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Abstract 

The most successful classifiers for automatic speech recognition are those which can 
handle sequential data, such as sequences of fixed dimensional vectors. In the last few years, 
alternatives to hidden Markov models, the de facto classifier, have been considered. The 
search for alternative classifiers has to do with deficiencies encountered in the standard 
scheme, such as a degradation in performance with noise. One particular classifier that has 
been successfully applied to sequential data is the support vector machine. In this paper, two 
sequence kernels are considered, and their performance compared to various other classifiers, 
on an isolated digit speech recognition task.    

1. Introduction 

The majority of classifiers tend to work with non-sequential data. This can cause 
problems in such applications as automatic speech recognition, biosequence classification, and 
text categorization, where the data is naturally variable-lengthed and sequential in nature. 
Different methods have been proposed to handle sequential data, either by adapting an 
existing classifier, e.g. using a fixed-sized feedforward neural net and windowing the input, or 
designing the classifier from the outset to handle sequential data, e.g. dynamic time warping 
and hidden Markov models (hmm). The field is one of active research [1].  

Since their creation, about fifteen years ago, support vector machines (svm) have given 
excellent classification results on a wide variety of tasks, and have an impressive theoretical 
foundation, which goes someway to showing why they are able to generalize so well. Initially, 
their application was essentially to non-sequential data, however in recent years ways have 
been found to extend their application to sequential data.  

Perhaps the first example of this was in [2], where the Fisher kernel was introduced and 
defined from a generative model, such as a hmm. It was also shown, than under certain 
conditions, the svm using this kernel was guaranteed to give results that were no worse than 
the original generative model. Since then, different svm have been applied to automatic 
speech recognition, some adapting an svm, such as [3,4,5], and others by introducing new 
kernels to work with the svm [6,7,8]. Usually the application has been to phoneme 
classification.  

Further research is required in order to decide whether these methods will provide a 
viable alternative to the standard hmm classifier for sequential data tasks. In the present 
paper, two sequence kernels are considered and their performance is compared to various 
other classifiers, on an isolated digit speech recognition task. The sequence kernels are also 
derived from generative models, specifically Gaussian mixture models (gmm), and were 
motivated by [8].  

The paper is organized as follows: in the next two sections brief discussions of the data 
and the methods used in the paper are given. The results are then presented  followed by 
some conclusions. 
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2. Data 

The data used for the experiments reported in the paper consists of isolated Spanish 
digits obtained from 6 young Mexican adults, 5 male and 1 female, and were previously 
employed in [9]. The recordings were made in a normal office environment and the recording 
quality varied amongst the utterances. A sampling frequency of 16 kHz was used and the 
waveforms were converted to vectors with 13 coefficients, 12 mfccs and log energy, using 
frames of length 256 with an overlap of size 128. Roughly 66% of the data was used for 
training and the rest for testing. In the training set there were 396 digits containing a total of 
19,718 vectors, and the test set had 197 digits with 9,896 vectors.  

3. Methods 

Gmm and svm were used as the classifiers, and were applied both in a framewise fashion 
and using the sequential vectors corresponding to each digit. In the case of svm classifiers, 
three different kernels were used, two of them derived from the gmm. The classifiers 
considered are now described.  

3.1. Gmm classifiers 

A mixture model, M, consists of a weighted sum of N Gaussian densities N(μ,Σ), each 
parameterized by a mean vector μ and a diagonal covariance matrix Σ. The gmm therefore had 
the form: 
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where P(x | M) is the likelihood of input vector x∈ ℜ13 given the mixture model, M. The 
coefficients, ai, are the mixture weights, which are constrained to be nonnegative and must 
sum to one.  

The parameters ai, μi, and Σi for i = 1,..., N of M were estimated using the netlab 
software [10] on suitable data. Ten separate gmm were estimated, one for each digit 
class, using training data from the corresponding class. The gmm all had the same 
number N of Gaussian densities. 

For the case of framewise classification, a vector x was assigned to the digit class whose 
mixture model, M, had a likelihood, P(x | M), with maximum value. 

For a given vector sequence X = {x1,x2,...,xm}, the likelihood of the sequence X, given 
the mixture model M, was calculated under the assumption of their independence as: 

 ∏
=

=
m

k
k MxPMxP

1
)|()|(  (2) 

A vector sequence X was assigned to the digit class whose likelihood was maximum. 

3.2. Svm classifiers 

The basic idea of svm classifiers, for a two class classification problem, is to map the 
data in each class into linearly separable sets in a higher dimensional inner product vector 
space, called the feature space. A separating hyperplane is then found in feature space which 
maximizes the minimal distance, known as the margin, between the hyperplane and the 
closest points of the classes to it. New patterns are then classified according to the side of the 
hyperplane they are mapped to. If φ is the transformation, then the function k, is defined using 
the inner product <,> in feature space by: 

 k(x,y) = <φ(x),φ(y)> (3) 
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k is called a kernel. The kernel is in fact defined on the original data, and in earlier applications 
of svm classifiers was often defined implicitly, without further mention of the transformation; 
conditions can, in fact, be given on a function which assure that the function satisfies (3) i.e. is 
a kernel (c.f. [11]). Although the explicit use of the transformation φ is not required, it does 
enable us to gain a geometrical understanding into the svm method. Further, the two 
sequence kernels used in the paper are defined with explicitly formulated transformations.        

One way to formulate the two-class svm classifier mathematically is through the 
following quadratic optimization problem [9, 12]: let D = {x1,x2,…,xm} be a data set where 
each pattern xi belongs to one of two classes yi ∈ {-1, +1}, and k a kernel. It can be shown 
that by maximizing the following objective function: 

 W(α1,…,αm) = )x,k(xyyαα
2
1α ji

m

1i
jij

m

1ji,
ii∑ ∑

= =

−  (4) 

subject to the constraints 

0
m
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=
≤≤  

a suitable hyperplane can be found in feature space which is used to perform the classification. 
The constraint C is introduced in case the data is not linearly separable in feature space, 
perhaps due to the presence of noise or outliers, and is known as a soft margin. It represents 
a trade-off between maximizing the margin (as explained above) and minimizing the 
classification error on the training set. For an optimal solution {α0

i } to (4), it is found that for 
the points which lie on or within the margin, or are incorrectly classified, α0

i  > 0. These points 
are called support vectors. The rest of the points have α0

i  = 0.    

Classification of a test pattern x is given by designating its class to be the sign of: 

 b)xk(x,αy ii
0m

1i
i +∑

=
 (5) 

where b is a constant whose value can be found from the optimal solution to (4) (c.f. [12]).   

The svm classifiers above are defined for a two-class classification problem. One way to 
extend this to a ten-class classification problem is using a '1 vs. rest' strategy; that is, ten 
different two-class svm classifiers are found by successively solving (4) for the training data in 
one of the original classes and grouping the rest of the training data from the other classes. In 
this way, a different function in (5) is obtained for each class. A test pattern is then classified 
as belonging to the class with the maximum function value.    

The software used for configuring the svm classifiers was libsvm [13]. 

3.3. The kernels 

Three kernels were used for svm classifiers. The first was for framewise classification of 
the individual vectors, where a radial basis kernel (rbk) was employed and defined by:  

 k(x,y) = exp(-σ||x-y||2) (6) 

where x,y∈ ℜ13 and σ ∈ ℜ.  

For each of the sequence kernels, the following strategy was employed, based originally on the 
definition of the Fisher kernel [2], and specifically on that using a generative gmm model given 
in [8].  

Firstly, ten gmm, Mi, for i=1,…,10, were trained for each digit class, using the training mfcc 
vectors of the class in question. Each gmm had the same number, N, of Gaussians and all had 
diagonal covariances. Given a vector sequence X = {x1,x2,...,xm}, from (2) we have: 
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The kernel makes use of the first derivative of the log likelihoods with respect to the 
parameters of a generative model, which in turn is a function on the space of sequences X. 
Following [8], we take the generative model as the gmm Mi, and, in this case, the parameters 
are the mixture weights, means, and diagonal covariances. Hence, for each gmm Mi, we 
initially define this function, ψi(X), on the space of sequences X by: 
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for j*=1,…,N and l*=1,…,13. Wan [8] gives the following formulas for calculating these values, 
which we shall include for completeness (note that the corresponding code can be obtained 
from his website): if M is a gmm with diagonal covariances, then defining R(i,j) as:  
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so that the diagonal covariance gmm likelihood is: 
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Wan obtains the following: 
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Finally, the transformation used to define the first sequence kernel is: 

 φ(X) = (ψ1(X),ψ2(X),…, ψ10(X)) (14) 

and the kernel is defined as in (3) using the usual Euclidean inner product. In this case, as 
each ψi(X) has dimension 27N, the Euclidean space is of dimension 270N. 

The second kernel is similar to the above, but instead of using all the values for each 
function, ψi(X), only the components corresponding to the partial derivatives with respect to 
the means are included. This reduces the dimension of the Euclidean space to 130N.  

4. Results 
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Two framewise classifiers, one a gmm and the other a svm with rbk, where configured 

on the 19,718 mfcc vector training data, and tested on the remaining 9,896 vectors. Table 1 
shows the results obtained choosing a different number of Gaussians for each model. The 
results for the framewise gmm on the test vectors is shown in the second column. These are 
averaged over 10 repetitions.  

The task is digit classification, so although the classifier assigns a particular class to a 
test vector, some way has to be chosen to decide what digit a sequence of vectors represents. 
Both here, and for the framewise svm, the class assigned is that which is assigned to the 
majority of the test vectors in the sequence; this is shown in third column of Table 1. Although 
it is not shown in the table, the best classification rate achieved was with N = 30 giving 
98.98% for the majority vote gmm and 59.33% with the framewise gmm. 

In the case of the framewise svm, after some experimentation, C=10 and σ = 0.005 
were the values selected for the parameters. With these values, the framewise classification 
rate was 66.94% , and the majority classification rate was 98.98%.  

Sequential classifiers with gmm, and two svm with the two sequence kernels described in 
the previous section, were trained on the sequences of mfcc vectors corresponding to the 396 
digits, and tested on the vector sequences of the 197 digits. This was repeated 10 times each, 
and the results shown in Table 2 are the averaged values. Each row corresponds to gmm with 
different numbers, N, of Gaussians. The third and fourth columns give the results for the svm 
using the first and second kernel, respectively, and taking the gmm with the corresponding 
number of Gaussians as its generative model. 

5. Conclusions 

In the present paper two sequence kernels were considered and applied to a problem of 
isolated digit classification. The results were also compared to a variety of other classifiers. 

For the framewise classifiers, it is interesting to see how their results, in column 2 of 
Table 1, improve when even a simple scheme is chosen for extending them to the sequential 
data. The same is true for the sequential gmm of Table 2, although here for the same 
parameters (i.e. values of N) the results are significantly better. The framewise svm, in 
particular, achieves the best result with the majority voting scheme. 

Table 1. Results of framewise gmm on the test digit data, averaged over 10 repetitions 

Number of Gaussians N % framewise gmm % majority vote gmm 

1 31.56 50.25 

2 35.16 62.44 

3 35.59 64.87 

4 38.36 72.79 

10 47.56 91.88 

Table 2. Results of sequential classifiers on the test digit data, averaged over 10 repetitions 

Number of Gaussians N % gmm % svm full % svm means 

1 69.54 90.86 87.81 

2 81.22 93.91 94.26 

3 83.96 95,99 96.19 

4 88.68 94.92 96.19 
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For the sequential classifiers, good results are obtained for both of the svm when using 

gmm with a small number of Gaussians (less than four). The idea for using the second kernel 
was to see if the complete transformation was really required in order to obtain good 
classification rates; Table 2 indicates that the second kernel has a similar performance to that 
of the first. 
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