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Abstract. Automatic speech segmentation is of fundamental importance in different speech 
applications. The most common implementations are based on hidden Markov models. They 
use a statistical modelling of the phonetic units to align the data along a known transcription. 
This is an expensive and time-consuming process, because of the huge amount of data needed 
to train the system. Text-independent speech segmentation procedures have been developed to 
overcome some of these problems. These methods detect transitions in the evolution of the 
time-varying features that represent the speech signal. Speech representation plays a central 
role is the segmentation task. In this work, two new speech parameterizations based on the 
continuous multiresolution entropy, using Shannon entropy, and the continuous multiresolution 
divergence, using Kullback-Leibler distance, are proposed. These approaches have been 
compared with the classical Melbank parameterization. The proposed encodings increase 
significantly the segmentation performance. Parameterization based on the continuous 
multiresolution divergence shows the best results, increasing the number of correctly detected 
boundaries and decreasing the amount of erroneously inserted points. This suggests that the 
parameterization based on multiresolution information measures provide information related to 
acoustic features that take into account phonemic transitions. 

1.  Introduction 
Segmentation and labelling of speech material according to phonetic or similar linguistic rules is a 
fundamental task in different speech applications. The aim is that the sequence of speech frames, 
resulting from short-term analysis, could be organized into homogeneous segments, associated with 
phones, words, syllables or other specific acoustic units. Traditionally, this task was accomplished 
manually by a trained phonetician, using listening and visual cues. However, this procedure can be 
tedious, time-consuming, subjective and error prone, especially for spontaneous speech recordings [1]. 

The most common automatic speech segmentation methods perform a statistical modelling of 
transitions between phonetic units using hidden Markov models (HMM) [2]. The HMMs are trained 
based on the given speech database with the corresponding transcripts and then they are used to align 
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the data along a known phonetic transcriptions. This led to an expensive and time-consuming process 
because of the huge amount of data needed to train the system. 

Different text-independent speech segmentation procedures have been suggested to overcome some 
of these problems [3, 4, 5]. In [3] the authors proposed an algorithm that works on an arbitrary number 
of time-varying features, obtained through a short-term analysis of the speech signal. This procedure 
tries to detect transitions in the speech frames where the value of the parameters changes significantly 
and quickly. 

Entropy notions have been used to characterize the complexity degree of speech and other 
physiological signals [6]. Spectral entropy has been used in different ways for word/sentence 
segmentation and silence detection tasks [7, 8]. The continuous multiresolution entropy (CME) gives 
account of the temporal evolution of Shannon or Tsallis entropy computed over the wavelets 
coefficients of the continuous wavelet transform (CWT) [9]. Recently, speech representations using 
CME have been included in an automatic speech recognition system, improving its performance [10]. 

In this paper we present new speech parameterizations based on the CME and the continuous 
multiresolution divergence (CMD), using Shannon entropy and the Kullback-Leibler distance, 
respectively. These new time-varying features are used as inputs for the automatic speech 
segmentation procedure proposed in [3]. The results of the segmentation obtained with the speech 
encoding here proposed are compared with those obtained using the classical Melbank 
parameterization. 

2.  Materials and methods 

2.1.  Melbank parameterization 
A mel-frequency bank of filters (Melbank) parameterization is a standard short-term processing of 
speech signal that gives a measurement of the signal energy in a given frequency band [11]. These 
filters are spanned using a not uniform scale which tries to reproduce the particular spectral resolution 
of the human ear: 

10( ) 2595log 1 .
700

fMel f ⎛ ⎞= +⎜ ⎟
⎝ ⎠

    (1) 

In [3] various standard parameterizations have been tested, using different number of parameters, 
and the 8 coefficients Melbank encoding provided the best results. 

2.2.  Parameterization based on CME 
Given the discrete speech signal { }[ ], 1,...,s k k K= =s , of length K, its CME is obtained by first 

computing its quasi–continuous wavelet transform ( , )a bsΨ . This led to a discretized decomposition 

in the time–scale plane{ } { }[ , ] ( , )d j k a j b kδ= = =sΨ , where 1,...,j J= ∈ , δ +∈ and b k= is 
the time–control. In what follows, for each fixed j the CWT coefficient’s temporal evolution will be 
denoted as { }[ ] .j jd k=d  

We consider a set { }( , , ) [ ], , 1,...,j
jW m L d k k l m l LΔ = = + Δ = of rectangular sliding windows 

for 0,1,...,m M= , where L ∈  is the width and Δ ∈ the shift of the windows. These parameters 
are chosen such that L K≤ and ( ) /K L M− Δ = ∈ . These parameters selection will be directly 
related with maximum speed of significant vocal tract morphology modification [12]. 

Each window ( , , )jW m L Δ is divided in a subset of N disjoint subintervals In and we denote with 
( )j

m np I  the probability that a given [ ] ( , , )j
jd k W m L∈ Δ  belongs to one of such subintervals. Thus, a 

set of probabilities is obtained for each window: 
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{ } { }[ ] ( ), 1,...,j j
m nP m p I n N= =     (2) 

Using equation (2) the Shannon entropy is computed in the following form: 

( )
1

[ , ] ( ) ln ( ) .
N

j j j j
m n m n

n
j m p I p I

=

= −∑dH     (3) 

The matrix { }[ , ]j m= dCME H is the continuous multiresolution entropy of s, for each scale j and 
frame m.  

Principal component analysis (PCA) is applied to extract the temporal components of higher 
variance, in order to obtain the new speech parameterization. The correlation matrix Tσ = UU  is 
computed from *=U CME  (the statistical normalized matrix CME). The eigenvectors matrix Q and 
its corresponding eigenvalues matrix Λ are obtained, such as Tσ =CME QΛQ . The matrix of principal 
components is computed as: 

.T=Y Q U      (4) 
The principal component of Y is the row { }1 1[ ], 0,1,...,y m m M= =y , corresponding to the 

maximum element of Λ.  
A new parameterization is proposed using the rows of Y associated to the J larger elements of Λ: 

iy , 1,...,i = J , with J =8. This number of components is chosen in agreement with the Melbank 
parameterization used to compare the results. Furthermore, these components accumulate more than 
95% of the signal variability. 

2.3.  Parameterization based on CMD 
Having in mind the probability set mentioned in equation (2), for the window ( , , )jW m L Δ , we 

consider now a second set { } { }[ ] ( ), 1,...,j j j
m nR m r I n N= = , corresponding to the next window 

( 1, , )jW m L+ Δ . The Kullback–Leiber divergence of these consecutive windows can be computed as: 

1

( )[ , ] ( ) ln .
( )

j jN
j j m n

m n j j
n m n

p Ij m p I
r I=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑dD    (5) 

This procedure accomplished for all windows and scales gives the continuous multiresolution 
divergence matrix { }[ , ]j m= dCMD D . 

We obtain the CMD-based parameterization applying PCA. This is performed in the same way as 
for the CME-based encoding. Again, a set of J =8 time-varying features is obtained for each frame m: 

{ }[ ], 0,1,...,i iy m m M= =y , 1,...,i = J . 

2.4.  Speech segmentation algorithm 
The speech segmentation algorithm proposed in [3], performs the segmentation using the speech 
encodings mentioned above. This algorithm is regulated by three operational parameters: α, β and γ. 

Parameter α identifies how many consecutive frames are needed to estimate the intensity of an 
abrupt change. Thus, given { }[ ]iy m , the following function is computed: 

1

1

[ ] [ ][ ] .
m m

i i
i

m m

y ym
α

α

μ α μ

μ μ
α α

− +

= − = +

= −∑ ∑F    (6) 

A relative thresholding procedure is used to identify the frame m* where a peak, related to a 
possible transition from one phoneme to another, is detected according to parameter β. [ ]i uαF  and 
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[ ]i vαF  are two valleys of the function given by equation (6), for , [ , ]u v Mα α∈ − , u<v. The frame m* 

is selected so that *[ ]i mαF  is a local maximum in that interval. A relative height η is computed as: 
* *min [ ] [ ], [ ] [ ]i i i im u m vα α α αη ⎡ ⎤= − −⎣ ⎦F F F F        (7) 

A matrix { }[ , ]T i m=T  is constructed, where [ , ] 1T i m =  if η β≥  for the time-sequence i at the 
frame m, and 0 otherwise. 

The transitions detected by distinct features i do not occur simultaneously, even though they occur 
in a close time interval. The segmentation algorithm uses a fitting procedure to combine into a 
barycentre the events of each group of quasi-simultaneous sharp transitions. The parameter γ is used to 
identify the width of the neighborhood where the barycentre is individuated. An interval 

[ , 1]V m m γ= + − ∈  is considered for every 1,..., 1m M γ= − +  and the following function is 
computed: 

1

1
[ ] ( , ) , .

c

c i
G c T i c c V

γ

μ

μ μ
+ −

= =

= − ∈∑ ∑
J

   (8) 

The possible barycentre of interval V is the frame c%  where [ ] min [ ]
V

G c G c=% . The value [ ]G m%  

indicates how many barycenters c%  have been found on each frame m. This leads to a new function 
where the peaks correspond to the indication of a possible phone boundary. 

2.5.  Signals and Database 
A subset of the Albayzin speech corpus, consisting of 600 sentences, 200 words vocabulary, related to 
Spanish geography, was used. Speech utterances had 3.55 secs. mean phrase duration, and they were 
spoken by 6 males and 6 females from the central area of Spain (average age 31.8 years). The labeled 
speech files, consisting in a user-assisted segmentation, recorded the position of the phone boundaries 
expressed in milliseconds and were used as the exemplar segmentation.  

Each phrase in the corpus has been normalized in mean, pre-emphasized and Hamming windowed 
in segments of 20 ms length, shifted 10 ms [12]. An 8 coefficients encoding was used for the three 
evaluated parameterizations. 

2.6.  Indexes of segmentation performance evaluation 
The percentage of correctly detected phone boundaries (PC) and the percentage of erroneously 
inserted points (PI) were computed in order to evaluate the obtained segmentation. 

The PC index relates the number of correctly detected boundaries, BC, with the overall number of 
phone boundaries contained in the database, BT, using a tolerance of ±20 ms: 

100 .C

T

BPC
B

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
    (9) 

The PI index relates the number of phone boundaries erroneously detected BI = BD – BC (BD is the 
whole number of segmentation points detected by the algorithm), and the total number of frames FT in 
the signal: 

100 .I

T

BPI
F

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
    (9) 

In order to evaluate the statistical significance of the obtained results, we have estimated the 
probability that the proposed encodings were better than the Melbank parameterization ( Pr( )refε ε< ). 
To perform this test we assumed the statistical independence of the detection errors and the binomial 
distribution of the errors has been approximated by means of a Gaussian distribution. 
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3.  Results 
Table 1 shows the PC and the PI indexes for the proposed encoding schemes (presented in Secs. 2.2 
and 2.3), which are compared with the Melbank parameterization, using the following operational 
parameters for the segmentation algorithm: γ=3, α=2, 4, 6 and β=0.01, 0.05, 0.1. Bold numbers 
indicate the best PC obtained. 

 
Table 1: PC and PI obtained for the three encoding schemes evaluated in the 
phone segmentation algorithm using different operational parameters. Bold 

numbers indicate the best results for each parameterization. 

Parameters Encoding 
Melbank CME CMD 

γ α β PC PI PC PI PC PI 
  0.01 86.52 16.63  81.64 16.79  84.65 15.12 
 2 0.05  83.97 15.37  84.40 17.44  81.80 08.36 
  0.1  79.97 10.49  85.48 17.51  77.20 06.96 
  0.01  81.11 13.56  83.79 14.90  83.09 12.59 
3 4 0.05  78.78 11.96  83.65 15.00  79.31 07.01 
  0.1  75.92 07.24  83.39 14.83  74.98 06.08 
  0.01  75.41 13.31  86.25 17.43 86.75 13.87 
 6 0.05  72.02 08.77 86.91 17.16   83.51 09.04 
  0.1  68.05 05.22  86.09 16.61   79.94 08.05 

 
As can be seen from the indexes in bold, the CME-based encoding provided the best PC, but its 

corresponding PI index was high. On the other hand, the CMD-based encoding offered a suitable PC, 
with a PI lower than Melbank parameterization. It is worthwhile to notice that the optimal PC and PI 
indexes are 100% and 0% respectively. 

The statistical significance evaluation of these results for the PC index shows Pr( )refε ε< > 

93.02% for the CME-based parameterization and Pr( )refε ε< > 80.57% for the CMD-based encoding. 
The PI index for the CME-based encoding performed worse than the PI of Melbank, with 
Pr( )refε ε> > 96.11%. The PI corresponding to the CMD-based parameterization was significantly 

lower than both encoding schemes, with Pr( )refε ε< > 99.99% with respect to the Melbank. 
It can be observed that, in general, the PC index obtained for the parameterization based on the 

CME and CMD are higher than those achieved with Melbank. The CMD-based parameterization gives 
the lower values of PI index, indicating a better performance and suggesting the use of this encoding 
scheme for the segmentation algorithm. 

In Fig. 1 we compare the performance of the segmentation algorithm using the proposed encodings 
and Melbank, for α=2, 3, 4, 5, 6, with γ=3 and β=0.01. Fig. 1(a) shows the PC index obtained for the 
different values of α. The performance of the segmentation is better when the line is closer to the 
upper limit. It can be observed that the proposed encoding schemes present a better performance when 
α increases, while Melbank decreases. In Fig. 1(b) the PI for these experiments is displayed. The 
lower dash-dotted line indicates the best results. Here, the CMD-based encoding shows the best 
performance. Although Melbank performs better when α=5 and 6, their PI values are comparable to 
those obtained with the parameterization based on the CMD. 

The results of the segmentation using the encodings here proposed seem to be more stable than 
those obtained with Melbank when parameter α changes. This could be because while the changes on 
the Melbank parameters evolve in a smooth way and appear in many frames of the speech signal, the 
evolution of the CME and CMD coefficients is sharper and more concentrated. Therefore, the number 
of frames to perform the detection, determined by α, affects mainly the Melbank parameterization. 
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Figure 1. Percentages of (a) correctly detected 
phone boundaries PC and (b) erroneously 
inserted points PI, obtained for the phone 
segmentation algorithm using the classical 
Melbank parameterization (solid line), the CME-
based parameterization (dashed line) and the 
CMD-based parameterization (dash-dotted line), 
for α=2, 3, 4, 5, 6, β=0.01 and γ=3. 

 Figure 2. Percentages of (a) correctly detected 
phone boundaries PC and (b) erroneously 
inserted points PI, obtained for the phone 
segmentation algorithm using the classical 
Melbank parameterization (solid line), the CME-
based parameterization (dashed line) and the 
CMD-based parameterization (dash-dotted line), 
for γ=3, 4, 5, 6, 7, α=2 and β=0.01. 

 
The property of CME mentioned above, which allows the detection of changes in the parameters in 

a concentrated way, is the responsible of the high PI values obtained with the encoding based on it. 
The reason is that CME enhances the small changes that appear frame by frame, producing many false 
positives. Instead, the CMD is more robust because it only takes into account the differences between 
frames. 

Fig. 2 shows the indexes PC in (a) and PI in (b) obtained for the three evaluated encoding schemes, 
using γ=3, 4, 5, 6, 7, α=2 and β=0.01. The CMD-based parameterization shows the best performance 
(high PC values) especially for γ =4, 6 and 7, and its PI line is the lowest for all γ values. 

It can be observed that lines in Fig. 2(b) have a concave shape, with minima around γ=5. This 
parameter determines the neighborhood of frames used to perform the fitting procedure. Low γ values 
produce narrow neighborhoods, which could not cover the whole range where the phonetic transition 
is present. This may cause that one phonetic change could be considered as two transitions, increasing 
the PI index. On the other hand, when γ is high, two transitions appearing in close frames can be 
processed as only one detection point, producing a worse segmentation performance. This can be 
observed also in the PC, especially for Melbank. 

4.  Conclusion 
In this paper we have presented two parameterizations based on Shannon entropy and Kullback-
Leibler distance computed in time–scale plane, which have been used as input for a phone 
segmentation algorithm. The results indicate that the two proposed parameterizations increase the 
ability of the algorithm to perform the segmentation task. In particular, the parameterization based on 
the CMD shows the best performance, since it not only increases the number of correctly detected 
boundaries but also decreases the amount of erroneously inserted points. This suggests that measures 
based on the CME and the CMD supply valuable information related to acoustic features, taking into 
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account transitions from one phoneme to another. The information measures used here could give 
knowledge about changes on the dynamics of the vocal tract, providing an important tool to perform 
the segmentation. 
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