated from the sep-
aration matrix. b) the beampatterns after application
of the Wiener filter.

output will be the actual magnitude at the output of
the separation, as a function of the arrival angle.

Figure 2 shows the beampatterns obtained from the
separation matrix in the bin corresponding to 2000 Hz
(for other frequencies the analysis is equivalent), for
two sources located at ±26 degrees. Part a) shows
the beampatterns obtained from the separation ma-
trix. For each beampattern, it can be seen that in the
direction of each source, the gain is unitary, and in the
direction of the other source the gain tends to zero. In
part b), we have applied the equation of the Wiener
filter to these patterns. That is, if the beamformer
gains for the separation matrix at the given frequency
are called G1(θ) and G2(θ), and as they are also the
output amplitudes as a function of the angle, the first
Wiener filter will be G1(θ)2/(G1(θ)2 + G2(θ)2), and
the same for the other filter.

As it can be seen, the Wiener filter maintains uni-
tary gain in the desired directions and nulls in the
interference directions, but also produces attenuation
in all other directions, which mitigates the effect of all
echoes including both, those from the undesired noise
(which improves separation) and these from the de-
sired source (which reduces the reverberation). This
is very important, because it means that the Wiener
postfilter helps in improving the fundamental limita-
tion of the fd-ICA approach as analyzed in [1], that is,
the impossibility to reject the echoes.

Clearly, in real situations the input signals will be
neither of the same power for all directions as assumed,
nor white and stationary. Nevertheless, the signal with
stronger component will in general come from the de-
tected directions, with the echoes of lower power ar-
riving from different directions, and thus the result-
ing effect would be even better than the depicted one.
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That is, Fig. 2 represents the worst case of possible
inputs, and thus for more realistic cases an even better
behaviour can be expected.

3. CORRELATED WIENER POSTFILTER

The proposed Wiener postfilter has shown to be very
usefull, but in its simple form of Eq. (6) a lot of in-
formation available in the source and noise estimation
is disregarded. One of the most important effects of
reverberation is to propagate the information along
the time. This means that some event happening at
a given time will continue to have influence in future
instants. In other words, the reverberation effect in-
creases the correlation in time.

This information is not exploited in the ICA method
used in this work, because the signals are assumed to
be generated by random iid process. The originally
proposed Wiener filter also does not take into account
this information as the estimation of the noise is based
on the current time only. In addition, there is noth-
ing that guarantees synchronization of the extracted
sources, thus the information used as estimation of
noise in the original Wiener filter could be related to
a different instant than that for which was used.

These two aspects motivate us to explore some way
to introduce the time correlation information in the
noise estimation. To achieve this, the Wiener time
frequency postfilter is modified in the following way

FW,1(ω, τ) =
|z1(ω, τ)|2

|z1(ω, τ)|2 +
p∑

k=−p

ck |z2(ω, τ − k)|2
,

(9)
where k represents the index of lag, p is the maximum
lag to consider, and ck are properly chosen weights
that must take into account the amount of contribu-
tion of the noise in that lag, to the noise present in the
source.

The important aspect here is how to fix the weight-
ing constants ck. These weights should be large if the
delayed version of the noise has an important effect in
the current time, otherwise it should be small. The ef-
fect of delayed versions of the noise can be evaluated by
some measure of similitude with respect to the noisy
signal. To calculate such a similitude we use the cor-
relation among the accumulated squared magnitude
over all frequencies. These accumulated squared mag-
nitudes are given by

εzi
(τ) =

L∑
j=1

|zi(ωj , τ)|2 (10)

where j is the frequency bin index and L the index
of the maximum frequency. With this definition, the
weight coefficients ck are defined as the normalized
correlation

Source Noise

100

200
100

100

Height: 100

Height: 125

Figure 3: Room setup used in the mixtures generation.
All dimensions are in cm.

ck =
∑

τ εz1(τ)εz2(τ + k)
‖εz1‖‖εz2‖

, ∀ − p ≤ k ≤ p , (11)

with an equivalent definition for the filter to enhance
the other source, interchanging the roles of z1 and z2.

4. RESULTS AND DISCUSSION

The performance of the proposed methods was evalu-
ated using two different quality measures. One is the
Perceptual Evaluation of Speech Quality (PESQ) mea-
sure, an objective method defined in the standard ITU
P.862 that was found to be highly correlated with the
output of speech recognition systems, when the input
was preprocessed by fd-ICA methods [5, 4].

The other evaluation was performed using an ASR
system. This is a continuous speech recognition system
based on semi-continuous hidden Markov models, with
context independent phonemes in the acoustic models,
using Gaussian mixtures and bigram language model
estimated from the transcriptions. The front-end was
Mel Frequency Cepstral Coefficients (MFCC), includ-
ing energy and the first derivative of the feature vector.
The system was built using the HTK toolkit [16].

The audio material for the experiments was taken
from a subset of the Spanish speech Albayzin database
[10], and we also used white noise from Noisex-92
database [15]. All the material uses a sampling fre-
quency of 8 kHz. The acoustic model was trained using
585 sentences from a subset related to Spanish geog-
raphy questions. A set of 5 sentences uttered by two
male and two female, for a total of 20 utterances, was
used to evaluate the speech recognition rate.

The mixtures were recorded in a real room as in Fig.
3. This room has 4 x 4.9 m with a ceiling height of 2.9
m. The room has a reverberation time of τ60 = 200
milliseconds. Two loudspeakers were used to replay
the sound sources and the resulting sound field was
captured with two measurement omnidirectional mi-
crophones spaced by 5 cm. The 20 sentences were
mixed with the two kind of noises, at two different
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Table 1: Average separation quality as function of the
number of lags used to estimate the Wiener filter.

Power Noise PMBSS p = 0 p = 1 p = 2
6 dB Speech 2.74 2.74 2.80 2.78

White 2.84 2.83 2.88 2.86
0 dB Speech 2.50 2.48 2.52 2.45

White 2.59 2.54 2.67 2.66
Ave. 2.67 2.65 2.71 2.69

power ratios: 0 dB and 6 dB. In this way there are
four sets of mixtures of the 20 test sentences.

The recognition performance was evaluated using
the word recognition rate (WRR), calculated after
forced alignment of the system transcription with re-
spect to the reference transcription. For the standard
PMBSS we used the same configuration as proposed
in the previous work, with central bin fixed at 3/8 of
the maximum frequency for white noise, and 5/8 of
the maximum frequency for speech noise. In all exper-
iments we fixed the number of lateral bins to use in
10.

The proposed Wiener postfilter depends on one pa-
rameter that needs to be determined: the maximum
number of lags p to consider in the noise estimation.
There is a compromise in the selection of this parame-
ter. On one side, if the reverberation time is long, the
information of the noise in one instant will have im-
portance at a wider ranges of time instants, and thus
a larger p should be used. On the other side, if too
much lags are combined, there is an increasing prob-
ability of having time-frequency tiles for which both,
the estimated source and the estimated noise, have sig-
nificant energy, and this will produce a degradation on
the source estimation.

To verify the influence of this parameter, the set of
20 test mixtures, under the two kind of noises and the
two noise powers, were separated using values of 0, 1
and 2 for p, and the PESQ quality evaluated on each
separated source. For comparison we used also the
standard method (PMBSS) as proposed in [6]. Table
1 presents the results. As it can be seen, the best re-
sults are obtained for a maximum lag of 1. The use of
p = 0 imply using as noise estimation only the present
time instant, which would be the same as in the stan-
dard PMBSS method. The difference is in the use
of weights, that being lower than one will reduce the
noise estimation with respect to the standard method
where this weight is always equal to one. When the
number of lags considered is increased, the quality is
lowered. This is due to the increasing distortions in-
troduced by the Wiener postfilter when it eliminates
more and more frequency components.

This effect in the spectrogram can also be seen in
Fig. 4. To generate this figure, the magnitude of the
Wiener postfilter was draw in colorscale, for p = 0, 1, 2,
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Figure 4: Effect of the number of lags p in the Wiener
filter. For reference, the desired source Spectrogram is
also shown.

Table 2: Average separation quality (PESQ) for the
different methods evaluated in this work and the mix-
tures.

Power Noise Mix PMBSS Parra Prop.
6 dB Speech 2.11 2.74 2.22 2.80

White 1.98 2.84 2.37 2.88
0 dB Speech 1.73 2.50 2.19 2.52

White 1.64 2.59 2.16 2.67
Ave. 1.86 2.67 2.23 2.71

for one example of speech-speech mixture at 0 dB.
Also the spectrogram of the original (desired) source
is shown. The effect of adding lags is a sharpening in
the spectral characteristic of the desired source. As
the number of lags is increased, the Wiener filter ap-
proaches a binary mask with sharp transitions, which
provides better rejection of the undesired source, but
also introduces distortions in the desired source. On
the contrary, for small p the shape is smoother, with
better preservation of the desired source, but a greater
leakage of the undesired one.

To be able of comparing the obtained results we
present the results of PESQ score and word recognition
rate for the state-of-the-art method (Parra)[12], the
standard PMBSS method (PMBSS), and our proposed
method with the modified Wiener postfilter (Prop).
Tables 2 and 3 present the results for PESQ and WRR
respectively, for the evaluated methods and also for the
mixtures without any processing (that is, as they are
captured by the microphones).

The results show that the proposed method provide
for an improvement in the quality of the separated sig-
nals, which is reflected in both, improvements in PESQ
and in WRR. It must be noted that the processing time
is almost not changed by these new alternatives (only
about 5% increase in processing time), and thus the
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Table 3: Word recognition rates (WRR%) for the dif-
ferent methods evaluated in this work and the mix-
tures.

Power Noise Mix PMBSS Parra Prop
6 dB Speech 44.50 84.66 49.50 84.13

White 19.54 84.00 27.50 82.50
0 dB Speech 30.00 82.50 49.00 84.66

White 7.20 67.50 20.00 73.50
Ave. 25.31 79.66 36.50 81.20

method mantains its very high processing speed.

5. CONCLUSIONS

In this work, the PMBSS method was analyzed with
increased detail, providing insights in the reason why it
is very successfull in achieving separation and some re-
verberation reduction. In particular it was shown why
this reverberation reduction is produced even when the
separation model is supposed to produce separation
but not reverberation reduction.

Also, the Wiener postfilter was improved, taking
into account the temporal correlation introduced by
the reverberation. The noise estimation was done by
a weighted average of lagged spectra, where the proper
weights are selected by a correlation.

The proposed method was evaluated by means of
an objective quality measure and a speech recognition
system, producing better objective quality of the ob-
tained signals, and improvements in the recognition
rate.
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