
 

 

 

 

 

Polynomial Approach to Nonlinear Predictive GMV Control 
 

M. J. Grimble, P. Majecki and L. Giovanini 

Abstract—A simple approach is described for the design of 

nonlinear predictive controllers. The Nonlinear Predictive 

Generalized Minimum Variance (NPGMV) control algorithm is 

introduced for nonlinear discrete-time multivariable systems. 

The system is represented by a combination of a stable 

nonlinear subsystem where no structure is assumed and a linear 

subsystem that may be unstable and modelled in polynomial 

matrix form.  The multi-step predictive control cost index to be 

minimised involves both weighted error and control signal 

costing terms. The solution for the control law is derived in the 

time-domain using a very nonlinear operator model of the 

process.  The controller includes an internal nonlinear model of 

the process but because of the assumed structure of the system, 

that has a linear disturbance model, the polynomial equations 

for the predictor are linear.   

I. INTRODUCTION 

 The aim is to introduce a relatively simple controller for 

nonlinear systems and one that has some of the advantages 

of the popular polynomial based Generalised Predictive 

Control (GPC) algorithms.  It is well known that nonlinear 

systems have more complex behaviour than linear systems 

including limit cycle responses and chaotic behaviour.  The 

proposed controller does not rely on local linearization and 

it provides a global optimal control solution.        

 The linear model based predictive control (MBPC) 

approach has been applied very successfully in the process 

industries, where it has improved the profitability and 

competitiveness of a production plant.  It has been used to 

improve performance in difficult systems which contain long 

dead times, time-varying system parameters and 

multivariable interactions.  The most popular predictive 

control algorithms are Dynamic Matrix Control (DMC) [1], 

Generalized Predictive Control (GPC) [2,3] and the 

algorithms of Richalet  [4,5].  The relationship between LQ 

optimal and predictive control was explored in [6].   

 The GPC controller was originally obtained in a 

polynomial system form. The control strategy developed 

here also builds upon previous results on Generalised 

Minimum Variance (GMV) control.  A Nonlinear 

Generalized Minimum Variance (NGMV) controller was 

derived recently for nonlinear model based multivariable 

systems.  The assumption was made that the plant model 

could be decomposed into a set of delay terms, a very 

general nonlinear subsystem that had to be stable and a 

linear subsystem that could be represented in polynomial 

matrix or state equation form and include unstable modes.   

This problem was analysed in [7-9].  
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The major development over the basic NGMV control law 

involves an extension of the NGMV cost-index to include 

future tracking error and control costing terms in a GPC type 

of problem where the linear sub-system of the plant model is 

represented in polynomial matrix equation form.  When the 

system is linear the controller is equivalent to a GPC 

controller that is used in many applications.  There is a rich 

history [10,11] of relatively recent research on nonlinear 

predictive control but the proposed approach is somewhat 

different, since it is closely linked to the NGMV design 

philosophy. 

II. SYSTEM DESCRIPTION 

 The assumed model for the plant can be severely nonlinear 

and dynamic and may have a very general form but the 

disturbance model is chosen to be linear so that relatively 

simple results are obtained.  This is not restrictive, since in 

many applications the model for the disturbance signal is 

only an LTI approximation.  The system shown in Fig. 1 

includes the nonlinear plant model together with the linear 

reference, measurement noise and disturbance signals.  The 

signals ( )v t  and ξ( )t  are vector zero-mean, independent, 

white noise signals.  The measurement noise signal { ( )}v t  

has a constant covariance matrix: 0= ≥T
f fR R  and the 

disturbance white noise source { ( )}tξ  has an identity 

covariance matrix.   
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    Fig.1:  NPGMV 2-Degrees of Freedom Feedback Control  

 

  The plant model can have a very general nonlinear 

operator form, which might involve hard nonlinearities, a 

state-dependent state-space model, transfer operators or 

even nonlinear-function look up tables.   

Nonlinear Plant:  ( ) ( ) ( ) ( )1k1

−
=

k
u t z u tW W                (1) 
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where 
k

z I
−

 denotes a diagonal matrix of the common delay 

elements in the output signal paths.   

The output of the non-linear subsystem 1kW  will be denoted 

( ) ( )( )0 1k u t u t=
�

W .  For simplicity the nonlinear subsystem: 

1W  is assumed to be finite gain stable but the linear 

subsystem, denoted: 0 0k
k

W z W
−= , is introduced below and 

can contain any unstable modes.   

A. Linear Subsystem Polynomial Matrix Models 

 The polynomial matrix system models, for the ( r m× ) 

multivariable system may now be introduced.  The sub-

systems to be defined are associated with any linear sub-

system 0W  in the plant model and the linear disturbance 

model.  The CARMA model, representing the linear 

subsystem of the plant model in GPC design, is defined as: 

ξ− − −= − +1 1 1
0k 0( ) ( ) ( ) ( ) ( ) ( )dA z y t B z u t k C z t  (2) 

where { ( )}ξ t  and the input signal channels in the plant model 

are assumed to include a k-steps ( ≥ 0k ) transport delay and 
− − −=1 1

0 0k( ) ( ) kB z B z z .  The delay free plant transfer of the 

linear sub-system, referred to above and the disturbance 

model may therefore be defined, without loss of generality, 

in the left coprime unit-delay operator form:   

1 1 1 1 1 1
0k 0k[ ( ) ( )] ( ) [ ( ) ( )]− − − − − −=d dW z W z A z B z C z  (3) 

For later use introduce a cost-function weighting model in 

left coprime polynomial matrix form, as −=
C

1
0 cd cnP P P .  The 

weighted output: −= 1

0( ) ( ) ( )cpy t P z y t : 

ξ−= − +1
0 00( ) ( ( ) ( ))cp k dy t P A B u t k C t  (4) 

The arguments of these polynomial matrices are often 

omitted.  The power spectrum for the disturbance and noise 

signal = + = ξ +df d v W v  can be computed, noting these 

are linear, using: 
*

ff dd vv d d fФ Ф Ф W W R= + = + , where the 

notation for the adjoint of dW  implies: * 1( ) ( )T
d dW z W z− =  

and only in this case z represents the z-domain complex 

number.  The generalized spectral-factor fY  may be 

computed as 
* = Φf f ffY Y , where 

1
f fY A D

−= .  Assume 

models are such that fD   is a strictly Schur polynomial 

matrix that satisfies:  

* * *
f f d d fD D C C AR A= +  (5) 

 The model for the disturbance signal is linear, which is an 

assumption that does not affect stability properties.  It is well 

known that the signal: f d v= +  may be modelled in 

innovations signal form as: ( ) ε( )ff t Y t= , where 

1−=f fY A D  is defined by the spectral factorisation (5) and 

{ε( )}t denotes a white noise signal of zero-mean and identity 

covariance matrix [12].  The system description may be 

assumed to be such that fD  is strictly Schur.  The 

observations signal may therefore be written, using (2) and 

the innovations signal model, as: 

( )z t  ε−= − +1
0k 0( ) ( )fA B u t k Y t  (6) 

Define the right coprime model for the weighted factor:                         

1 1 1 1 1
0c ( ) ( ) ( ) ( )

− − − − −=f fp fP z Y z D z A z  (7) 

The weighted observations signal: 1
0c( ) ( ) ( )pz t P z z t−=  or                           

ε−= − + 1
0 0k 0c( ) ( ) ( )p ffpz t P W u t k D A t  (8) 

B. Optimal Linear Predictor Problem 

 The solution of the optimal control problem requires the 

introduction of a least squares predictor.  This enables the 

inferred output y at times: t + k + 1, t + k + 2,. to be 

calculated (assuming that the disturbance at future times is 

null).  The prediction error cost-function to be minimised,   

2{ ( | )pJ E y t j t= +�  (9) 

The estimation error: 

ˆ( | ) ( ) ( | )p p py t j t y t j y t j t+ = + − +�  (10) 

and  +ˆ ( | )py t j t  defines the predicted value of ( )py t at a 

time j steps ahead.  The following Diophantine equation 

must be solved for the solution: ( , )
j j

E H , jE  smallest 

degree: 

1 1 1 1( ) ( ) ( ) ( )j k
j f j fpE z A z z H z D z− − − − − −+ =  (11) 

This equation may be written in the transfer operator form: 

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )j k
j j f fp fE z z H z A z D z A z− − − − − − − − −+ =  (12) 

Weighted Observations:  Substituting from (6), (8), (11): 

( )pz t ε= − +0 0k 0c ( ) ( )jP W u t k E t

( )− − − − −+ − −1 1 1
0k 0( ) ( )j k

j f f fz H A Y z t D B u t k

ε − − −= + 1
0c( ) ( )j k

j j fpE t z H D P z t  

( )− − − − −+ − −1 1 1
0 0k 0k 0c ( )j k

j f fP A B z H A D B u t k     

Weighted Output Signal:    To obtain the expression for the 

weighted output note 0c( ) ( )pz t P z t= ( ) ( )p py t v t= + , where 

0c( ) ( )py t P y t=  and 0c( ) ( )pv t P v t= .  Thence, 

( )pz t ε − − −= + 1( ) ( )j k
j j fp pE t z H D z t  

( )− − − −+ − −1 1
0 0k 0c ( )j k

f f j f fP Y A z H A D B u t k                      (13) 
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but from (7): 0 =f f fpcP Y A D  and from (12) and (13): 

ε − − −= − + 1( ) ( ) ( ) ( )j k
p j p j fp py t E t v t z H D z t     

( )− − − −+ − −1 1
0k 0( )j k

fp j f fD z H A D B u t k  

Thence, using (11), the +j k  steps ahead weighted output: 

  ( )py t j k+ + ε −= + + − + + + 1( ) ( ) ( )j p j fp pE t j k v t j k H D z t  

−+ +1
0k 0( )j fE D B u t j   (14) 

To simplify the equations define the right coprime model: 

1 1 1 1 1 1
1k 1 0k( ) ( ) ( ) ( )f fB z D z D z B z− − − − − −=  (15) 

Let signal: 1 1
1 0( ) ( ) ( )f fu t D z u t− −= , then (14) is written as: 

  ( )py t j k+ + ( )1( ) ( ) ( )j pE z t j k v t j kε−= + + − + +    

 1 1 1 1 1
1k( ) ( ) ( ) ( ) ( ) ( )j fp p j fH z D z z t E z B z u t j− − − − − + + +   (16) 

The maximum degree of the polynomial matrix jE  is 

1j k+ − and hence the noise components in ( )jE t j kε + +  

includes: ( ) ,..., ( 1)t j k tε + + ε + , which are at future times.    

C.  Derivation of the Predictor 

 Consider the case where the measurement noise term ( )v t  

is zero.  The optimal predictor of the output at time 

t j k+ + , given observations up to time t, can now be 

derived.  The observations, up to time t are known and the 

future values of the control inputs: 0( )u t ,.., 0( )u t j+  used in 

the predictor are computed at time t, and hence the future 

control input is independent of the future disturbance and 

noise sequence.  It follows that the expected value of the 

square [.] and round (.) bracketed terms in equation (16) 

must be zero.  The optimal predictor to minimise the cost-

function: (9), given that the cross terms in the cost are null,  

then follows, from (16) as: 

− + + = + + 
1

1kˆ ( | ) ( ) ( )p j fp p j fy t j k t H D z t E B u t j  (17) 

 Consider the case where the measurement noise is non-zero 

then the weighted noise ( )pv t j k+ + = 1
0c ( ) ( )P z v t j k− + + . 

If the weighting 1
0c ( )P z −  is a constant, which is usual in 

GPC control, or if it is assumed a polynomial matrix of 

degree: 1j k+ − , then + +( )pv t j k  is only dependent on 

future white measurement noise terms and the expected value 

of such a term and the square bracketed terms in equation 

(16) must be zero.  The optimal predictor is therefore again 

given by (17) and the prediction error: 

 ( )+ + = ε + + − + +� ( | ) ( ) ( )p j py t j k t E t j k v t j k  (18) 

A second Diophantine equation may be introduced to break 

up the term:
1 1

1k( ) ( )jE z B z− −
into a part with a  j+1 delay and 

part depending on 
1

1( )fD z −
 ( −= 1

1 0( ) ( )f fu t D u t ).  Thus, for 

0j ≥ , introduce an equation, which has solution ( , )j jG S ,  

of smallest degree for jG : 

1 1 1 1 1 1
1 1( ) ( ) ( ) ( ) ( )j

j f j j kG z D z z S z E z B z− − − − − − −+ =  (19) 

Thus, 1deg( ( ))jG z j− = , where 
1( )jG z −

 will be written as: 

1 1
0 1( ) j

j jG z g g z g z− − −= + + +� .  The prediction equation, 

from (17), may now be obtained (for j ≥ 0) as: 

− − −+ + = + + +1 1
1ˆ ( | ) ( ) ( ) ( )j

p j fp p j f j fy t j k t H D z t G D z S u t j           

−= + + + −1
0( ) ( ) ( 1)j fp p j j fH D z t G u t j S u t  (20) 

The degree of 
1( )jG z −

 is j and the second term in (20) 

therefore involves future inputs.  Define the signal: ( )jf t  as:  

1 1 1 1( ) ( ) ( ) ( ) ( ) ( 1)j j fp p j ff t H z D z z t S z u t− − − −= + −                (21) 

Thus, the predicted weighted output (20), for j ≥ 0,  

1
0ˆ ( | ) ( ) ( ) ( )p j jy t j k t G z u t j f t−+ + = + +  (22) 

D. Matrix Representation of the Prediction Equations 

The future weighted outputs are to be predicted in the 

following section for inputs computed in the interval: 

τ ε +[ , ]t t N  where ≥ 0N .  The equation (22) may 

therefore be used to obtain the following vector equation for 

the weighted output at 1N +  future values of time: 

0 0 0

1 0 0 1

1 0

1 0 0

ˆ 0 0 0( | ) ( ) ( )

0 0ˆ ( 1 | ) ( 1) ( )

ˆ ( | ) ( ) ( )

p

p

N Np N

gy t k t u t f t

g gy t k t u t f t

g g

g g gy t N k t u t N f t−

+      
      

+ + +      
      = +      
      
      

+ + +            

�

�

� �� � �

� �

…

(23) 

Introducing an obvious definition of terms for the matrices 

in (23) the predicted weighted outputs may be written as:   

0
, , ,

ˆ
t k N N t N t NY G U F+ = +  (24) 

The vector ,t NF may now be found using (21), as: 

1
00 0

1
1 11 1 1

,

1

( )( ) ( )

( ) ( )( )
( ) ( ) ( 1)

( ) ( )( )

t N fp p f

N NN

H zf t S t

f t S tH z
F D z z t u t

f t S tH z

−

−

− −

−

    
    
    

= = + −    
    
    
     

� ��
 

  
1 1( ) ( ) ( ) ( 1)NZ p NZ fH z z t S z u t− −= + −                               (25) 
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0 1

0

,

0 1

e ( ) ... e ( 1) ( )

e ( 1 ) ... e ( 1) ( 1 )

e ( ) ... e ( 1) ( )

k p

k p

t k N

N k p

t k t v t k

t k t v t k
Y

t N k t v t N k

−

+

+ −

ε + + + ε + − + 
 

ε + + + + ε + − + + 
=  
 
 ε + + + + ε + − + +
 

�

�

 (26) 

It is reasonable to assume in many applications that the 

future variations of the set-point or reference signal { ( )}r t  

are predetermined, over a fixed future horizon of N steps. 

The weighted reference is assumed to include the error 

weighting: 1
0c( ) ( ) ( )pr t P z r t−= .  The vectors of weighted 

reference, output and input signals may be defined as: 

,

( )

( 1)

( )

p

p

t N

p

r t

r t
R

r t N

 
 

+ 
=  
 
 + 

�

,  
,

( )

( 1)

( )

p

p

t N

p

y t

y t
Y

y t N

 
 

+ 
=  
 
 + 

�

,  

0

0
0
,

0

( )

( 1)

( )

t N

u t

u t
U

u t N

 
 

+ 
=  
 
 +
 

�

 (27) 

The k steps-ahead future weighted outputs can be written in 

 vector terms , , ,
ˆ

t k N t k N t k NY Y Y+ + += + �  and the future tracking 

error, that includes any dynamic error weighting, may 

therefore be written in vector form as:   

, , ,t k N t k N t k NE R Y+ + += − , , ,
ˆ( )t k N t k N t k NR Y Y+ + += − + �  (28) 

The vector of predicted signals: ,
ˆ
t k NY +  in (28) and the 

prediction error: ,t NY�  are orthogonal.  

III.  REVIEW OF GENERALISED PREDICTIVE CONTROL   

 A review of the derivation of the GPC controller is 

provided below where the input will be taken to be that for 

the linear sub-system ( 0u ), since it also provides results that 

are needed for the definition of the nonlinear problem of 

interest.  Only the main points in the solution are 

summarised.  The GPC performance index to be minimised: 

2
0 0

0

{ e ( ) e ( ) ( ) ( )) }
N

T T
p p j

j

J E t j k t j k u t j u t j tλ
=

= + + + + + + +∑  (29) 

where {.| } E t  denotes the conditional expectation, 

conditioned on measurements up to time t; jλ denotes                           

a scalar control signal weighting factor and the vector of 

future weighted error signal values 

e ( )p t j k+ + 1
0c ( )( ( ) ( ))P z r t j k y t j k−= + + − + + .   

GPC Performance Index:  The multi-step cost-function 

may therefore be written, in a more concise vector form, as:         

0 2 0
, , , , , ,{ } {( ) ( ) | }T T

t t k N t k N t k N t k N t N N t NJ E J E R Y R Y U U t+ + + += = − − + Λ  (30) 

Introducing the optimal predictor, using (28) and (30),  

+ + + + + += − + − + +� �
, , , , , ,

ˆ ˆ{( ( )) ( ( ))T
t k N t k N t k N t k N t k N t k NJ E R Y Y R Y Y

+ Λ0 2 0
, , | }
T
t N N t NU U t  (31) 

where the cost weightings on the future inputs 0u  are written 

as: 2 2 2 2

0 1
{ , ,..., }λ λ λΛ =

N N
diag . 

E. GPC Optimal Control Solution   

  The terms in the performance index can then be simplified 

 by first noting the prediction errors in +
�

,t k NY  depends on 

future values of the signal { ( )}tε , which are assumed to be 

independent of future controls.  The estimate: + ,
ˆ
t k NY  is 

therefore orthogonal to the estimation error: +
�

,t k NY .  In 

addition observe that the future reference or set-point 

trajectory: 
,t k N

R +   is assumed to be a known signal over the 

N+1 steps.  The vector/matrix form of the cost expression:     

0 2 0
, , , , , , 0

ˆ ˆ( ) ( )T T
t k N t k N t k N t k N t N N t NJ R Y R Y U U J+ + + += − − + Λ +  (32) 

where the cost term:
0 , ,

{ | }+ += � �T

t k N t k N
J E Y Y t  is independent of 

the control action.  Substituting (24) into (32) obtain:  

+ += − + − + +0 0
, , , , , ,( ( )) ( ( ))T

t k N N t N t N t k N N t N t NJ R G U F R G U F  

 + Λ +0 2 0
, , 0
T
t N N t NU U J  

Let , , ,t k N t k N t NR R F+ += −�  and substituting: 

0 0 0 2 0
, , , , , , 0( ) ( )T T

t k N N t N t k N N t N t N N t NJ R G U R G U U U J+ += − − + Λ +� �  

+ + + += − − +� � � �0 0
, , , , , ,

T T T T
t k N t k N t N N t k N t k N N t NR R U G R R G U        

           ( )+ + Λ +0 2 0
, , 0
T T
t N N N N t NU G G U J  (33) 

 The procedure for minimising this conditional cost 

function term, is almost identical to that when the signals are 

deterministic.  That is, the gradient of the cost-function must 

be set to zero, to obtain the vector of future optimal controls.  

Note that the 
0

J  term is independent of the control action 

and a perturbation and gradient calculation may be applied.  

Setting the gradient to zero gives the vector of GPC future 

optimal control signals as: 

( ) ( )
10 2

, , ,
T T

t N N N N N t k N t NU G G G R F
−

+= + Λ −  (34)  

 The GPC optimal control signal at time t is based on the 

receding horizon principle [13] and the optimal control is 

taken as the first element in the vector:
0
,t NU .     

F. Equivalent Cost Minimisation Problem 

 It is now shown that the above problem is equivalent to a 

special cost minimisation control problem which is needed 

to motivate the NPGMV problem later.  Let the constant 

positive definite, real symmetric matrix be factorised as:  

2T T
N N NY Y G G= + Λ    (35) 

Then observe that by completing the squares in equation 

(33) the cost-function may be written as: 
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0 0
, , , , , ,

T T T T
t k N t k N t N N t k N t k N N t NJ R R U G R R G U+ + + += − −� � � �

0 0
, , 0
T T
t N t NU Y YU J+ +  

( ) ( )1 0 0
, , , ,

T T T T T
t k N N t k N N t k N t NR G Y U Y Y G R YU− −
+ + += − −� �

1
, , 0( )T T T

t k N N N t k NR I G Y Y G R J− −
+ ++ − +� �   

That is, the cost may be written in an equivalent form as: 

 

10
ˆ ˆ ( )T
t+k,N t+k,NJ J t= Φ Φ +  (36) 

where 

0
, , ,

ˆ ( )T T
t+k,N N t k N t N t N=Y G R F YU−

+Φ − −  (37) 

The terms that are independent of the control action may be 

written as: 
10 0 1

( ) ( )= +J t J J t  where 

1
1 , ,( ) ( )T T T

t k N N N t k NJ t R I G Y Y G R− −
+ += −� �  (38) 

Since the last term 10( )J t  in equation (36) does not depend 

upon control action the optimal control is found by setting 

the first term to zero, giving the same optimal control as 

defined in equation: (34).  It follows that the GMV optimal 

controller for the above linear system is the same as the 

controller to minimise the Euclidean norm of the 

deterministic signal: ˆ t+k,NΦ , defined in (37). 

G. Modified Cost-Function  

 The above discussion motivates the definition of a new 

multi-step minimum variance cost problem that has the same 

solution for the optimal controller.  This is needed before the 

nonlinear problem of real interest can be considered.  There 

are some mathematical preliminaries and the result is then 

presented.  Consider first a new signal to be minimised 

involving a weighted sum of error and input signals of form: 

0

1
0 0c( ) ( ( ) ( ))cφ −= − +P z r t y t F u  (39) 

The vector of future values of this signal, may be written as: 

, ,

0 0
,Φ = +

CN N CN NNt t tP E F U  (40) 

Now introduce cost-function weightings, using the original 

GMV weightings, but to have the constant matrix form:  

 and-TY=
CN

T
NP G 0 2−= − Λ

CN

T
NF Y  (41) 

The reason for this choice of cost terms becomes apparent in 

the Theorem 3.1 below. Motivated by the preceding analysis 

define a minimum variance multi-step cost-function,                     

, ,{ } { | }
N N

T
t t k t kJ E J E t+ += = Φ Φ� �  (42) 

Predicting forward k-steps:   

0 0
, , , ,( )

CN CNNt k t k N t k N t NP R Y F U+ + +Φ = − +  (43) 

Now consider the signal: ,Nt k+Φ  and substitute for the vector 

of outputs: , , ,
ˆ

t k N t k N t k NY Y Y+ + += + � .  Then from (43) obtain:   

 0 0
, , , , ,

ˆ( ( ))
CN CNNt k t k N t k N t k N t NP R Y Y F U+ + + +Φ = − + +�  (44) 

This expression may be written as: 

 , , ,
ˆ

+ + +Φ = Φ + Φ�N N Nt k t k t k  (45) 

where the predicted signal: 

( )0 0
, , , ,

ˆˆ ( )
CN CNNt k t k N t k N t NP R Y F U+ + +Φ = − +  and the prediction 

error:   , ,CNNt k t k NP Y+ +Φ = − ��     (46) 

The performance index (42) may therefore be simplified as: 

+ + + += = Φ + Φ Φ + Φ� � � �
, , , ,

ˆ ˆ{ } {( ) ( ) | }
N N N N

T
t t k t k t k t kJ E J E t .  

The terms in the performance index (42) can again be 

simplified, recalling the optimal estimate: ,
ˆ
t k NY +  and the 

estimation error: ,t k NY +
�  are orthogonal and the future 

reference or set-point trajectory: 
,+t k N

R   is a known signal.  

Thus expanding obtain: 

+ + + +

+ + + +

= Φ Φ + Φ Φ +

+ Φ Φ + Φ Φ

� �

� � �

, , , ,

, , , ,

ˆ ˆ ˆ{ | } { | }

ˆ{ | } { | }

N N N N

N N N N

T T
t k t k t k t k

T T
t k t k t k t k

J E t E t

E t E t
 

, , , ,
ˆ ˆ { | }

N N N N

T T
t k t k t k t kE t+ + + += Φ Φ + Φ Φ� �  (47) 

Thence, the cost-function may be written as: 

 , , 1
ˆ ˆ( ) ( )

N N

T
t k t kJ t J t+ += Φ Φ +� �  (48) 

The cost term independent of control may be written as:  

1 , ,( ) { | }
N N

T
t k t kJ t E t+ += Φ Φ� � �

, ,
{ | }+ += � �

CN

T T

t k N CN t k N
E Y P P Y t  (49) 

Now simplify the vector of predicted signals: ,
ˆ

Nt k+Φ  by 

substituting for ,
ˆ
t k NY +  from (24) and using (35) and (41): 

0 0
, , , ,

ˆˆ ( )
CNNt k CN t k N t k N t NP R Y F U+ + +Φ = − +

0 0 0
, , , ,( )

CNCN t k N CN N t N t N t NP R P G U F F U+= − + +   

Substituting from (35) obtain, 

 ,
ˆ

Nt k+Φ 0
, , ,( )CN t k N t N t NP R F YU+= − −    (50) 

 From a similar argument to that in the previous section the 

optimal multi-step minimum variance control sets the first 

squared term in (48) to zero.  The optimal control follows: 
−

+= −0 1
, , ,( )t N CN t k N t NU Y P R F .  This vector of future optimal 

controls is the same as the vector of future GPC controls 

(34) and these results are summarised below. 

 

Theorem 3.1:  Equivalent Minimum Variance Problem 

Consider the minimisation of the GPC cost index (29) for 

the system and assumptions introduced in §2, where the 
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nonlinear subsystem: 1k I=W �and the vector of optimal 

GPC controls is given by (34).  Redefine the cost index to 

have a multi-step variance form (42):  

, ,( ) { | }
N N

T
t k t kJ t E t+ += Φ Φ� ,  

where 
0 0

, , , ,( )
CN CNNt k t k N t k N t NP R Y F U+ + +Φ = − +  and the cost 

weightings: 
-TY=

CN

T
NP G  and 0 2−= − Λ

CN

T
NF Y .  

Then the vector of future optimal controls is identical to the 

GPC controls defined in (34). ■ 

Solution: The proof follows by simply collecting together 

the above results. ■ 

IV. THE NPGMV CONTROL PROBLEM 

 The Nonlinear Predictive Generalised Minimum Variance 

(NPGMV) control problem of real interest is now 

considered.  The actual input to the system is of course the 

control signal ( )u t , shown in Fig. 1, rather than the input to 

the linear sub-system:
0

u .  The cost-function for the 

nonlinear control problem of interest must therefore include 

an additional control signal costing term, although the 

costing on the intermediate signal 
0
( )u t  can be retained to 

examine limiting cases and to provide a useful actuator 

output costing.  If the smallest delay in each output channel 

of the plant is of magnitude k -steps this implies that the 

control signal t affects the output at least k -steps later.  For 

this reason the control signal costing should be defined as:  

( )( ) ( )( )c c
k

ku t z u t−=F F  (51) 

Typically this weighting on the nonlinear sub-system input 

will be a linear dynamic operator but it may also be chosen 

to introduce an anti-windup capability [9].  The control 

weighting operator ckF  will be assumed to be full rank and 

invertible.  Thus, consider a new signal to be minimised, 

involving a weighted sum of error, input and control signals: 

00 0 cc( ) ( ) ( ) ( )( )φ = + +ct P e t F u t u tF  (52)  

In analogy with the previous GPC problem a multi-step cost 

index may now be defined that is an extension of (42).   

0 0
, ,{ | }
N N

T
p t k t kJ E t+ += Φ Φ  (53) 

The signal 
0
,Nt k+Φ  is therefore extended to include the 

additional future control signal costing term:    

, , ,

0 0 0
, ,c( )

CN N CN N NNt k t k t k N tP E F U U+ +Φ = + + F  

,

0 0
, , , ,c( ) ( )

CN CN Nt k N t k N t N k N tP R Y F U U+ += − + + F  (54) 

The NL function 
,,c Nk N tUF  will have the diagonal form: 

,,c( )
Nk N tUF = 

( ) ( ) ( ) ( ) ( ) ( ){ , 1 ,... , }ck ck ckdiag u t u t u t N+ +F F F  (55) 

and 
,

0
, 1k,N( )

Nt N tU U= W , where 1k,NW  has a block form: 

=W W W W
, ,1k,N 1 1 1( ) { , ,... , }
N Nt k k k tU diag U     

= +W W1 1[( )( ) ,...,( )( ) ]T T T
k ku t u t N  (56) 

H.   The NPGMV Control Solution  

 The solution follows from very similar steps to those in 

§3.3 and will therefore be summarised only briefly below. 

Observe from (43) that 
,

0

, , ,c( )
NN N

k
t t k N tz U−Φ = Φ + F  and 

0 0 0
, , ,

ˆ
+ + +Φ = Φ + Φ�N N Nt k t k t k    

where 
,

0
, , ,c

ˆ ˆ ( )
NN Nt k t k k N tU+ +Φ = Φ + F      

,

0 0
, , , ,c

ˆ( ) ( )
CN CN Nt k N t k N t N k N tP R Y F U U+ += − + + F  (57) 

and the estimation error:    

0
, , ,

-TY+ + +Φ = Φ = −� � �
N N

T
t k t k N t k NG Y  (58) 

The future predicted values in the signal: 0
,

ˆ
Nt k+Φ  involve the 

estimated weighted outputs + ,
ˆ
t k NY  orthogonal to ,t k NY +

� .  

The estimation error is zero mean and the expected value of 

the product with any known signal is null.  The cost follows:    

0 0
, , 1

ˆ ˆ( ) ( )
N N

T
t k t kJ t J t+ += Φ Φ +� �  (59) 

where the optimal control sets: 0
,

ˆ 0
Nt k+Φ = .  The condition 

for optimality has the form: 

,

0
, , , 1k,Nc

ˆ( ) ( ) 0
CN CN Nt k N t k N k N tP R Y F U+ +− + + =F W  (60) 

I. The Nonlinear Predictive GMV Control Signal 

 The future optimal control signals, to minimise the cost 

index:(59), follows from (60) and satisfies: 

,

2 1
, 1k,N , ,c

ˆ( ) ( )
N CN

T
t k N N t k N t k NU Y P R Y− −

+ += − − Λ −F W  (61) 

An alternative solution of equation (60),  

( ), ,

1 2
, , , 1k,Nc

ˆ( )
N CN N

T
t k N t k N t k N N tU P R Y Y U− −

+ += − − − ΛF W  (62) 

The optimal predictive control law is clearly nonlinear, since 

it involves the nonlinear control signal costing term: ,ck NF  

and the nonlinear model for the plant: 1k,NW .  Further 

simplification is possible by substituting from (24) for the 

estimate ,
ˆ
t k NY + , since (60) may be written as: 

( ) ,

0
, , , 1k,Nc( ( ) ) 0

CN CN CN Nt k N t N k N N tP R F P G F U+ − + − − =F W  

and substituting from (41) the condition for optimality:   

( ) ,, , , 1k,Nc( ) 0
CN Nt k N t N k N tP R F Y U+ − + − =F W  (63)  

The two alternative solutions for the  future controls:  

,

1
, 1k,N , ,c( ) ( )

N CNt k N t k N t NU Y P R F−
+= − − −F W  (64) 

ThA07.3

4551

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
M

. G
ri

m
bl

e,
 P

. M
aj

ec
ki

 &
 L

. G
io

va
ni

ni
; "

Po
ly

no
m

ia
l A

pp
ro

ac
h 

to
 N

on
lin

ea
r 

Pr
ed

ic
tiv

e 
G

M
V

 C
on

tr
ol

"
In

 P
ro

c.
 E

ur
op

ea
n 

C
on

tr
ol

 C
on

fe
re

nc
e.

 ju
l, 

20
07

.



 

 

 

( ), ,

-1
, , , 1k,Nc ( )

N CN Nt k N t k N t N tU P R F Y U+= − − −F W  (65) 

The controller again invokes a receding horizon philosophy. 

The assumption needed to ensure closed-loop stability is 

explained in the analysis of stability in [8].  

Theorem 4.1:  Nonlinear Predictive GMV Control Law  

 Consider the linear components of the plant and 

disturbance model in (2) and the plant model in (1), with 

input from the nonlinear finite gain stable plant dynamics 

1kW .  Let the dynamic error 1( )cP z −  and the input 

weightings 0{ ,..., }Nλ λ  be specified and assume the control 

signal cost-function weighting is defined in the 

form: ( ) ( ) ( ) ( )c c= −ku t u t kF F , where k represents any 

explicit delay and ckF  is full rank and invertible.   The 

multi-step predictive control cost-function to be minimised, 

involves a sum of future cost terms, defined in vector form:   

0 0
, ,{ | }
N N

T
p t k t kJ E t+ += Φ Φ  (66) 

This signal 
0
,Nt k+Φ  includes the vector of future error, input 

and control signal costing terms:    

, , ,

0 0 0
, ,c( )

CN N CN N NNt k t k t k N tP E F U U+ +Φ = + + F  (67) 

where 
-TY=

CN

T
NP G , 0 2−= − Λ

CN

T
NF Y  and ,ck NF  is normally 

a diagonal control weighting (55).  Also define the constant 

matrix factorY to satisfy: TY Y = 2T
N N NG G + Λ , then the 

NPGMV optimal control law to minimize the variance (66) 

is given as: 

,

1
, 1k,N , ,c( ) ( )

N CNt k N t k N t NU Y P R F−
+= − − −F W  (68) 

The preferred expression for implementation of the vector of 

future optimal control signals, assuming the current control 

is found using the receding horizon philosophy, follows:    

( ), ,

-1
, , , 1k,Nc ( )

N CN Nt k N t k N t N tU P R F Y U+= − − −F W  (69) 

where the signals ,t NF  
1 1( ) ( ) ( ) ( 1)NZ NZ fH z z t S z u t− −= + −  

and 1 1
1 0( ) ( ) ( )f fu t D z u t− −= . ■ 

Solution:  The proof of the NPGMV optimal control follows 

by simply collecting the results in the above section. ■ 

    The two expressions for the NPGMV control signal (68) 

and (69) lead to the two alternative structures, shown in 

Figs. 3 and 4, respectively.  The second, shown in Fig. 4 

shows how the current and future controls may be separated 

from the full vector of future controls, as explained below.  

J. Implementation of the Predictive Optimal Control   

 A useful partition may be introduced which enables the 

algorithm to be simplified.  The control at time t is computed 

for N > 0 from the vector of future controls by introducing: 

[ , 0,...., 0]I0C I=  (70) 

Thence, ( )u t = [ , 0,...., 0]I
,NtU  (71) 

To be able to compute the vector of future controls for t > 0 

also introduce the matrix: [ ]0=
0I N

C I  (72) 

 

, ,

( ) ( 1)

0

( ) ( )

f
t N 0I t N N

u t u t

U C U I

u t N u t N

   +
   

 = = =        
+ +      

� �  (73)    

 

   

 

 

 

 

 

 

 

Disturbance 
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reference 

1
, 1k,Nc( )kN Y −− −F W  1k

W  

Nonlinear 
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+ ,t kNR  y  
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Controller subsystem 

u 

, ,( )
CN t k N t NP R F+ −  

Nonlinear operator term 

+ 

 + 

0u  

Observations z  

0W  

v 

Fig. 3:  First Form of NPGMV Controller Structure 
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0IC  
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f
t NU  

1kW  
1Y  
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( ( ) ( 1))
CN NZ NZ fP H z t S u t+ −

+ 

- + 

+ 

v  

Noise 

y

y 

0u  

( 1)−fu t  

Output 

W1k,N-2 ,1
f
t NY U  

+ 

 
Fig. 4:  Second Form of NPGMV Controller  

 

 Note from (70), because of the block diagonal structure of 

the control signal costing ,ck NF , then 
1
,cI0 k NC −

F  

1 1
I0[ , 0,... , 0]ck ck C

− −= =F F .  Using (69) the optimal control: 

( ),

1
, , 1k,N( )

CN Nck I0 t k N t N tu(t) = - C P R F Y U−
+ − −F W  (74) 

The vector of future controls, computed at time t,  

( ),

1
, , , , 1k,Nc- ( )

CN N

f
t N 0I k N t k N t N tU C P R F Y U−

+= − −F W  (75) 

Also note from equation (56) that 
,1k,N NtUW  may be given as:  

,1k,N 1 1( ) [( )( ) ,...,( )( ) ]
N

T T T
t k kU u t u t N= +W W W  

1 1k,N-1 ,[( )( ) , ( ) ]T f T T
k t Nu t U= W W  (76) 

Using a related partition, write the matrix Y in the 

form:
1 2

[ ]=Y Y Y , where 1Y  has 0m  columns, so that:  

, ,1k,N 1 2 1k,N 1 1 2 1k,N-1 ,[ ] ( )( ) ( )= = +
N N

f

t t k t N
Y U Y Y U Y u t Y UW W W W  

Using (74) the current and future NPGMV optimal controls: 

u(t) −
+ −F

1
I0 , ,c- [ ( )

CNk t k N t N= C P R F

− −W W1 1k 2 1k,N-1 ,( )( ) ]f
t NY u t Y U  (77) 
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−
+= − +1

, , , ,c- ( ( )
CN

f
t N 0I k N t k N t NU C P R FF

− −1 1k 2 1k,N-1 ,( )( ) ( )f
t NY u t Y UW W  (78) 

 There is a considerable simplification to the structure of the 

controller if the matrix TY Y  defined in (35), is factorised 

into a block lower triangular matrix form Y where the first 

0m  rows of 2Y  are null.  The last terms in (77) is then null, 

since the term: I0 2 0C Y = .     

 

 

Lemma 4.1:  NPGMV Control Law Properties  

 Consider again the system described in §2 and the 

predictive control problem for the cost index (53) (N > 0).  

The nonlinear plant operator: 1kW  is assumed to be finite 

gain stable and for closed-loop stability the operator: 

11 1k ck) )((
CNI0 NkY C P W+ −W F  

is assumed to have a stable causal inverse, due to the choice 

of the weightings that determine the operators: 
CN

P , 0
CN

F  

and ,ckF .  By partitioning the optimal control to be applied 

at time t, invoking the receding horizon principle, the 

vectors of current and future predicted controls:  

( )1
, , 1 1k( ) - ( ) ( )( )

CNck I0 t k N t Nu t = C P R F Y u t−
+ − −F W  (79) 

−
+= − − +1

, , , , 1 1kc- ( ( ) ( )( )
CN

f
t N 0I k N t k N t NU C P R F Y u tF W

 − 2 1k,N-1 ,( ))f
t NY UW  (80) 

where [ , 0,... , 0]I0C I= ,  [ ]0=
0I N

C I ,  and Y is assumed 

to be factorised into a block lower triangular form 

1 2[ ]=Y Y Y  with 1 11I0C Y Y= .  If the error and input cost-

function weightings are defined in the GPC motivated form: 
-TY=

CN

T
NP G  and 0 2−= − Λ

CN

T
NF Y  then for a linear system 

( 1 =k IW ) the limiting form of the optimal control when 

c 0→F  is identical to a standard GPC control law.    

Solution: The different forms of the control law for 

computation follows by collecting the results in the section 

above and the relationship to linear GPC control was 

established from the definitions of the weightings in § 3 and 

in the Theorem 3.1.  The assumption made to ensure closed-

loop stability, at the beginning of the theorem, is justified in 

the analysis of stability in [9]. ■ 

Remarks: The condition I0 2 0C Y =  is a valuable property 

since it ensures future controls do not create an algebraic 

loop in the calculation of the current control.  This also 

simplifies the computation of current control, as in Fig. 5. 

 

V. CONCLUDING REMARKS 

 The Nonlinear Predictive Generalised Minimum Variance 

(NPGMV) control design problem for a state-space system 

involved a multi-step predictive control cost-function and 

provided a method of introducing future set-point 

information.  The predictive controls strategy described is a 

development of the nonlinear generalised minimum variance 

(NGMV) design method which has been shown to be easy to 

design and implement.  It also has the nice property that if 

the system is linear then the control can revert to the 

generalised predictive control design method which is well 

known and well accepted in industry.  That is, the NPGPC 

control design method reduces to that of GPC control design 

when the weight ckF  tends to zero and the system is linear.  
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            Fig. 5:    NPGMV Control Signal Generation  
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