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ABSTRACT

Wavelet-domain hidden Markov models have been found
successful in exploiting statistical dependencies between wa-
velet coefficients for signal denoising. However, these mo-
dels typically deal with fixed-length sequences and are not
suitable neither for very long nor for real-time signals. In
this paper, we propose a novel denoising method based on a
Markovian model for signals analyzed on a short-term basis.
The architecture is composed of a hidden Markov model in
which the observation probabilities are provided by hidden
Markov trees. Long-term dependencies are captured in the
external model which, in each internal state, deals with the
local dynamics in the time-scale plane. Model-based denoi-
sing is carried out by an empirical Wiener filter applied to
the sequence of frames in the wavelet domain. Experimen-
tal results with standard test signals show important reduc-
tions of the mean-squared errors.

1. INTRODUCTION

The wavelet transform has shown to be a very interesting
representation for signal and image analysis and it has led
to simple but powerful approaches to statistical signal pro-
cessing. Many of these methods assume that the wavelet
coefficients are jointly Gaussian or statistically independent.
However, actual signals show sparse wavelet representations
and some residual dependency structure between the coeffi-
cients which do not agree with those models.

In order to account for these features, hidden Markov
trees (HMT) were introduced in [1]. In this model, a Gaus-
sian mixture density models the distribution of each wavelet
coefficient. Each component in the mixture is related to the
state taken by a hidden variable associated with the coef-
ficient. By setting Markovian dependencies between the
hidden state variables based on the natural tree structure of
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the wavelet decomposition, the model also captures the sta-
tistical dependencies at different scales. The HMT model
has been improved in several ways in the last years, for ex-
ample, using more states at each HMT node and develop-
ing more efficient algorithms for initialization and training
[2, 3, 4]. However, the HMT still cannot deal neither with
long-term dependencies nor with variable-length sequences
or multiple image sizes. These shortcomings arise from the
use of the discrete wavelet transform (DWT), which makes
the structure of the representations depend on the length of
the signal. Although this is not very restrictive when just a
single observation is used to train a tied model, in many ap-
plications we have multiple observations available and we
would want to use the whole information in order to train a
full model. In these cases, if an HMT were to be considered,
the model should be trained and used only with signals of
the same length. Otherwise, a warping preprocessing would
be required.

On the other hand, hidden Markov models (HMM) have
been widely used for the statistical modeling of time series
[5]. Despite of their relative simplicity, they are effective in
handling correlations across time and they are very success-
ful in dealing with sequences of different lengths. Although
they have been traditionally used with Gaussian mixtures as
observation densities, other models have been proposed for
the observation distributions [6].

In this paper we propose a novel method to signal de-
noising based on a wavelet-domain Markovian model for
sequences analyzed on a short-term basis, but not assum-
ing stationarity within each frame. In order to combine the
advantages of traditional HMM and those of the HMT to
model the statistical dependencies between wavelet coef-
ficients, we derive an EM algorithm to train a composite
model in which each state of an external HMM uses an ob-
servation model provided by an HMT. In this HMM-HMT
architecture, the external HMM handles the long term dy-
namics, while the local dynamics are appropriately captured
in the wavelet domain by each HMT. We then apply the
model in an empirical Wiener filter defined in the wavelet
domain, thus allowing for a model-based approach to signal
denoising in a short-term framework.
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Dasgupta et al. [7] proposed a dual-Markov architec-
ture trained by means of an iterative process where the most
probable sequence of states is identified, and then each in-
ternal model is adapted with the selected observations. A
similar approach applied to image segmentation was pro-
posed in [8]. However, in both cases the model consists of
two separated and independent entities, that are just forced
to work in a coupled way. By contrast, in [9] an EM algo-
rithm was derived for a full model composed of an external
HMM in which, for each state, an internal HMM provides
the observation probability distribution. The training algo-
rithm proposed here follows this later approach rather than
that in [7].

In the next section, we take a full Baum-Welch approach
to parameter estimation and we state the reestimation for-
mulas for the composite HMM-HMT model. Then we de-
tail the model-based denoising approach for HMM-HMT
and we provide results of benchmark experiments with the
standard Doppler and Heavisine signals from Donoho and
Johnstone [10].

2. THE HMM-HMT MODEL

The proposed model is a composition of two Markov mod-
els: the long term dependencies are modeled with an exter-
nal HMM and each segment in the local context is modeled
in the wavelet domain by an HMT. Figure 1 shows a dia-
gram of this architecture, along with the analysis stage and
the synthesis stage needed for signal denoising. In this sec-
tion we define the HMM-HMT model and state the joint
likelihood of the observations and the hidden states given
the model. Then, the EM approach for the estimation of
the model parameters is presented for single and multiple
observations.

2.1. Model Definition and Notation

In order to model a sequence W = w!, w2,..., w’, with

wt € RY, we define a continuous HMM with the usual
structure ¥ = (Q, A, 7, B), where Q is the set of states ta-
king values ¢ € 1,2, ..., Ng; A is the matrix of state tran-
sition probabilities; 7r is the initial state probability vector;
and B = {by (w")}, is the set of observation (or emission)
probability distributions.

Suppose now that w' = [wh, w}, ... wh], with w!, €
R, results from a DWT analysis of the signal with J scales
and that wy, the approximation coefficient at the coarsest
scale, is not included in the vector so that N = 27/ — 1.
The HMT in the state k& of the HMM can be defined with
the structure 6% = (U*, R*, k*, €*, F*), where U* is the
set of nodes in the tree; R* is the set of states in all the
nodes of the tree, being Rﬁ the set of states in the node
u which take values r, € 1,2,...,M; € = [ef ]is

u,mn

Fig. 1. Diagram of the proposed model.

the array whose elements hold the conditional probability of
node u being in state m given that the state in its parent node
p(u) is n; k¥ are the probabilities for the initial states in the
root node; and F* = {f& (w,)} is the set of observation
probability distributions, that is, fF . (w?,) is the probability
of observing the wavelet coefficient w!, with the state m
(in the node u). In addition, we will refer to the set C,, =
{c1(u), ca(u),...,cn(u)} of children nodes of node w.

2.2. Joint Likelihood

First, we restate for convenience the three basic assumptions
regarding an HMT:

i) Pr(ry, = mlr, /v # u) = Pr(ry = mlr ), e, ),
ii) Pr(wr) =[], Pr(w,|r),
iil) Pr(wy|r) = Pr(wy|ry).

With this in mind, the observation density for each HMM
state reads

t t
bar (W) =Y T €rur, o Fir, (wh), e

Vr Vu
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wherer = [r1,72,...,7xN] is a combination of hidden states
in the HMT nodes. Thus, the complete joint likelihood for
the HMM-HMT can be obtained as

ZHaqt—lqtbqt(Wt)
= ZHaqtl ZH urr fzr( )
_ ZZHM g H Lot fgf%(wz)

Vq VR t

Zz.c@ W.q,R), 2)

VYq VR

Lo(W) =

[I>

where ag; = m; = 1. Vq says that the sum is over all pos-
sible state sequences q = ¢',¢2,...,¢” and VR accounts
for all possible sequences of all possible combinations of
hidden states r!, r2, T in the nodes of each tree.

2.3. EM Formulation

In this section we will obtain a maximum likelihood esti-
mation of the model parameters. For the optimization, the
auxiliary function can be defined as
D(©,0) 23 > Lo(W,q R)log (Le(W,q,R)).
Vg VR
3)

Using (2), this function can be separated in independent
functions for the estimation of a;;, e’imn, and the parame-
ters of ¥ (w,). For the estimation of the transition prob-
abilities in the external HMM, a;;, it is then easy to see that
no changes from the standard formulas are needed.

Let be ¢* = k, rl, = m and rt( ) = n. To obtain the

reestimation formula for eu mn» the restriction Y €¥ €nmn —
1 should be satisfied. Using Lagrange multipliers, we can
thus optimize

D(6,0) £ D(6,6) +ZA ( umn—l), “)
m
and the reestimation formula results

Zv )& (m,m)
€ = Q)

v Zv IO

where ! (k) is the probability of being in state & (of the
external HMM) at time ¢ (computed as usual for HMM);
’y;](“u)(n) is the probability of being in state m of the node
u, in the HMT corresponding to the state k& in the HMM
and at time ¢; and £2F(m, n) is the probability of being in
state m at node u, and in state n at its parent node p(u),

at time ¢ and in the HMT of the state k& in the HMM. The
last two expected variables, 7', (n) and £ (m, n), can be
estimated with the upward-downward algorithm [4].

We can proceed in a similar way to estimate de param-
eters of fffm(wu) For observations given by ffﬂ't (wh) =

u
t ok k :
N (WS, 13 1 Ot 1 )» We find:

Wom = =5 : 6)

and
T
S A k) (m) (wh, — ik )
(oh )7 = =— NG
> A (k)Y (m)

2.4. Multiple Observations

In several applications, we have a large number of observed
signals W = {W1, W2 .. WP} where each observa-
tion consists of a sequence of evidences WP = wPl wp2,

., wPTe with wPt € RN, Assuming that each sequence
is independent of the others, we define the auxiliary func-

tion

I
>

D(0,0)

P
> e oW R

Vq VR
xlog (Lo(WP,q,R)). (®)

The derivation of the reestimation formulas is similar
to the single-sequence case. The reestimation formula for
transition probabilities is

P T,
D> AP k)R ()
e mn = e . ©)
SN At ) (n)
p=1t=1

Analogous extensions are found for the parameters of the
observation densities.

3. MODEL-BASED DENOISING

The wavelet transform allows to succesfully estimate a sig-
nal corrupted by additive white Gaussian noise by means of
simple scalar transformations of individual wavelet coeffi-
cients, that is, thresholding or shrinkage. To further exploit
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the structure of actual signals, we propose a model-based
signal estimation approach based on the composite HMM-
HMT model described in the previous section.

The method is an extension of the wavelet-domain em-
pirical Wiener filter used in [11] and [1], which provides a
conditional mean estimate for the signal coefficients given
the noisy ones. Unlike them, however, the proposed method
is applied in a short-term basis. Frame by frame, each local
feature is extracted using a Hamming window of width N,
shifted in steps of IV, samples. The first window begins N,
samples out (with zero padding) to avoid the information
loss at the beginning of the signal. The same procedure is
used to avoid information loss at the end of the signal.

In the next step, the DWT is applied to each windowed
frame. In our case, we do not restrict the signal to have zero-
mean wavelet coefficients. Thus, this mean is subtracted
before filtering and added back before reconstruction. The
structure of the filter is

k)2

— (Jum
wl = H(k R (m : .

u,m

where w!, is the noisy wavelet coefficient and w!, the de-
noised one. Note that the estimated noise deviation, 7, 1S
multiplied by h,,, the corresponding attenuation introduced
by the window in the frame analysis, subsampled as the
wavelet coefficient in the node w.

In the final stage, the synthesis consists of inverting each
DWT for the processed trees and add each one with the cor-
responding shift. Then, the inverse of the sum of all used
windows is applied.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Practical issues

The reestimation formulas were implemented in logarith-
mic scale in order to make a more efficient computation of
products and to avoid underflow errors in the probability ac-
cumulators [4]. HMTs with 2 states per node were used in
all the experiments. The external models are left-to-right
HMM with transitions a;; = 0Vj > i+ 1. The only limita-
tion of this architecture is that it is not possible to model se-
quences with less frames than states in the model, but there
is not a constraint on the maximum number of frames in the
sequence.

The DWT was implemented by the fast pyramidal al-
gorithm [12], using periodic convolutions and the Daube-
chies-8 wavelet. Preliminary tests were carried out with
other wavelets of the Daubechies and Splines families but
no important differences in results were found. To avoid the

Table 1. Denoising results for Doppler signals corrupted
with additive white noise of variance 1.0.

N, N, N, Ng min. MSE ave. MSE
1024 256 128 7 0.05349 0.07158
2048 512 128 10 0.04756 0.05814
4096 512 256 11 0.03248 0.04084

border effects due to the periodic convolutions in the DWT,
the first and last 8 samples in the inverted frame were not
considered. Noise deviation was estimated as in [10] but
taking the median of the medians in all frames:

- 1 1 ,
7w = e e {054 o ned {Iwul}} ,an

where 0.54 is the median of the Hamming window and 0.67
is a constant empirically determined from the data (see [10]).
The experiments were conducted with the same test signals
used in [1, 10] and many other works about wavelet de-
noising. In all tests, noisy signals were synthesized adding
white Gaussian noise of unity variance. Performance of the
method was evaluated computing the mean-squared error
(MSE) between the clean and denoised signals like in [1].

4.2. Tests with fixed-length signals

In a first stage, the performance of the proposed method was
assessed using fixed-length sequences both for training and
testing. Experiments were conducted for signals of 1024,
2048, and 4096 samples. A different model was trained for
each signal length. For each case, several trials were car-
ried out to test the impact of the most important parameters
regarding signal analysis and the HMM-HMT architecture.
The analysis stage was tested for N, € {128,256,512} and
N, € {64,128,256} !.

Table 1 and Table 2 show a summary of the best results
for Doppler and Heavisine signals, respectively. Presented
results are MSE averages over 10 test signals. It should be
noted that these results are clearly better than all of those
reported in [1] and [10]. For example, for Doppler signals
of length 1024, the best MSE reported in [10] is 0.24 and
for the HMT used in [1] it is 0.13. As it can be seen in Table
1, as N, increases it is convenient to increase the window
size N,, and the window step NV, in the analysis. In this
experiments the number of states in the external HMM, N,
also grows to fit the frames in the sequence, thus avoiding
modeling two frames with the same HMT. We also veri-
fied that the number of observed signals is not so important

'Note that not all the combinations are possible, for example, the re-
construction would be impossible if N,, = 128 and Ng = 128.
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Table 2. Denoising results for Heavisine signals corrupted
with additive white noise of variance 1.0.

N, N, N, Ng min. MSE ave. MSE
1024 512 256 3 0.03595 0.05188
2048 512 256 8 0.01361 0.01889
4096 512 256 15 0.01708 0.02042

because the reestimation algorithms can extract the relevant
characteristics with only three of them.

Figure 2 displays the denoising results for a realization
of Doppler signal with N, = 1024. For this qualitative
analysis we selected the sample used to compute the aver-
age MSE in Table 1 whose MSE was closer to the average.
The denoised Doppler shows that the larger errors are in the
high frequencies, at the beginning of the signal. This resi-
dual noise can be explained noting that in these frames the
variances of the signal and the noise are similar at the finest
scale. Therefore, the estimated variances in the correspond-
ing HMT are relatively large and application of (10) has a
minor effect. Additionally, in this signal the first part of
the first frame is not overlapped with other frames and thus
the Hamming window has an stronger impact in the estima-
tion of the model parameters and the reconstruction of the
denoised signal. Moreover, the signal to noise ratio in this
part is lower than in other regions of the signal.

The main advantage of the HMM-HMT is that it pro-
vides a set of small models that fit each region of the signal.
However, it can be seen that at the end of the Doppler sig-
nal (around the sample 800) the mean in the denoised signal
follows that of the noisy one. Similar errors can be seen
in some other parts of the signal, for example, in the peak
around the sample 350. For the Heavisine signal, a simi-
lar behavior can be observed at the beginning, the middle
and the end of the signal (not shown). In this point, recall
that the HMT does not model the approximation coefficient.
Thus, the approximation coefficient used in the re-synthesis
is the noisy one, which is never modified. Therefore, if the
noise has significant low-frequency components, they will
appear as remaining noise in the denoised signal.

4.3. Tests with variable-length signals

Although the forementioned experiments allow for direct
comparison with other wavelet-based methods for signal es-
timation, they are not suitable to exploit the main advan-
tage of the proposed model, that is, its ability to deal with
variable-length sequences. In order to test for this flexibili-
ty, another set of experiments was carried out in which the
length of the training signals was allow to vary over dif-
ferent ranges. Only Doppler signals were used for these

.15 .
0 200 400 600 800 1000

Fig. 2. Average case for denoised Doppler signal (N, =
1024, MSE=0.0678).

Fig. 3. Typical variability of the length of the signals used

to train the model. The examples are from the set of signals
with random length in [1280, 2816] samples (AMg).

tests. In each trial, the length of training signals was set to
2048 + A M, samples, where AM;, was randomly gener-
ated from a uniform distribution in [—128k, +-128k], with
k=1,2,...,8. Figure 4.3 shows typical examples of sig-
nals in the training set for one range of length variation. The
length of the test signals remained fixed at 2048 samples. In
all these experiments, an external HMM with Ng = 7 was
used, and the signal analysis was done with N,, = 256 and
N, = 128. Results are shown in figure 4, averaged over 30
test signals for each range of length variation of the train-
ing signals. It can be seen that though the estimation is not
as good as for the experiments where the model is trained
always with fixed-length sequences, both average MSE and
their related standard deviations remain fairly the same over
a broad range of variability in the length of the training sig-
nals. Even more, in all cases results are found to be better
than all of those wavelet-based signal estimation results re-
ported in [10] using various threshold methods.
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Fig. 4. Average MSE obtained training the model with
variable-length Doppler signals and testing with sequences
of 2048 samples. Error bars show the standard deviation of
the results from the average MSE.

Table 3. Denoising results for variable-length Doppler sig-
nals corrupted with additive white noise of variance 1.0.

Rangeof AM Ng=3 Ng=5 Ng=7
+128 0.14593  0.11275 0.10332
+256 0.15494  0.12266  0.10930
+512 0.15752  0.12773  0.11963
+1024 0.16250  0.12630 0.11350

The flexibility of the proposed method was also assessed
using variable-length Doppler sequences both for training
and testing. Table 3 shows average MSE values for several
ranges of signal lengths and for architectures with different
number of hidden states in the external HMM model. Av-
erages are over 30 testing signals for each range of length
variation. For the architecture used in the previous experi-
ments, it can be seen that the length variability of the testing
signals do not give rise to a significant degradation in per-
formance. Results also show that models with more hidden
states in the external model consistently reach a better esti-
mation in all the tested conditions.

5. CONCLUSIONS

The proposed architecture allows to model variable-length
signals in the wavelet domain. The algorithms for parameter
estimation were derived using the EM framework, resulting
in a set of reestimation formulas with a simple structure.
Model-based denoising with the proposed method showed
important qualitative and quantitative improvements over
previous methods. Performance remained fairly the same

over important variations in the length of both training and
test signals, showing the robustness of the method. Future
work will be oriented to test the proposed model for estima-
tion of signals observed in non-stationary noise as well as
for joint classification and estimation tasks.
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