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Abstract Recurrent connectionist models provide a method to represent dynamic patterns
in a neural network. In this work we present a method for chromosome classification based
on an almost unexplored neural network technique for this task. A partially recurrent con-
nectionist model, the Elman network, is managed to capture the dark and light band patterns
of the different classes. The proposed method is completed with the formulation of the ICC
(iterative contextual classification) algorithm in order to restrict the classification to the cell
context, and is applied to the neural network results. The Copenhagen data set was used in
the experiments, where a cross-validation method was applied in order to obtain statistically
representative results using the complete corpus. The entire system obtained very good results
for this task, improving the performance of other neural network approaches.
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160 C. Martínez et al.

1 Introduction

Cytogenetics is the study of genetic constitution of individuals. At cell scale, a number
of distinct bodies called chromosomes are the objects used to represent the genetic material.
The classification task consists of two steps: (1) taking a microphotograph of a metaphase
cell, where all the chromosomes are disordered and sometimes overlapping, and then (2)
obtaining the karyotype. Considering a normal, nucleated human cell, which contains 46
chromosomes, the karyotype consists of a structure showing the complete set organized
into 22 pairs of matching homologous chromosomes (the autosomes), and two sex chromo-
somes. The pairs of autosomes are ordered by length and designated with class numbers
1–22, whereas the sex chromosomes are denoted by the letters X and Y (pair XX for a nor-
mal female cell, and XY for a normal male cell). Figure 1 shows a typical karyogram of a
normal male cell. This study is a clinical routine in newborns and a very important one in
other cases, since it allows the detection of structural and numerical anomalies of the cell,
which correspond to physical abnormalities or different pathologies of the individual. For a
thorough discussion of biological and genetic aspects, we refer the reader to [1].

In the initial development of an automatic classification system, the number of chromo-
somes of each class in a cell was left aside, what constitutes the so-called context-inde-
pendent (or context-free) classification. In order to resemble the methodology used by the
cytogenetists in the clinical routine, this information can be exploited as a restriction in the
class assignment, thus improving the error rate in the so-called contextual (or context-depen-
dent) classification.

Among others, solutions found in literature consisted of discrete and continuous hidden
Markov models [2,3]; homologue pairing via a maximum likelihood (ML) criterion [4,5] and
Bayesian methods of finding an adequate statistical distribution. For the last case, the model

Fig. 1 Karyogram of a normal
cell in metaphase (images
obtained from the Copenhagen
data set)
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Iterative Chromosome Classification 161

evolved from the classical Gaussian distribution [6,7] to elliptic and quadratically asymmetric
distributions [8]. In the field of neural networks, the multilayer perceptron was applied [9–11]
with the drawback that feature vectors have the same length for all the classes. In order to
overcome this problem, some applications were attempted that worked only with geometrical
features [12] or mappings [13,14]. Other architectures explored include Probabilistic Neural
Network [15], which does not require an intensive training process; and hierarchical systems
to produce a classification from broad groups to each one of the chromosome class [16].

The context-dependent classification involves a rearrangement of the chromosomes in
order to apply the karyotype information, and this operation was also addressed in literature.
A model to pair chromosomes based on a ML classifier was proposed in [17], working only
on normal cells. In [6] the authors compared the performance of a context-independent ML
classifier against a Bayesian classifier that moves chromosomes from one populated class to
other classes with too few chromosomes (with penalties for bad assignments) and an adap-
tation to this problem of the well-known transportation algorithm in linear programming
[18]. More recently, a maximum-weight graph matching for homologue pairing was pro-
posed in [4], which optimize a ML criterion finding all the homologue pairs simultaneously.
The same group then proposed a method that jointly optimizes the classification and pairing
problems based on a three-dimensional ML assignment, including refinements for handling
incomplete cells [5].

This paper describes the development of a new method for the classification of micro-
scopic greyscale images of chromosomes, focused on two main goals. The first one consisted
of adapting a type of connectionist system not extensively explored for the task in literature,
the recurrent neural networks (RNN). These networks have been formulated to cope with
dynamic patterns, in the sense that the input at any time is a small piece of the complete
pattern, and the class assignment of the network is taken after the complete pattern presen-
tation. Using this paradigm, the chromosomes of a cell are first separately classified by the
RNN in a context-independent framework, using a sliding window containing a piece of
the banding pattern as input to the RNN. The second goal was to formulate an algorithm to
apply the restriction to contextual classification once all the chromosomes of a cell had been
previously classified by the RNN. This algorithm looks for the pair of chromosomes of each
class by an iterative method that optimizes the previous results and was called ICC, which
stands for iterative contextual classification.

The organization of the paper is as follows. Section 2 exposes the architecture and operation
of the RNN. Section 3 gives the formulation of the ICC algorithm for contextual classifica-
tion. In Sect. 4, the data set and the feature extraction method are explained. Section 5 shows
the experiments carried out in this work and the results obtained, along with the discussion
drawn from this study. Finally, Sect. 6 concludes the paper.

2 Elman Networks

The formulation of the multilayer perceptron had a great impact on the development of
connectionist models, given that a complete spatial representation of the objects is adequate.
However, in a number of applications, the patterns are built from a temporal series of events,
and they usually have unequal durations. In this work, we adapted the unidimensional concept
of temporal signal processing to the bidimensional field of images, where they can be thought
as temporal series of dark and light bands along the longitudinal medial axis. According to
this reasoning, the time concept is given by the sequence of slices (henceforth, frames) that
form the bands, and the temporal differences in duration are given by the differences in length
between classes, as can be seen in Fig. 1.
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162 C. Martínez et al.

Fig. 2 Illustration of the architecture of the Elman network. The notation xi is used to mean the inputs to the
network, h j and cl means the activations of the hidden and context nodes respectively, whereas ok denote the
outputs of the network

An important issue is how to obtain a good representation of the temporal nature of these
patterns in connectionist models. The multilayer perceptron is clearly not suitable for this
kind of application because it produces an static input-output mapping, and works with pat-
terns of the same length. An approach that provides connectionist models with a type of
memory, where the past events can be used to improve the network decision on the actual
event, is the general proposition of RNN [19–21]. In these models, there exist links from
hidden or output units to the input layer, so a weighted version of the temporal series extends
the input pattern acting as the desired memory.

Among the different RNN proposed in literature, the Elman network (EN) presents some
advantages because of its internal time representation. The connections are mainly feed-
forward such as in a multilayer perceptron, so when processing a pattern, the network receives
a frame in its input layer and propagates the activations to the hidden layer. The activations
of this layer are, as well, forwarded to the output layer, and also forwarded to a set of units
that constitute the context layer. Then, when the following frame is presented to the network,
the activation values of the context layer are also forwarded to the hidden layer. In this man-
ner, the hidden layer takes action by evaluating a kind of augmented input, considering the
actual frame and a history of most recent activations of the network, which is provided by
the context layer [22].

Next, we review the learning process. Let us define the structure of an EN as an input
layer, a hidden layer with its context layer, and an output layer, as shown in Fig. 2. Here,
we denote with N , M and P the dimensions of the input, hidden and output layer, respec-
tively. As the outputs of the hidden layer are copied to the context layer, both have the same
dimension.
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Iterative Chromosome Classification 163

Let Wx = {wx
i j }, Wh = {wh

jk} and Wc = {wc
l j } be the weight matrices for the input-

to-hidden, hidden-to-output and context-to-hidden links respectively; with 1 ≤ i ≤ N ,
1 ≤ j, l ≤ M , and 1 ≤ k ≤ P . The weights for the hidden-to-context links are fixed to 1.

Let us define the linear output of each node as the linear combination of its inputs and
weights, for the output and hidden layer respectively, as:

Ok(t) =
M∑

j=1

wh
jk h j (t), (1)

Hj (t) =
N∑

i=1

wx
i j xi (t)+

M∑

l=1

wc
l j cl(t). (2)

Here, xi is the i th input to the network, whereas the activations of each node are obtained
in the forward pass, as described by the following difference equations:

ok(t + 1) = f (Ok(t)) , 1 ≤ j ≤ M, for the output layer (3)

h j (t + 1) = f
(
Hj (t)

)
, 1 ≤ i ≤ N , for the hidden layer (4)

cl(t + 1) = h j (t), ∀ l = j, for the context layer (5)

where f (·) is a non-linear function, specifically the logistic function f (x) = 1/(1 + e−x )

used in this work. At time t = 0, when the first frame of a new input pattern is presented to
the network, the activations of the hidden and context layer are set to 0.

Once the output of the network was obtained, the second step of the training process is
the backward pass. In this stage, the difference between target and actual values is taken as
the network error, and the accumulation over all the frames of each pattern is the function
the backpropagation tries to minimize.

The error function at the output units, for the complete pattern, is defined as:

E = 1

2

R∑

t=1

P∑

k=1

[
sk(t)− ok(t)

]2
, (6)

where R is the length of the pattern (number of frames) and sk(t) is the target output at time t .
By applying the general error-correction method of the backpropagation with momen-

tum term and the derivative chain rule, the weights are updated according to the following
formulas:

�wh
jk =

R∑

t=1

[
η h j (t) δk(t)+ µ �wh

jk(t)
]
, (7)

�wx
i j =

R∑

t=1

[
η xi (t) f ′j

(
Hj (t)

) p∑

k=1

(
δk(t)w

h
jk

)
+ µ �wx

i j (t)
]
, (8)

�wc
l j =

R∑

t=1

[
η cl(t) f ′j

(
Hj (t)

) p∑

k=1

(
δk(t)w

h
jk

)
+ µ �wc

l j (t)
]
, (9)

with

δk(t) = f ′k
(

Ok(t)
) (

sk(t)− ok(t)
)
. (10)
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164 C. Martínez et al.

Here, η is the learning parameter, which specifies the step width of the gradient descent; µ

is the momentum term, which allows the addition of a proportional amount of the previous
weight change; and f ′(·) represents the derivation of the activation function.

Once a complete pattern has been processed by the network, the activations of the context
layer are reset so when a new pattern is presented, the network does not have the history of
activations of the predecessor.

This learning process is repeated until the error value reaches some satisfactory level.
Figure 2 shows the architecture of the EN employed in this work, whereas details of

implementation and operation of the EN for the chromosome classification task are given in
Sect. 4.2.

3 Iterative Algorithm for Contextual Classification

We formulated an algorithm to restrict the context-independent classification carried out
by the EN to the cell context, so it works with the complete set of chromosomes pertaining
to a cell. Essentially, the algorithm consists of the reassignment of the classes, previously
assigned by the EN, on those chromosomes that were classified with low confidence. The
confidence on the initial classification is based on the values obtained in the output layer of
the network. The main process is implemented by means of an iterative search of the two
chromosomes for classes 1–22 and the sex chromosomes. Iteratively, the particular pattern
that is considered is the pair that obtains the highest combined confidence for a given class
and the reassigned classes until that round. In this way, the karyotype information is taken into
account in order to fix up some erroneous class assignments that could be made by the neural
network. The algorithm was named ICC, which stands for iterative contextual classification.

The requirement of the ICC algorithm is, for each chromosome, a vector with the values
obtained in the complete output layer, normalized so the sum is equal to 1. Henceforth, these
values are referred to as network probabilities. This information is arranged in a N × C
matrix M, where N is the number of chromosomes of the cell and C is the number of classes
to be determined. The network probabilities are then rearranged in decreasing order (denoted
in Algorithm 1 by the function ’reorderProbabilities()’), so the resulting matrix have the
following properties:

C∑

k=1

M(p, k) = 1, 1 ≤ p ≤ N ,

M(p, 1) > M(p, 2) > · · · > M(p, C), 1 ≤ p ≤ N .

The core of the algorithm is the search of a solved class, which is that one with only 2
patterns in the cell having its highest network output probabilities for that class. As an addi-
tional requirement, a minimum bound for both probabilities of 0.8 is set in order to ensure an
initial classification with good certainty. Thus, the ICC considers that the patterns of a solved
class were well classified by the EN, and therefore does not include them in the posterior
class reassignment.

Before the iterative search, the ICC registers all the solved classes resulting from the EN
classification, but those patterns are not considered in advance. In successive rounds, the
algorithm finds the rest of pairs by the renormalization method: for each pattern, their output
probabilities according to the unsolved classes are recalculated. After that, the search of new
solved classes is applied. In the case of no solved class in a round, the ICC finds the pair of
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Iterative Chromosome Classification 165

Fig. 3 Illustration of the
complete preprocessing and
feature extraction method.
(a): original chromosome from
the Copenhagen data set,
(b): superposition of longitudinal
axis and slices (one out of five
slices were drawn for visual
convenience), (c): unfolded
chromosome, (d): pattern of 9
filtering points per slice

(a) (b) (c) (d)

patterns with the highest probability product for a given class, and reassigns those patterns
to the solved classes set. This scheme is repeated until all the classes have been solved.

The ICC does a separate treatment of the sex chromosomes, because normal cells have two
chromosomes (combination X–X for female or X–Y for male cells), for which the search is
restricted to 23 classes: the 22 autosomes plus one sex class, allowing the mentioned combi-
nations. For the classification of abnormal cells, the algorithm takes into account the cases of
cells with a missing chromosome, and with an extra chromosome. For the first case, it looks
for the best 22 pairs and then assigns the remaining pattern to the last unsolved class. In this
way, if the pattern is assigned to the sex class, it receives the X or the Y label according to
its highest output probability. For the second case, once all the classes have been solved with
their corresponding pairs, the extra chromosome is assigned to the class with highest output
probability.

Algorithm 1 lists the complete algorithm for the generic case of a normal cell (the alter-
natives for abnormal cells can be easily sketched).

4 Experimental Framework

4.1 Corpus, Preprocessing and Feature Extraction

The data set of chromosome images used in this work was the Cpa corpus, a corrected
and augmented version of the prior Copenhagen corpus called Cpr.

The corpus contains the segmented images of 2,804 karyotyped human metaphase cells;
1,344 of which are female and 1,460 are male. There is one missing chromosome in 26 cells
and one extra chromosome in 37 cells, and one cell contains 48 chromosomes [8].

The chromosomes may present some bending differences among cells, and the features
need to be extracted in an invariant format, so an unfolding of the chromosome is applied
along its longitudinal axis (the medial line along which the dark and light bands are alternat-
ing). This operation is carried out by re-sampling the image over a series of perpendicular
lines to the axis called slices, placed at equidistant distance. The unfolded version of the
chromosome is generated by horizontally arranging the slices, organized in a column. Figure
3 shows the different stages of the feature extraction method: (a) a chromosome image as
obtained in the metaphase stage, (b) the longitudinal axis and the transverse lines, (c) the
unfolded version of the chromosome, and (d) the features calculated over the transverse lines.
Next is the detailed description of the complete method.
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Data:
N : number of patterns of the cell,
C : number of chromosome classes,
M: N × C matrix of output probabilities given by the EN.

Result:
R = {(t, o)}: N × 2 matrix of pairs (teaching output class, reassigned class) for each pattern.
V : vector containing the solved classes.
T : vector containing the patterns solved.

subroutine SearchSC(M, V, T, c)
c←− false
for 1 ≤ k ≤ C do

if
[
(# of patterns with output class = k) = 2 ∧ (both probabilities > 0.8)

]
then

T ⇐ both pattern index p′
V ⇐ chromosome class k
R⇐ {teaching output of patterns p′, k}
c←− true

end
end
return c

initialization
R, T, V ⇐ ∅

begin
reorderProbabilities(M)
searchSC(M, V, T, c) /* search for solved classes */
while #V < C do /* –> Iterative search <– */

for 1 ≤ p ≤ N, p /∈ T do /* renormalization */

s ←−
C∑

k=1,k /∈V
M(p, k)

M(p, :)←−M(p, :)/s
end
searchSC(M, V, T, c) /* search for new solved classes */
if c=false then /* no classes solved */

reorderProbabilities(M)
P, Q ⇐ ∅
for 1 ≤ k ≤ C, k /∈ V do /* select pairs of patterns */

/* from unsolved classes */

Q(k)⇐ the two patterns with highest probability between all the patterns of class k
P(k)⇐ the probability product of patterns in Q(k)

end
i ←− argmaxi P(i) /* get the best pair */
V ⇐ output class of patterns in Q(i)
T ⇐ patterns in Q(i)
R←−{teaching output of patterns in Q(i),output class of patterns in Q(i)}

end
end

end

Algorithm 1. ICC (iterative contextual classification) algorithm.

A key step in the preprocessing is to derive a good estimation of the longitudinal axis of
the chromosome. Thus, the first operation is to fill the holes present in some images due to
acquisition problems, which could cause some cut of the axis. The filling is carried out by
means of a contour chain algorithm. Other problem in the axis calculus is the rough border,
which could produce an axis with more than two terminals. To solve this problem, two mathe-
matic morphology algorithms, dilation and erosion, are applied to smooth the border. Finally,
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Iterative Chromosome Classification 167

Fig. 4 Illustration of the use of an Elman network for chromosome classification (chromosome image obtained
from the Copenhagen data set)

to obtain the axis, the skeletonization of the chromosomes [6,23] is applied in a sequence of
three steps. The first one consists of obtaining a first approach of the skeleton by means of
the Gonzalez–Woods algorithm [24]: it iterates two passes on the contour points to mark and
delete them if a number of requirements are met, which prevent excessive erosion or obtain-
ing disconnected points. The obtained skeleton has all the points within the chromosome, so
the second step consists of extending the ends of the skeleton until covering the total length
of the chromosome, in tangent direction at each end point. This skeleton is 4-adjacent, so the
third step is to clean some points by the application of the Hilditch algorithm [25] in order to
obtain an 8-adjacent axis. This algorithm scans the chromosome from left to right and from
top to bottom, checking a series of conditions to flag the contour points and delete those that
do not belong to the skeleton.

This study deals with the characterization of band patterns for each class working in a
local manner, so we introduce here a new set of measurements of grey values in each slice,
which constitute a frame. The measurements consisted of the output of a 2-D average filter.
The set was composed of 9 filtering points uniformly spaced between the beginning and the
end of each slice (which is usually larger than 9 pixels), perpendicularly to the medial axis.
The filter applied to the image f (x, y) had the following form:

g(x, y) =

a∑
s=−a

b∑
t=−b

ms+a,t+b f (x + s, y + t)

a∑
s=−a

b∑
t=−b

ms+a,t+b

, (11)

with a = b = 2 and ms,t being the coefficients of a weighted averaging spatial mask with
the following distribution:

m =

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 1
1 2 16 2 1
1 2 2 2 1
1 1 1 1 1

⎤

⎥⎥⎥⎥⎦
,
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where the decreasing weights from the center reduce the blurring introduced in the sampling
process [24].

In Fig. 3(d), the slices are drawn in the horizontal lines, with the 9 points of the frames
given by the pixels of each line.

4.2 Neural Networks

For the operation of the Elman networks, we proceed as follows. The banding pattern of
the chromosomes is given by the slices of filtering points as obtained in the previous section.
One way of network processing is to feed the input layer with the slices, one per time, and
apply the algorithms described in Sect. 2 for training and testing. In a preliminary work [26]
it was demonstrated that the network performance is greatly improved if the input layer is fed
with a small portion of the banding pattern made up of a number of consecutive frames, con-
stituting a moving-window over the image. The window is composed by arranging the frames
consecutively as a vector, where the index 1–9 of the window contains the first frame, index
10–18 the second frame and so on. At each time, the window serves as input to the network,
so the network is allowed to work not only with the actual frame under analysis, but also
with a local context of the banding pattern. The sliding movement of the window resembles
the temporal behaviour of the input pattern processing: once a window has been processed,
a new window is taken from the next frames. In this work, the window is comprised of the
concatenation of 5 consecutive slices.

The topology of the network implemented in this work consisted of an input layer of 45
units, in order to fit a moving-window of 5 frames, with 9 points each. The hidden layer
had a variable number of units, which was adjusted in the experiments. The activations of
the hidden units are copied on a one-to-one basis, so the context layer had the same number
of units that the hidden layer. The output layer had 24 units, one for each of the classes to
manage, without context layer.

The weights of the forward connections were randomly initialized from the interval
[−1.0, 1.0]. The context units extend the input layer by feeding back the outputs of the
hidden layer with non-trainable weights fixed to 1.0 [22], and there are no self-recurrent
links from the context units to themselves.

As was detailed in Sect. 2, the standard backpropagation algorithm with momentum-term
for partial recurrent networks was used as the learning function. After initial experiments for
parameters adjustment, the learning rate parameter was set to 0.2 and the momentum term
to 0.1. The maximum difference d j = t j − o j between a teaching output t j and the value
o j of each output unit was set to 0.1, meaning that values above 0.9 were treated as 1, while
values below 0.1 as 0, preventing overtraining of the network.

Figure 4 illustrate the use of EN for chromosome classification, as used in this work. The
window is shown with the frames rotated by 90 degrees with respect to the medial axis of
the chromosome.

5 Results and Discussion

For all the experiments, the classification performance of the systems was evaluated
through the classification error rate (CER), considering the error on the test-set as given
by CER = w/(w+ r)× 100%, where w is the number of patterns wrong classified and r is
the number of those correctly classified.
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Fig. 5 Results for the adjustment
of the network architecture,
changing the size of the hidden
layer. The minimum error rate
obtained was 5.7%, for 200
neurons
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Fig. 6 CER’s mean and standard deviation (central and end marks) for each chromosome class, as obtained
from the seven partitions of the context-independent cross-validation experiment

The operation of a network strongly depends on the chosen structure and the selected
parameters. Initial experiments to adjust the size of the hidden layer were carried out on a
neural network (prior to the complete experimentation) using a subcorpus of the complete
training set. The number of hidden units was changed from 50 to 250 units and each time the
network was trained up to the generalization point. The optimum number of hidden units was
found as the one that allows for obtaining the minimum CER. This fixes the network archi-
tecture for the remaining experiments to 45/200/24 (number of input/hidden/output units),
as shown in Fig. 5.

The experiment with the complete database is made in two stages. The first one consists
of the chromosome classification in a context-independent framework, as performed by the
EN. The second one corresponds to the restriction to cell-context classification, as given by
the application of the ICC algorithm.

For the context-independent stage, a cross-validation strategy in seven disjoint partitions
was applied, in order to reduce the bias in the estimation of the classifier performance. Each
partition consisted of 400 cells for the test set, and the remaining 2,400 cells have been used
for the training set. Seven different networks were trained using these partitions.
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Fig. 7 CER’s mean and standard deviation (central and end marks) obtained after the application of the ICC
algorithm

Table 1 Results for the complete cross-validation experiment

Mode p1 p2 p3 p4 p5 p6 p7 Mean

Context-independent 6.0 6.7 6.1 8.3 7.5 5.6 6.8 6.7

Context-dependent 3.6 3.8 3.7 4.9 4.8 2.7 4.0 3.9

In rows, the CER for the context-independent classification and after the application of the
ICC algorithm. In columns, each one of the p partitions of the experiments

Figure 6 summarizes some statistics of the CER value as obtained in the context-
independent experiment. For each chromosome class, the error bars indicate the CER’s arith-
metic mean (central mark) and the standard deviation (end marks) of the seven partitions.
This figure clearly shows the natural difficulty of the chromosome classification task for the
EN, where some classes (i.e., 17 and 22) are being considerable better estimated than others
(i.e., 2 and 20). Also it can be observed the large dispersion in the results between partitions
for some classes, where CER values above 20% are reached.

The context-independent error rate for the complete experiment was 6.7%, obtained as
the arithmetic mean CER of the seven partitions. The ICC algorithm was then applied to
the context-independent results, producing a mean CER of 3.9%. Table 1 summarizes the
results obtained for each partition, contrasting the two approaches. Figure 7 shows the mean
and standard deviation for the seven partitions, as in Fig. 6. It can be easily observed the
improvement in the CER for each chromosome class, and the significant reduction in the
dispersion of the results between partitions.

The computational cost of the EN training of each partition was approximately 600 CPU
hours on a Pentium IV-based PC. The application of the ICC algorithm takes a mean time of
1.6 ms per cell, depending on the previous network classification.

In order to validate our results and the performance of the ICC algorithm proposed here,
we evaluated the statistical significance of the error rates for the context-independent classi-
fication (εci ) versus that obtained after the application of the ICC algorithm (εcd ) [27]. We
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Table 2 Results for different classifiers using Copenhagen chromosomes

System Test-set error

Multilayer perceptron with reduced-sized output layer [11] 11.7(%)

Standard multilayer perceptron [10] 6.5(%)

Hierarchical neural network [16] 5.6(%)

Continuous hidden Markov model-ICC [3] 4.6(%)

Elman network-ICC (this work) 3.9(%)

obtained that Pr(εci > εcd )> 99.999%, showing the important benefit of the application of
the ICC algorithm in the classification.

For comparison purposes with the other neural networks approaches working with the
Copenhagen chromosomes, we present in Table 2 the summary of results for our work; a
multilayer perceptron with a reduced-sized output layer proposed in [11]; a standard mul-
tilayer perceptron with one hidden layer proposed in [10]; and a hierarchical system that
classifies the patterns firstly in 7 major groups of classes, and then in one of the 24 karyotype
classes, proposed in [16]. Also, results of previous work with the use of continuous hidden
Markov models as the context-independent classifier [3] are included. As can be seen, the
system proposed in this work improves the error rates of the above-mentioned systems. This
allows us to validate the hypothesis that the dynamic treatment of the patterns carried out by
the recurrent neural network would add rich information to the classification.

With respect to the state-of-the-art results, the performance obtained in this work con-
stitutes, to our knowledge, the best results obtained using the standard preprocessing tech-
nique and only taking into account the banding patterns. Regarding this subject, in [26]
we showed that the recurrent neural network clearly outperforms the multilayer perceptron
when using only the banding pattern as input. Instead, the context-independent classification
could be improved if other widely employed features (e.g., global measurements, centromer-
ic index) were used together with other well-known classifiers for this task. In this sense,
the preliminary classification of each chromosome is relatively more important to determine
the final error rate than the re-arrangement stage, because the ICC performance depends
exclusively on the output probabilities assigned for every class.

The ICC algorithm applied here obtains a mean reduction of about 50% over the context-
independent error rate (3 points), as it was presented in Table 1. This is a good performance
for a re-arrangement method, given that in [6] the authors found that the transportation
algorithm reduced the error rate but in a rather small amount (from 6.5% to 4.4% on the
Copenhagen dataset). The assignment approach that combine the classification and pairing
of chromosomes proposed in [5] performs better than the transportation algorithm (nearly
33%, because this last method does not exploit the feature similarities within a cell), obtaining
reductions of about 3 points.

In order to lower the error rate we have to deal with statistical robustness. In [8] the
authors presented other complex, ad-hoc preprocessing technique, the dominant points that
use a different axis calculation, combined with the variants method which obtains multiple
feature vectors by chromosome and allows to process the ambiguities that could appear in the
feature extraction process (e.g., polarities). The method obtains an error rate of 0.61% using
a statistically robust model (with elliptical symmetry) on the Cpa corpus, and an error rate of
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1.8% on a personal dataset called Pki [28]. An open question is to investigate if these lower
rates could be achieved with a system based on neural networks that combine the advantages
of statistical robust models and proper treatment of outliers.

Even though the chromosome images of the corpus had been acquired at different times,
and they have also some flaws due to segmentation errors of overlapping chromosomes, the
preprocessing and feature extraction presented here have proved to be robust against vari-
ability in the images. This scheme overcomes the robustness limitations reported by other
authors [7].

There is also a subtle issue about a piece of information also provided by the Cpa corpus.
The karyogram as shown in Fig. 1 have all the chromosomes oriented top-down in a particular
form: the short arm is located above the long arm, with the centromere being the constriction
that separates both arms, in some classes located in the center of the chromosome whereas,
in others, is located eccentrically. The orientation, or polarity, is the same in the training and
testing phase, so the system does not take into account the polarity information as in [7].
Other works make of the polarity an issue that must also be solved by the classifier, which is
known in the training phase and estimated in the preprocessing step for testing [17], or the
above-mentioned method of variants is applied [29].

The behavior of the ICC algorithm depends to a great extent not only on the winner class
obtained by the neural network for each chromosome but also on the complete vector of
network probabilities of matrix M . Thus, the classification of the complete cell must be
made with good accuracy mainly in the first places of these vectors, in order to accomplish
a subsequent rearrangement that significantly lowers the error rate. The complete method
achieves, for 68% of the cells, a correct classification of 100%, obtaining reductions of more
than 10% in the error rate. 21% of the cells could not be classified with high accuracy by
the neural network, and the method reduces the error rate but the cells are not classified with
100% of accuracy. On the other hand, for 7% of the cells, the application of the ICC obtains
the same error rate that the previous one obtained by the neural network, whereas 4% of
the cells are finally worse classified. Figure 8 show the confusion matrix before and after
the application of the ICC algorithm, for a good and a bad example of two normal cells: we
represent in rows the chromosomes and in columns the karyotype classes, with the black
boxes meaning a correct classification, and the gray boxes meaning an error. In the first case,
the neural network achieves 89% of correct classification and the ICC is able to correct all
the previous errors. In the second case, the neural network assigns two extra chromosomes to
class 7 (chromosomes number 12 and 15). Then, the ICC algorithm chooses two of the four
chromosomes in this class to move them, but the wrong pair is chosen (chromosomes number
14 and 15). This introduces an error on chromosome 14 while maintaining the previous errors
on chromosomes 12 and 15, so that the accuracy of the classification is reduced from 95%
to 93%.

6 Conclusions and Future Works

A new approach to chromosome classification was proposed based on an almost unex-
plored neural network for this task. The EN has managed to work with a type of local
information along the chromosome: a sampled version of the banding pattern. This informa-
tion is treated as a temporal unidimensional vector, where the time concept resembles the
way the chromosome image is explored along its longitudinal axis. Therefore, the EN can
manage patterns of different lengths, a key characteristic of the karyotype, and is a drawback
with the multilayer perceptron-based approaches. This paper presents follow-up research on
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Fig. 8 Confusion matrix for two cells showing the context-independent classification on the left and context-
dependent on the right. The first cell was classified with an accuracy of 89% by the neural network (a), after
corrected to a 100% by the ICC algorithm (b). The second cell obtained a 95% by the neural network (c), after
reduced to 93% (d)

a preliminary work in which the EN was applied to context-independent chromosome clas-
sification [26], with promising results on a reduced set of the complete corpus considered
here.

A context-dependent classification method, the ICC (iterative contextual classification)
algorithm was formulated. It performs a relabelling of the classes assigned by the EN by using
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the karyotype information for a number of expected chromosomes for each class in a cell.
The method proposed here provides a significant improvement with respect to other neural
network works reported by different authors in this context, and also outperforms the results
obtained by the authors using continuous hidden Markov models as the context-independent
classifier.

The results obtained constitute a very good performance for this task, considering that
the preprocessing and feature extraction scheme was attempted in order to follow the guide-
lines reported in the literature. In addition, by working only with the banding profiles, the
complexity and computational cost of the feature extraction block was reduced.

Some improvements could be applied to the system in order to obtain a lower context-inde-
pendent error rate, which would facilitate the relabelling performed by the ICC algorithm.
In the feature extraction stage, for example, the skeleton technique used to obtain the lon-
gitudinal axis has the disadvantage of being non-parametric. This causes some problems in
the slice calculation, which can be seen mainly in short chromosomes and in several-bended
chromosomes (almost circle-shaped), and could be overcomed with a parametric approach
as it was explored in [8,29]. Also, new features like Fourier or wavelet descriptors or the
canonical pattern of all the chromosomes as in [4], could be incorporated in order to add
useful information to the classification stage.
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