
Your dedication goes here
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Preface

Antonio (Toni) Lepschy passed away suddendly on June 30, 2005, leaving
family, friends and colleagues truly shocked. He was a man of deep intelligence
and a genuine gentleman with many qualities and with diversified interests. It
is not the scope of this little book to discuss and celebrate the diverse aspects
of his wide cultural interests (ranging from linguistics to history, mathematical
economics etc.) since this would call for contributions from many parts and
would involve a colossal effort, well beyond our capabilities and expertise. May
we just refer the reader to the recent commemoration of Giovanni Marchesini
at the Istituto Veneto di Scienze Lettere ed Arti 1.

This book wants to be a small token of remembrance and gratitude to Toni
from colleagues belonging to the control systems community. It includes some
papers contributed by foreign colleagues who experienced scientific collabora-
tion with him. The contributions are mostly technical and hence written in
the language of this discipline.

Toni, in the early days of the career of many of us, was, and in many ways,
has continued to be, a master (this is indeed the joking appellative we used for
him in Padova). This, in spite of his absolutely unpretentious and unassum-
ing style. He introduced the oldest of us to the basic ideas and taught us the
basic language of Automatic Control. This was happening in the early days
of Italian engineering schools when Laplace transform and the mathemat-
ics behind the Nyquist criterion were looked upon with suspicion by many
colleagues. His lectures were often stuffed with (sometimes quite pedantic)
historic citations. Famous, among many, has remained the disquisition about
the origins of the word Control which, although originating from the latin
expression contra-rotulum, the act of checking against a list on a roll, had its
original meaning completely subverted, causing perennial misunderstanding
in our country whenever attempting to explain what our field is about to a
layman. His joint book with late Antonio Ruberti has been for several decades

1 G. Marchesini, Ricordo di Antonio Lepschy, Istituto Veneto di Scienze, Lettere
ed Arti, Adunanza Accademica del 26 Novembre 2005, Venezia, 2006.
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VIII Preface

a classical textbook in many Italian universities. Pushed by the great tech-
nological advances of the recent years, the field has evolved greatly beyond
the classical ideas exposed in the textbook. We’d nevertheless like to imagine
that the younger contributors to this book perceived the beauty and the en-
thusiasm for this field through his teaching, even if they have never attended
a class from him.

Padova, Giorgio Picci
August 2007 Maria Elena Valcher
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Eigenstructure-based model reduction for
generalized RL networks

Alessandro Beghi

Dipartimento di Ingegneria dell’Informazione, Università di Padova, via Gradenigo
6/B, 35131 Padova, Italy
beghi@dei.unipd.it

To the dear memory of Toni Lepschy, maestro and friend.

Summary. The use of model reduction schemes based on eigenstructure anal-
ysis is shown to be useful in the study of control problems for a class of
electromechanical systems, namely generalized RL networks. In particular,
techniques are considered that allow to produce reduced-order models where
the physical meaning of the state variables is preserved. This turns out to be
useful to obtain interesting interpretations in terms of physical quantities of
the simplified model, its parameters, and the approximations involved.

Keywords. Linear Systems, Electromechanical Systems, Model Reduction.

1 Introduction

When deriving model of dynamical systems starting from physical laws, one
has often to face the problem of dealing with hundreds or thousands of state
variables. The need of describing the system behavior with sufficient detail
contrasts with the so called “curse of dimensionality,” that is, the compu-
tational difficulties associated with systems of very high dimension. As is
known, high dimensionality is also a drawback for most of standard linear
control schemes, such as LQG, LQG/LTR, H∞. To cope with this problem,
models of reduced order are derived, which allow to simplify the design of
the controller while giving a sufficiently accurate description of the system.
Several model reduction techniques are available from linear state-space con-
trol theory (see e.g. [1]). A drawback of many of such techniques is that the
physical meaning of the state variables is lost in the reduced model. This fact
can be particularly relevant when dealing with models of electromechanical
systems, where both the involved variables (currents, voltages, displacements,
velocities, etc.) and the model parameters (resistances, inductances, masses,
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2 Alessandro Beghi

forces, etc.) do have a specific meaning that can be of paramount importance
in the interpretation of the results.

The model reduction techniques that we consider in this note are based
on eigenstructure analysis of the state matrix A in the standard linear state
space description {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1)

with x ∈ Rn, u ∈ Rm, and y ∈ Rp, and allow to provide an interpretation
of the variables and parameters of the simplified models in terms of physical
quantities. As a consequence, physical intuition on the system can be used to
facilitate the design and tuning of the controller (for instance, the choice of
the weights in an LQG setup [2]), as well as to gain some insight on the system
structure. In particular, we focus on a state space truncation scheme based
on Selective Modal Analysis (SMA) [3],[4],[5]. Although simple and straight-
forward to apply, this approach is amenable of different interpretations in
terms of structural properties of the system. The state vector in the reduced
model can be seen as an aggregated state [6] as well as as the outcome of a
state decomposition based on the notion of coherency [7]. In both cases, the
state vector, the approximation error, and the system parameters can be given
an interpretation in terms of the same quantities appearing in the full-order
model. We also describe a different approach, named sub-structuring [8], that
can be seen as an approximate aggregation scheme, where the aggregation
matrix, that is chosen on the basis of a priori knowledge on the system struc-
ture, is such that the resulting simplified system preserves some key modal
properties of the full-order system.

In this note we restrict our analysis to a particular class of electromechan-
ical systems. For the given class, the state matrix A can be written as

A = L−1R , (2)

where L = LT is invertible and R is a diagonal positive semidefinite matrix.
A further assumption is that A is diagonalizable, although the majority of the
considerations still hold in the general case. Our interest for such systems is
related to our activity in the field of tokamak modelling and control [9, 10].
In tokamak devices, the control action is performed by using a set of coils lo-
cated outside the plasma chamber to create appropriate magnetic fields which
interact with the plasma, modifying its current, position, and shape. To de-
sign efficient plasma control systems, it is necessary to describe the plasma
behavior and its electromagnetic coupling with the surrounding structures.
The problem is clearly continuous in nature, that is, tokamaks are appro-
priately described by distributed parameter systems. However, it is common
practice to reduce the problem to a discrete one by using Finite Elements
Analysis (FEA) methods, so that the massive structures are approximated by
means of toroidally symmetric elements of finite cross section, given the sub-
stantially axisymmetric nature of a tokamak device [11]. After linearization
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Eigenstructure-based model reduction for generalized RL networks 3

around equilibrium points, the resulting equation is

Lİ(t) +RI(t) = TV (t) , (3)

where I(t) is the vector of circuit currents, V (t) is a vector of control voltages,
L = LT > 0 is the modified inductance matrix [11],[12], and R ≥ 0 is a
diagonal matrix of resistances. By taking I(t) as state vector, the A matrix
in the usual state space representation (1) is given by (2), and belongs to the
class considered here. The model order depends on the discretization grid:
The more refined the grid, the higher the number of circuits or, equivalently,
of state variables. In tokamak experiments, this results in models with up to
several hundreds of state variables.

The note is organized as follows. Model reduction by state space trunca-
tion complemented by SMA is described in Section 2, whereas aggregation
and coherency are briefly reviewed in Section 3. The relationships among
these concepts for the class of electromechanical systems considered here are
reported in Section 4. The sub-structuring approach is described in Section 5,
and some concluding remarks are given in Section 6.

2 State space truncation and Selective Modal Analysis

A standard model reduction technique consists in approximating the time be-
havior of the full-order model by neglecting the contribution of the fast modes
[3]. Such technique is often referred to as modal truncation. The state matrix
is first put in Jordan form, then the states are reordered so that they can be
divided into two sets, x1 and x2, with x2 being associated with a given set
of modes to be neglected (typically, high frequency modes). In the following
all the involved matrices will be considered as partitioned according to such
partition of the state vector. By taking as reduced model the subsystem cor-
responding to x1, i.e., (A11, B1, C1, D) , it is guaranteed that the modes of the
reduced-order model are a subset of those of the full-order model. Moreover,
perfect matching between the transfer function of the reduced model andW (s)
at s = ∞ is achieved. Instead of removing some state variables from the model
by setting x2 = 0, one can choose to approximate them by their steady-state
values (ẋ2 = 0). This approach is named singular perturbation approximation
[13], and it grants that the reduced-order model exhibits zero steady-state
error, which is a particularly nice property in case of feed-forward control.
Singular perturbation approximation is related to state-space truncation by
the frequency inversion transformation s→ 1/s, and it can be actually be per-
formed by truncating a realization of W (1/s). The corresponding state-space
description is

(A11 −A12A
−1
22 A21, B1 −A12A

−1
22 B1, C1 − C2A

−1
22 A21, D − C2A

−1
22 B2) , (4)

where it has been assumed that A22 is invertible. Both modal truncation and
singular perturbation approximation are based on a preliminary eigenmode
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4 Alessandro Beghi

analysis of the full-order model in order to select which are the modes which
can be neglected in the reduced model.

A different approach to state space truncation is the one proposed in [4],[5],
which is called Selective Modal Analysis (SMA). Truncation can be performed
without a preliminary change of basis in the state space, thus granting the
preservation of the physical meaning of the state variables. It is however nec-
essary to decide a priori which are the states to be retained in the reduced
model. The state matrix of the reduced model is then built so that the modes
of the reduced-order system are a subset of those of the full-order system,
as in the modal truncation approach. The state choice is performed by con-
sidering two adimensional coefficients: The participation factor pki measures
the contribution of the k-th state in the i-th mode (the higher the value of
pki, the more relevant is state k in building mode i), and it is defined as the
product of the k-th components of the left and right normalized eigenvectors
corresponding to λi

pki
△
= wkivki ; (5)

The participation ratio ρri measures the overall contribution of a set r of states
in the i-th mode (an absolute value of ρri greater than 1 indicates that the
selected states give a higher contribution in forming the i-th mode than the
neglected states), and it is defined as

ρri
△
=

r∑

k=1

pki

n∑

k=r+1

pki

, (6)

where n is the model order. This is used as a guideline for the selection of the
order of the simplified model. It is worth noticing that the class of systems
considered here enjoy the following property [14].

Proposition 1. Assume that the matrix A ∈ Rn×n is such that

A = L−1R (7)

with L = LT > 0 and

R =

[
0 0
0 R2

]
(8)

where R2 is a diagonal, positive definite matrix. If all the nonzero eigenvalues
of A are real and distinct, then pki ≥ 0, i = 1, . . . , n, k = 1, . . . , n.

When the result of Proposition 1 applies, it is particularly simple to com-
pare the contributions of each state in a given mode. This happens for the
tokamak models considered in [10, 9], where the use of FEA methods in the
discretization of the original distributed parameters system yields a linear sys-
tem where the only multiple eigenvalue is the one in the origin of the complex
plane [11, 12].
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Eigenstructure-based model reduction for generalized RL networks 5

The state-space description of the reduced order model is built as fol-
lows. The states are reordered so that the ones to be retained are the first
r (i.e., x1 = [x1 . . . xr ]T ). Let V be the invertible matrix of eigenvectors
V = [v1 . . . vn], and W its inverse. By means of elementary operations on
the rows and columns of V , it is possible to reorder the eigenvectors vi’s so
that the first r eigenvectors correspond to the r eigenvalues {λ1, . . . , λr} to
be retained in the reduced model. This implies that

WAV = Λ =

[
Λ1 0
0 Λ2

]
(9)

with Λ1 = diag(λ1, . . . , λr). The state matrices of the reduced model are

Ar = A11 +A12V21V
−1
11 (10)

Br = V11(W11B1 +W12B2) (11)

Cr = C11 + C12V21V
−1
11 (12)

Dr = D . (13)

A simple computation shows that the eigenvalues ofAr are actually {λ1, . . . , λr},
and the corresponding eigenvectors are v1i, that is, the first r components
of the i-th eigenvector of A with λi as corresponding eigenvalue. It is also
straightforward to verify that the state matrix Ar in the reduced model cor-
responds to the one obtained by the usual modal truncation approach, that
is,

Ar = V11Λ1V
−1
11 . (14)

The method can be considered essentially as modal truncation with a flavor
of singular perturbation approximation. To see this, consider the system in
free evolution (u(t) = 0). The action of the neglected dynamics on the retained
ones is described by the transfer function H(s) = (sI − A22)−1A21 between
x1 and x2. In the modal truncation approach, since one takes x2 = 0, we
have that H(s) is approximated by the constant value H(s) ≃ 0. In the
singular perturbation approach, H(s) is approximated by its value at s = 0,
H(s) ≃ −A−1

22 A21. In the SMA-based setup, the approximation is given by

H(s) ≃ H = V21V
−1
11 . (15)

This grants that the effect of x2 on x1 when only the selected modes are
excited is completely preserved. In fact, consider without loss of generality
the eigenpair (λ1, v1 = [vT

11 vT
12]T ). Then

λ1v12 = A21v11 +A22v12 (16)

which implies
v12 = (λ1I −A22)−1A21v11 = H(λ1)v11 . (17)

Since V21V
−1
11 v11 = v12, we have that Hv11 = H(λ1)v11.
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6 Alessandro Beghi

Finally, we observe that an easy computation shows that the choice of Br

is such that the transfer function of the reduced-order system is the same
as that of a reduced-order system obtained by modal truncation, when the
neglected states are associated with the discarded dynamics.

3 Aggregation and coherency based decomposition

Referring only to the state equation in (1), we say that, in the system described
by

ż(t) = Fz(t) +Gu(t) (18)

with z ∈ Rr, r < n, z(t) is an aggregated state of x(t), i.e., z(t) = Ex(t),
E ∈ Rr×n if and only if

FE = EA , G = EB (19)

and z(0) = Ex(0) [6]. In this approach, each state variable in the reduced-
order model is a linear combination of states of the full-order system. Exis-
tence of the aggregation matrix E is granted when F and A have common
eigenvalues [15]. We assume that the common eigenvalues correspond to the
modes to be preserved in the reduced-order model, that is, those of Λ1 in (9).
The aggregated state z(t) has to approximate, at least for a certain class of
inputs u(t), a set of r components of x(t), which are retained for their physical
significance. The general form of the aggregation matrix is [16]

E = M [Ir 0]W , (20)

where M ∈ Rr×r is any full rank matrix, and W is as in (9). The choice
of M can be made on the basis of a priori knowledge on the system and
physical intuition, or minimizing appropriate performance indexes. A property
of aggregated models that is particularly relevant for control design is given
in the following proposition [17].

Proposition 2. Let K be a r ×m matrix. Then the the eigenvalues of A −
BKE are given by the union of those of F − GK and the eigenvalues of A
not retained in the aggregated model.

Proposition 2 states that a static feedback controller K can be designed using
the simplified model, then, by using K to feed back the aggregated state in the
full order model, one is granted that a set of modes (usually, low frequency
modes) are moved to the desired locations without modifying the remaining
modes. In particular, if both F −GK and Λ2 in (9) are stable matrices, so is
A−BKE.

An aggregation method based on the concept of coherency has been
proposed in [18, 7], with particular reference to electromechanical systems.
The definition of coherency is given considering the system free evolution
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Eigenstructure-based model reduction for generalized RL networks 7

(u(t) = 0). We say that two states xi and xj are coherent with respect to a set
σa of r modes ofA (or σa-coherent) if and only if none of these modes is observ-
able form the difference yj(t) = xj(t)− xi(t) [7]. Therefore, if only the modes
in σa are excited, for any couple of coherent states the corresponding differ-
ence yj(t) is equal to zero. By grouping states according to their coherency
properties, it is possible to decompose the system into areas which exhibit the
same behavior with respect to the given modes. Each area is represented by
a reference state, all the other states in the area are σa-coherent with such
state. Decomposable systems enjoy the following property [7]. Assume that
the system is decomposable in exactly r areas coherent w.r.t σa, and reorder
the state vector so that the first r components are the area references. Then,
the (n − r)-dimensional vector yd formed by the differences yj relating each
of the states xj , j = r + 1, . . . , n with its area reference xi, i = 1, . . . , r form
an aggregated state, yd = Edx. The corresponding dynamic equation (18) is
characterized by the fact that the spectrum of F is given by the eigenvalues
of A not included in σa. In particular, it is possible to provide the following
expression for the aggregation matrix Ed

Ed = [−Γ In−r] , (21)

where the area grouping information is contained in the grouping matrix Γ ∈
R(n−r)×r. Observe that Ed is a matrix where the only nonzero elements are
equal to one. More precisely, if the area with reference xi has ni states, then
column i in Γ has ni −1 entries 1 defining which of the remaining n− r states
belong to the area i.

A general property of the grouping matrix Γ is that it can be expressed in
terms of vectors forming a basis for the σa-eigenspace as follows: If the matrix
S ∈ Rn×r forms a basis for the σa-eigenspace, then Γ = S2S

−1
1 . Furthermore,

if the system is decomposable in r areas of σa-coherent states, then only the
first r rows of S are distinct, and each of the remaining n − r rows is equal
to one of the first r. Such a property holds however only for systems that
are exactly decomposable. In general, real systems are only approximately
decomposable, in the sense that it is possible to define only sets of “nearly”
coherent states. In such case, it is not possible to individuate r distinct sets
of equal rows in the matrix S, and the grouping information is obtained by
approximating S2S

−1
1 by the closest possible Γ .

4 Relations with SMA-based truncation

Let us now turn to studying the relationships existing between state space
truncation in the SMA approach and coherency based aggregation and de-
composition. Since all of these properties depend mainly on the modal struc-
ture of the system, in the following we will refer to systems in free evolution
(u(t) = 0).
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8 Alessandro Beghi

Let us consider the reduced-order model obtained by state space trunca-
tion complemented by SMA. Let x1 = xr be the r-dimensional state vector
formed by the components of x to be retained in the simplified model, chosen
according to the participation factors/ratios analysis, and denote by (σa, σd)
the sets of eigenvalues to be retained and neglected in the reduced model,
respectively. Then, the first r columns of the eigenvector matrix V form a
basis for the σa-eigenspace. Performing the change of basis in the state space

[
x1

z

]
= Π−1x =

[
Ir 0
−H In−r,n−r

] [
x1

x2

]
(22)

where H has been defined in (15), and using [7, Theorem 2.1], we can write

[
ẋ1

ż

]
= Π−1AΠ

[
x1

z

]
=

[
Ar A12

0 Ad

] [
x1

z

]
, (23)

where Ad = A22 −HA12. Observe that in the SMA approach x2(t) ≈ Hx1(t),
therefore z(t) = x2(t) − Hx1(t) represents the error introduced by approxi-
mating the transfer function H(s) by the constant term H . Neglecting such
error (i.e., taking z(t) = 0), one is left with the state equation ẋr = Arxr ,
i.e., the dynamics of the reduced model obtained by SMA. Notice now that,
since [V T

11 V T
21]T is a basis for the σa-eigenspace, H = V21V

−1
11 can be seen

as an approximation for a certain grouping matrix Γ . Consequently, each of
the preserved states in xr can be considered as a reference state for a system
decomposition in σa-coherent areas. The approximation error z(t) has then
the form (21) and is therefore an aggregated state

z(t) = Edx(t) = [−H In−r]x(t) , (24)

and its dynamics are specified by the matrix Ad, whose eigenvalues are the
elements of σd, given the upper-triangular form of Π−1AΠ .

Consider now the transformation
[
xa

z

]
= P−1

[
x1

z

]
=

[
Ir Q
0 In−r,n−r

] [
x1

z

]
. (25)

After some algebra we get

[
ẋa

ż

]
= P−1Π−1AΠP

[
xa

z

]
=

[
Ar −ArQ+A12 +QAd

0 Ad

] [
xa

z

]
. (26)

Observe that, if we neglect again the approximation error z(t), we have that
xa(t) = xr(t) and (26) gives the same information as (23), independently of the
particularQ in the definition of xa. However, an appropriate choice of Q allows
to derive an interesting form of the reduced-order model when A = L−1R. In
the following proposition we derive a result similar to [7, Theorem 3.1], with
a different, more direct, technique.
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Eigenstructure-based model reduction for generalized RL networks 9

Proposition 3. If in (25)-(26)

Q = L−1
a (L12 +HTL22) , (27)

where

La = [Ir HT ]L

[
Ir
H

]
= L11 + L12H +HTLT

12 +HTL22H , (28)

then xa(t) is an aggregated state, xa(t) = Eax(t), with

Ea = L−1
a [Ir HT ]L , (29)

and
ẋa(t) = Arxa(t) = L−1

a Raxa(t) (30)

where

Ra = [Ir HT ]R

[
Ir
H

]
= R1 +HTR2H . (31)

Proof. We first proof that xa = Eax. By definition,

xa = x1 +Q(x2 −Hx1) ⇒ Laxa = Lax1 + LaQ(x2 −Hx1) . (32)

Using the definition of Q and La given in (27) and (28), we get

Laxa = Lax1 + (L12 +HTL22)(x2 −Hx1)

= (L11 + L12H +HTLT
12 +HTL22H)x1 + (L12 +HTL22)(x2 −Hx1)

= (L11 +HTLT
12)x1 + (L12 +HTL22)x2

= [Ir HT ]Lx (33)

from which one gets (29). Observe that La is invertible since L > 0 and [IrH
T ]

has full rank. To prove (30), we recall that

A

[
V11

V12

]
= L−1R

[
V11

V12

]
=

[
V11

V12

]
Λ1 , (34)

or equivalently {
R1V11 = (L11V11 + L12V22)Λ1

R2V22 = (LT
12V11 + L22V22)Λ1

. (35)

Right-multiplying both equations in (35) by V −1
11 and taking V11 out of the

terms in round brackets in the right-hand sides of (35) yields

{
R1 = (L11V11 + L12V22)V11Λ1V

−1
11

R2H = (LT
12V11 + L22V22)V11Λ1V

−1
11

. (36)

Right-multiplying the second equation in (36) by HT and summing it to the
first equation, we obtain
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10 Alessandro Beghi

R1 +HTR2H = (L11 + L12H +HTLT
12 +HTL22H)V11Λ1V

−1
11 , (37)

that gives (30) recalling (14).

Proceeding as in [7, Theorem 3.1], one can also show that, by choosing

Q = −Y1Y
−1
2 , (38)

where [Y T
1 Y T

2 ]T is a basis for the σa-eigenspace of

Π−1AΠ =

[
Ar A12

0 Ad

]
(39)

we have that
−ArQ+A12 +QAd = 0 , (40)

thus showing more clearly how the dynamics of xa and z in (26) are specified
by σa and σd, respectively. It is not difficult to show that Q as defined in (27)
can be written in the form (38) for appropriate Y1, Y2.

We conclude this Section with some comments on the results derived
above.

1. The fundamental element in both the SMA-based truncation scheme and
coherency-based decomposition is the matrix H defined in (15). In the
SMA approach, it approximates a matrix transfer function, and it provides
a way for representing the action of the neglected states in the simplified
model by means of the preserved states. In the context of coherency, the
matrix H gives an approximation to a grouping matrix Γ , thus providing
a clue on how far from being exactly decomposable the considered system
is.

2. In the analysis of the coherency properties of the system, two quantities
have been introduced, z(t) and xa(t), that have been both proved to be
aggregated states with dynamics given by Ad and Ar, respectively. As
far as z(t) is concerned, it has a natural interpretation in the SMA-based
truncation approach as an approximation error, and its expression (24) as
an aggregated state is meaningful independently of the properties of the
system in terms of coherency. On the other hand, the expression (30) of
the dynamics of xa(t) crucially depends on the particular choice of Q in
(25).

3. As shown in [16], the state in the reduced model of [3] can be seen as an
aggregated state, and the corresponding aggregation matrix Es is given by
choosing M = V11 in (20). It is interesting to compare Es with Ea in (29)
that defines the aggregated state xa in the coherency based approach. In
fact, we observe that the main difference existing between the truncation
approach and coherency based aggregation consists in the fact that in
the first case no trace is left in the simplified model of the neglected
variables x2, whereas their effect is considered in the second approach in
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Eigenstructure-based model reduction for generalized RL networks 11

the definitions of both z(t) and xa(t). Such difference is highlighted in the
comparison of Es and Ea. After some algebra we get

Es − Ea = L−1
a [Ir HT ]

(
L

[
V11 0
V21 0

]
− LV

)
W , (41)

which clearly shows that the difference between the two aggregation ma-
trices is actually introduced by the operation of truncating the state vector
to its first r components.

4. The expression obtained in (30) for the state matrix of the reduced model
lends itself to a very clear interpretation in terms of physical quantities.
Indeed, the factorization of Ar as L−1

a Ra shows that the reduced model
maintains the same nature of the full-order model. In the case of general-
ized electrical networks, the elements of L and R are inductances and re-
sistances, respectively, then equation (30) allows to see the reduced model
as a second network with a reduced number of circuits, where some of the
inductances and resistances have been grouped together according to the
modal properties of the system. We stress that the matrix Ra > 0 is not
a diagonal matrix if the system is not perfectly decomposable in r areas.
Its departure from diagonality depends on how far the matrix H is from
a real grouping matrix.

5 Sub-Structuring Method

The rationale of the sub-structuring approach to modal reduction presented
in [8] is that of splitting the physical system into sub-structures. Then in
the simplified model a single state (or few states) is used to describe the
dynamic of each sub-structure and its effect on the output. It turns out that
the order of the reduced model is equal (or proportional) to the number of
the sub-structures forming the system. The main difference with the above
approaches is that typically only few selected eigenvalues from the full order
system are retained in the low-order model.

To characterize the modal properties of the full- and reduced- order mod-
els, in particular as far as stability is concerned, we need to recall some defi-
nition and properties of the inertia of a symmetric matrix.

Definition 1. Let X be a real symmetric matrix. Then the inertia of X,
In(X), is the ordered triple

(pX , zX , nX) , (42)

where pX , zX , nX are the number of positive, zero, and negative eigenvalues
of X, respectively.

If X is non-singular, then zX = 0 and we will omit to indicate it in In(X).
A relevant property of the inertia of hermitian matrices is that it is invariant
under congruence transformations, as stated in the following theorem.
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12 Alessandro Beghi

Theorem 1 (Sylvester’s law of inertia [19]). Let X,Y ∈ Cn×n be
Hermitian matrices. There is a non-singular matrix M ∈ Cn×n such that
Y = MHXM if and only if

In(X) = In(Y ) . (43)

For the class of systems considered in this paper, i.e. those described by
the state-space model (3), the following result holds.

Theorem 2. Let L be a non-singular symmetric matrix, R > 0, and A =
−L−1R. Then A has only real eigenvalues, it is diagonalizable, and

In(A) = In(−L) . (44)

Proof. see [19, Theorem 7.6.3].

Remark 1: If R ≥ 0, with rank(R) = q < n, then A has zA = zR = n−q zero
eigenvalues. If this is the case, then, by taking the change of basis specified
by the unitary matrix U that diagonalizes R,

R̄ = UTRU =

[
R̄1 0
0 0

]
, (45)

L̄ = UTLU =

[
L̄11 L̄12

L̄T
12 L̄22

]
, (46)

with R̄1 ∈ Rq×q, R̄1 > 0, it is easy to show that

In(A) = (pL̃, n− q, nL̃) , (47)

where L̃ is the Schur complement of L̄11 in L̄, i.e., L̃ = L̄11 − L̄T
12L̄

−1
22 L̄12.

Remark 2: As a consequence of Theorem 2, if R > 0, then the system is
asymptotically stable (i.e. all the eigenvalues in the system spectrum σ(L,R)
are in C−, where C− is the open left half plane of C) if and only if L > 0.

We proceed now to describe the sub-structuring approach to model reduc-
tion. To begin with we must identify and group the currents flowing in the
different structural elements (sub-structures). In general we can re-order and
split the inductance and resistance matrix in N -blocks describing the different
currents flowing in the N sub-structures and write




L11 L12 . . . L1N

L21 L22 . . . L2N

...
...

. . .
...

LN1 LN2 . . . LNN









ẋ1

ẋ2

...
ẋN




+





R11 R12 . . . R1N

R21 R22 . . . R2N

...
...

. . . . . .
RN1 . . . . . . RNN









x1

x2

...
xN




=





T1

T2

...
TN




v (48)

y =
[
C1 C2 . . . CN

]





x1

x2

...
xN




. (49)
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Eigenstructure-based model reduction for generalized RL networks 13

Then, as in the modal truncation approach, it is important to identify the
r < n most relevant modes to be used to well approximate the input-output
mapping. For clarity of exposition, we first assume that the relevant system
dynamics are associated with one eigenpair, (λk, x

(k)). These have to be faith-
fully reproduced in the reduced model. By solving the eigenvalue problem

λk





L11 L12 . . . L1N

L21 L22 . . . L2N

...
...

. . .
...

LN1 LN2 . . . LNN









x
(k)
1

x
(k)
2
...

x
(k)
N




= −





R11 R12 . . . R1N

R21 R22 . . . R2N

...
...

. . . . . .
RN1 . . . . . . RNN









x
(k)
1

x
(k)
2
...

x
(k)
N




(50)

we can assemble the block-diagonal sub-structuring matrix S(k) for the k-th
eigenpair as:

S(k) △
=





x
(k)
1 0 . . . 0

0 x
(k)
2 . . . 0

...
...

. . .
...

0 0 . . . x
(k)
N




. (51)

It is worth noticing that the matrix S(k) has dimension n × N where
n = dim(L) whereas N is the number of sub-structures which have to be re-
tained in the reduced model. We can now reduce the system order by pre/post
multiplying the system matrices as follows:

L(k) = S(k)TLS(k) (52a)

R(k) = S(k)TRS(k) (52b)

T (k) = S(k)TT (52c)

C(k) = CS(k) . (52d)

The square matrices L(k)∗ and R(k) have dimension N and are, respectively,
symmetric and symmetric, positive semi-definite. This allows us to give a
physical interpretation to the parameters of the reduced-order model, whose
state variables represent currents flowing in the sub-structures. The dynamics
of the reduced order model are given by

{
L(k)ż(t) +R(k)z(t) = T (k)v(t)

y(t) = C(k)z(t)
, (53)

and they can be thought as obtained from (3) by premultiplying the first
equation by S(k)T and assuming that the state vector z in the reduced order
system is related to x by means of the following approximate relation

x(t) ≃ S(k)z(t) . (54)

Relation (54) can be solved for z(t) in a least square sense giving, if S(k) is
full rank,
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14 Alessandro Beghi

z(t) = (S(k)TS(k))−1S(k)Tx(t) , (55)

and the matrix

E
△
= (S(k)TS(k))−1S(k)T (56)

could be considered as an (approximate) aggregation matrix. However, in
general the state and input matrices in the full and reduced order models
do not satisfy relations (19), so that the sub-structuring approach does not
yield exactly aggregated models. Observe that, given its structure, S(k) is

not full rank if and only if there exists at least an index i such that x
(k)
i = 0.

Therefore, the full rank assumption on S(k) implies that all the sub-structures
are “involved” by excitation of the mode associated with λk.

It is easy to show that the eigenvalue λk is exactly preserved in the reduced
order model, as stated in the following proposition.

Proposition 4. λk ∈ σ(L(k), R(k)).

Proof. From (51), we have that x(k) belongs to the range of S(k). Let α(k) be
such that

x(k) = S(k)α(k) . (57)

Then from (50)
λkLS

(k)α(k) = −RS(k)α(k) (58)

and by premultiplication of (58) by S(k)T we get

λkL
(k)α(k) = −R(k)α(k) , (59)

showing that (λk, α
(k)) is an eigenpair for the reduced order model.

We remark that the remaining eigenvalues of the reduced system do not
in general coincide with eigenvalues of the full order model, that is,

σ(L(k), R(k)) 6⊂ σ(L,R) . (60)

However,
σ(L(k), R(k)) ∩ σ(L,R) 6= ∅ , (61)

and, as is known, this implies that there exist non-trivial solutions E to the
first matrix equation in (19) [15]. However, these solutions yield trivial aggre-
gated systems.

The modal properties relevant to stability of the reduced system can be
derived as follows. It is a simple exercise to prove the following result (see also
[19]):

Lemma 1. Let the non-singular symmetric matrix X be partitioned as

X =

[
X11 X12

XT
12 X22

]
. (62)

Then, if In(X) = (pX , nX) and In(X11) = (pX11 , nX11),

pX11 ≤ pX , nX11 ≤ nX . (63)
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Eigenstructure-based model reduction for generalized RL networks 15

Proof. Consider the non-singular matrix P defined as

P =

[
I −X−1

11 X12

0 I

]
. (64)

Then

PTXP = X̄ =

[
X11 0

0 X22 −XT
12X

−1
11 X12

]
. (65)

By Sylvester’s theorem, In(X) = In(X̄), and since σ(X̄) = σ(X11)∪ σ(X22 −
XT

12X
−1
11 X12), we have that

pX11 ≤ pX̄ = pX , nX11 ≤ nX̄ = nX . (66)

We can prove now the following theorem, that relates the inertia of the
system matrices of the full- and reduced-order models.

Theorem 3. Let L(k) be defined as in (52a), with S(k) of full rank N . Then,

if In(L) = (pL, nL) and In(L(k)) = (pL(k)

, nL(k)

), we have that

pL(k) ≤ pL , nL(k) ≤ nL . (67)

Proof. By computing the Singular Value Decomposition of S(k), we can find
a unitary matrix U ∈ Rn×n such that

UTS(k) =

[
S1

0

]
, (68)

where S1 ∈ RN×N is full rank. Let L̄ = UTLU . Since L̄ and L are similar,
In(L̄) = In(L). Now, we have that

L(k) = S(k)TLS(k) = S(k)TUL̄UTS(k)

= [ST
1 0]

[
L̄11 L̄12

L̄T
12 L̄22

] [
S1

0

]

= ST
1 L̄11S1 . (69)

From Sylvester’s theorem, In(L(k)) = In(L̄11), and from Lemma 1,

pL(k)

= pL̄11 ≤ pL̄ = pL , (70)

nL(k)

= nL̄11 ≤ nL̄ = nL . (71)

As a consequence of Theorem 3, if the full-order system is stable, so is the
reduced-order system, as stated in the following Corollary.
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16 Alessandro Beghi

Corollary 1. If σ(L,R) ⊂ C−, then σ(L(k), R(k)) ⊂ C−.

The procedure can be easily extended to deal with the retention of r > 1
modes in the reduced model. In this case, we solve r eigenvalue problems
(50) for the r eigenpairs (λi, x

(i)), i = 1 . . . r, and modify accordingly the
sub-structuring matrix. For instance, if r = 2, S is given by

S
△
=





x
(1)
1 x

(2)
1 0 0 0 0 0

0 0 x
(1)
2 x

(2)
2 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . x
(1)
N x

(2)
N




, (72)

yielding a reduced model of order rN . It is then clear that, to achieve a
substantial order reduction, it is necessary to limit both the number of sub-
structures and the number of modes to be preserved in the reduced order
model.

6 Conclusions

In this note we reviewed some model reduction techniques for generalized RL
networks. Such techniques share the property that the variables and param-
eters of the reduced model maintain the physical meaning of the full-order
model. This fact can be useful for both the analysis of the dynamical proper-
ties of the system and controller synthesis. The interplay between SMA-based
model reduction, state aggregation and coherency has been discussed, showing
how the three approaches can be related to one another.

As a final remark, we point out that the reduction schemes described above
proved to be useful in the control of tokamak devices. SMA-based model trun-
cation was succesfully employed in the model reduction problem for the ITER
machine [20]. The analysis of the participation factors/ratios allowed to pro-
vide some clues on how the different structures contribute to forming the
unstable mode and other modes that are particularly relevent for control de-
sign [9, 10, 14]. In particular, the properties of the reduced model seen in terms
of aggregation have been exploited in [14] in the design of an LQG controller,
whose tuning has been simplified by the preserved physical meaning of the
state variables. Finally, the sub-structuring approach has been applied in [8]
to derive very low-order models of the ITER tokamak that were successfully
employed to design vertical stabilizing controllers.
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Plant Parameters Uncertainty
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Summary. This note extends some results presented in [3] concerning the
characterization of standard three–parameter controllers satisfying given H∞
closed–loop specifications. In particular, it is shown that: (i) given the value
of a specific parameter, the region where the other two parameters ensure
the satisfaction of the considered H∞ constraint is formed by the union of (a
bounded number of) disjoint convex sets even when the plant parameters are
not fixed but belong to given intervals, and (ii) the determination of these
sets entails the repeated solution of an optimization problem. The procedure
is applied to find the parameters of a PID controller for an uncertain electric
drive so as to ensure that the H∞ norm of the sensitivity function is less than
a prescribed value.

Keywords. H∞ control, parametric uncertainty, PID controllers, lead/lag
controllers, parameter space, sensitivity.

1 Introduction and motivation

PID and lead/lag controllers have continued to be of interest to control en-
gineers because of their widespread industrial use. Recently, the attention of
researchers has mainly concentrated on robustness issues of PID control (cf.,
e.g., [9] and bibliography therein), with particular regard to the possibility of
ensuring an acceptable system behaviour even in the presence of large plant
uncertainties or perturbations. Antonio Lepschy considered such problems in
several papers that span over many years (cf., e.g., [1] ÷ [6]); these authors
had the privilege of working with Him on this subject.

Phase and gain margins have traditionally been important measures of
system robustness since if either is small, the feedback control system is close
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20 Franco Blanchini, Stefano Miani, and Umberto Viaro

to instability. However, both of these margins can be large and yet the Nyquist
diagram of the loop transfer function can pass close to the critical point −1 +
0. A better measure of stability robustness is provided by the distance from
the critical point to the nearest point on the Nyquist plot of the loop transfer
function. As is well known, this distance is the reciprocal of the H∞ norm
of the sensitivity function that coincides with the reference–to–error transfer
function. On the other hand, the H∞ norm provides a meaningful measure
of robustness with respect to other closed–loop functions too, such as the
complementary sensitivity function (equal to the reference–to–output transfer
function) or a weighted sum of the sensitivity and complementary sensitivity
functions [7].

In the following sections, we refer to a general form of closed–loop func-
tion and consider the problem of determining the parameters of a standard
controller for the usual one–degree-of–freedom unity–feedback system in such
a way that the H∞ norm of the chosen closed–loop function satisfies a given
bound. The same problem has been tackled in [8], [10] using a generalization
of the Hermite–Biehler theorem and in [3] using simple properties of Möbius
transformations. However, in these papers the parameters of the controlled
plant are assumed to be fixed. Here, instead, we only assume that the plant
parameters lie inside certain intervals (as is the case in [6] where the simple PI
control of a time–delayed first–order process is considered), and look for the
controller parameters that ensure the satisfaction of the constraint on the H∞
norm for all of the admissible combinations of plant parameters. In particular,
according to geometric arguments similar to those developed in [3], we provide
a characterization of the admissible controller parameter regions and suggest
a procedure to find their boundaries. The method is finally applied to the
synthesis of the PID controller for a dc–motor drive with bounded sensitivity.

2 Notation and problem statement

Let us denote the strictly proper rational transfer function of the controlled
plant by P (s; q), where q ∈ Q ⊂ Rm is the vector of uncertain numerator and
denominator coefficients whose values belong to given intervals, and assume
that the controller transfer function is

C(s) =
x+ ys+ zs2

dx + s+ dzs2
(1)

where x, y, z are real parameters to be determined according to certain H∞
specifications, and d is a real parameter fixed a priori, e.g., to obtain the
desired steady–state precision.

When d = 0, (1) takes the form of a PID controller and x, y, z correspond,
respectively, to the integral, proportional and derivative gain. When d = 1,
(1) takes the form of the classic unit–gain lead/lag controller.
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Robust PID Control 21

Most of the closed–loop transfer functions of the considered unity–feedback
system can be expressed as

F (s; q) =
A(s)C(s)P (s; q) +B(s)

1 + C(s)P (s; q)
(2)

where A(s) and B(s) are suitable rational functions. Function (2) may also
represent the weighted sum of the sensitivity function S(s; q) = 1/[1 +
C(s)P (s; q)] and complementary sensitivity function T (s; q) = C(s)P (s; q)/[1+
C(s)P (s; q)]. For simplicity, it is assumed that A(s) and B(s) are proper and
stable.

The problem we consider can be stated as follows.

Problem 1. Find x, y, z in such a way that

sup
ω≥0

|F (ω; q)| ≤ γ , ∀q ∈ Q (3)

where γ is an assigned positive real number.
Observe that assuming γ constant entails no restriction because any

weighting function can be absorbed into A(s) and B(s).

3 Geometric interpretation of condition (3)

For s = ω, (1) can be written as

C(ω) =
λ+ ωy

dλ + ω
(4)

where
λ := x− ω2z . (5)

Therefore, parameter y influences only the imaginary part of the numerator of
(4), and parameters x and z influence only the real parts of both the numerator
and the denominator where they appear in the linear combination (5).

Taking account of (4), the harmonic response of the closed–loop function
(2) can be expressed as

F (ω, λ, y, q) =
w1(ω, y, q)λ+ w2(ω, y, q)

w3(ω, y, q)λ+ w4(ω, y, q)
(6)

where wi(ω, y, q), i = 1 ÷ 4, are analytic functions of their arguments. For
fixed ω, y and q, and w1w3 6= w2w4, (6) defines a Möbius transformation from
λ to F so that, as λ varies over the extended real axis Re = [−∞,+∞], F
describes a circle Φω,y,q.

Given ω, y and q, the values of λ satisfying the constraint

|F (ω, λ, y, q)| ≤ γ (7)
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Φ ω,y,q

ω,y,qI

Γ

Re

Im

Fig. 1. Given ω, y and q, the values of λ in (5) satisfying (7) correspond to the
intersection Iω,y,q (bold line) of the circle Φω,y,q described by (6) as λ varies over
Re with the disk Γ centred at the origin.

correspond to the intersection Iω,y,q of the aforementioned circle Φω,y,q with
the disk Γ of radius γ centred at the origin, as shown in Figure 1.

Of course, circle Φω,y,q may be external to disk Γ , in which case Iω,y,q is
empty and no value of λ satisfies (7) (from the practical point of view, the case
in which Φω,y,q is tangent to the boundary of Γ from the outside and, thus,
Iω,y,q reduces to one point only, may be assimilated to this case). If, instead,
circle Φω,y,q is internal to Γ or tangent to its boundary from the inside, (7) is
satisfied for all values of λ.

Assuming that Φω,y,q crosses (twice) the boundary of Γ and denoting
by λi(ω, y, q) and λs(ω, y, q) > λi(ω, y, q) the values taken by λ at the two
intersections, that is, at the extremes of arc Iω,y,q, two situations may occur:
(i) the values of λ corresponding to the points of Iω,y,q belong to the interval

Λ(ω, y, q) := [λi(ω, y, q), λs(ω, y, q)] (8)

which happens if |F (ω,±∞, y, q)| =

∣∣∣∣
w1(ω, y, q)

w3(ω, y, q)

∣∣∣∣ > γ;

(ii) the values of λ corresponding to the points of Iω,y,q belong to (the closure
of) the complement of Λ(ω, y, q), that is, to

Λc(ω, y, q) = [−∞, λi(ω, y, q)]
⋃

[λs(ω, y, q),+∞] (9)

which happens if |F (ω,±∞, y, q)| =

∣∣∣∣
w1(ω, y, q)

w3(ω, y, q)

∣∣∣∣ < γ.
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Robust PID Control 23

In case (i), the values of parameters z, x which are admissible at fre-
quency ω are those inside the stripe Sω,y,q := {(z, x) |λi(ω, y, q) ≤ x− ω2z ≤
λs(ω, y, q)} of the (z, x)–plane included between the straight lines

x = ω2z + λi(ω, y, q) (10)

x = ω2z + λs(ω, y, q) . (11)

In case (ii), the admissible parameter values are those outside Sω,y,q. The two
situations are illustrated in Figure 2.

xx

< x−    z <ωλ

λω

λ

2

2

λ
si

2
ω

(a) (b)

z z

x−    z <

< x −    z 
s

i

Fig. 2. (a) Case in which the admissible values of x and z are those inside the
stripe Sω,y,q := {(x, z) |λi(ω, y, q) ≤ x − ω2z ≤ λs(ω, y, q)}. (b) Case in which the
admissible values of x and z are those outside Sω,y,q .

The locus described by (6) as λ varies over Re is a circle for all values
of q, but the its centre and diameter change, in general, with q as shown in
Figure 3. The values λi(ω, y, q) and λs(ω, y, q) taken by λ at the extremes of
the intersection arc Iω,y,q, if any, change too, in general.

Note that λi(ω, y, q) and λs(ω, y, q) can easily be computed as the real
roots, if any, of the second–degree polynomial equation obtained, for given
ω, y, q, from the equation |F (ω, λ, y, q)| = γ with F (ω, λ, y, q) as in (6).

4 Admissible parameter region

To find the admissible region of the controller parameters x and z, it is nec-
essary to determine first the range of the admissible values of λ in (5) for all
q, given the values of ω and y.

If |F (ω,±∞, y, q)| ≥ γ and Iω,y,q is nonempty, ∀q ∈ Q (if Iω,y,q is empty
for at least one value of q, no value of λ satisfies (7) and, thus, (3)), the
problem is that of finding the set
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ωΦ ,y,q

Γ

Re

Im

Fig. 3. Intersections Iω,y,q of Φω,y,q with Γ for various values of q with ω and y
fixed.

Λ(ω, y) =
⋂

q

Λ(ω, y, q) (12)

which is the intersection of the intervals (8) associated with all of the values
of parameter q. When Λ(ω, y) is nonempty, (12) consists of a single interval,
because the extremes λi(ω, y, q) and λs(ω, y, q) of Λ(ω, y, q) are continuous
functions of q. In this case, the lower and upper extremes of Λ(ω, y) are given,
respectively, by

λi(ω, y) = max
q
λi(ω, y, q) (13)

λs(ω, y) = min
q
λs(ω, y, q) . (14)

If |F (ω,±∞, y, q)| ≤ γ, ∀q ∈ Q, and Iω,y,q is nonempty for at least one
value of q (if Iω,y,q is empty for all values of q, then all values of λ satisfy
(7)), the problem is that of finding the right extreme λi(ω, y) of the half–line

[−∞, λi(ω, y)] =
⋂

q

[−∞, λi(ω, y, q)] (15)

and the left extreme λs(ω, y) of the half–line

[λs(ω, y),+∞] =
⋂

q

[λs(ω, y, q),+∞] (16)

where the intersections (15) and (16) are limited to the values of q such that
Iω,y,q is nonempty. In this case
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Robust PID Control 25

λi(ω, y) = min
q
λi(ω, y, q) (17)

λs(ω, y) = max
q
λs(ω, y, q) (18)

and the set of the admissible values of λ is

Λc(ω, y) = [−∞, λi(ω, y)]
⋃

[λs(ω, y),+∞] . (19)

The problem of finding the admissible values of λ is a little more compli-
cated when |F (ω,±∞, y, q)| ≥ γ for some values of q and |F (ω,±∞, y, q)| ≤
γ for some others, that is, when the point F (ω,±∞, y, q) =

w1(ω, y, q)

w3(ω, y, q)
crosses the boundary of Γ as q varies. In this case, it is necessary to con-
sider separately the sets Qo := {q : |F (ω,±∞, y, q)| ≥ γ} and Qi := {q :
|F (ω,±∞, y, q)| ≤ γ}. The overall set of admissible λ–values is then the in-
tersection, if any, of the two sets corresponding to Qo and Qi, respectively.
For simplicity, in the following we exclude this rare situation. Therefore, the
pairs (x, z) of controller parameters that satisfy constraint (7), ∀q ∈ Q, belong
either to the set

Sω,y := {(x, z) |λi(ω, y) ≤ x− ω2z ≤ λs(ω, y)} (20)

consisting of a stripe of the (x, z)–plane, or to the set

Sc
ω,y := {(x, z) |x− ω2z ≤ λi(ω, y) or x− ω2z ≥ λs(ω, y)} (21)

consisting of the half–plane below the straight line x = ω2z+λi(ω, y) and the
half–plane above the straight line x = ω2z + λs(ω, y).

The above analysis must be carried out for all values of ω (in practice,
for a suitable number of frequency samples). As a result, the positive semi–
axis Ω+ := {ω |ω ≥ 0} can be subdivided into consecutive intervals Jk :=
{ω |ωk ≤ ω ≤ ωk+1}, each characterized by one of the following situations:
(i) the admissible controller parameters belong to (20), ∀ω ∈ Jk,
(ii) the admissible controller parameters belong to (21), ∀ω ∈ Jk,
(iii) all parameters pairs (x, z) are admissible, ∀ω ∈ Jk (circle Φω,y,q is internal
to disk Γ, ∀q),
(iv) no (x, z)–pair satisfies (7) ∀ω ∈ Jk (circle Φω,y,q is external to disk Γ ,
∀q).

Situation (iii) does not impose any restriction and can be disregarded.
Instead, if at least one interval Jk exists where situation (iv) holds, then con-
straint (7) is too tight for the considered value of y. Therefore, we assume that
situation (iv) does not occur and limit the analysis to the intervals Jk where
either situation (i) or situation (ii). In the first case, the admissible controller
parameter region is the intersection of all the stripes (20) corresponding to
every ω ∈ Jk, which is a single convex set as shown in Figure 4a. In the second
case, the admissible controller parameter region is the intersection of all the
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< x−    z <ωλ

x−    z <λω

λ

2

2

λ
si

2
ω

i

s
< x −    z 

z z

x x

(a) (b)

Fig. 4. (a) Intersection of all the stripes (20) corresponding to every ω ∈ Jk: the
admissible region is the shaded convex set. (b) Intersection of all the pairs of half–
planes (21) corresponding to every ω ∈ Jk: the admissible region consists of the pair
of shaded disjoint convex sets.

pairs of half–planes (21) corresponding to every ω ∈ Jk, which consists of two
disjoint convex sets as shown in Figure 4b.

According to arguments similar to those used in [3], it can be proved that
the set of the admissible parameter pairs (x, z) corresponding to a given value
of y is the union of disjoint convex sets, called convex components, whose
maximal number is bounded (and usually small). Unfortunately, even if the
points of a convex component ensure the satisfaction of constraint (7), they
may correspond to an unstable system. However, for y > 0, if P (0; q) 6= 0 and
the high–frequency gain of P (s; q) is positive, all of the points inside a convex
component in the first quadrant of the (x, z)–plane (the region of practical
interest) give rise to the same closed–loop pole distribution. It is therefore
enough to check the stability of the feedback system at a unique point of
every convex component.

To determine the entire feasible region of the three–dimensional controller
parameter space, it is necessary to sweep over all the positive values of y
corresponding to stable behaviour. In this regard, the bounds on y provided
in [8] and [11] for PID controllers can be exploited to limit the range of
the feasible values of y. Graphic techniques can be employed to visualize the
feasible three–dimensional region, as shown in Figure 5.

An example concerning the bounded–sensitivity PID control of a dc–motor
drive is worked out in the next section.

5 PID control with bounded sensitivity

The (uncertain) transfer function from the armature voltage to the shaft an-
gular position of a dc–motor with independent excitation can be approximated
by
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Fig. 5. A sample representation of the feasible region in the three–dimensional
controller parameter space.

P (s; q) =
K

s(s+ p)
(22)

where q = {K, p} and

K ∈ [Kmin,Kmax] , p ∈ [pmin, pmax] (23)

with Kmax > Kmin > 0 and pmax > pmin > 0.
This section deals with the feedback control of the shaft angular position

by means of a PID controller with transfer function

C(s) =
x+ ys+ zs2

s
(24)

(d = 0 in (1)) in such a way that the H∞ norm of the sensitivity function
S(s; q) = 1/[1 +C(s)P (s; q)] does not exceed an upper bound γ (see (3) with
F (s; q) = S(s; q)).

Taking (5), (22) and (24) into account, (6) becomes

F (ω; q) = S(ω; q) =
−ω2(p+ ω)

λ− ω2(p+ ω) + ωKy
. (25)

Therefore, |F (ω,±∞, y, q)| = 0, ∀q, which means that circle Φω,y,q is never
external to Γ . It follows that the positive semi–axis Ω+ can be subdivided
into ω–intervals Jk of these two kinds only: (i) intervals where all (x, z)–pairs
satisfy (7), and (ii) intervals, called active intervals, where the admissible pairs
belong to (21). Essentially, the solution of the aforementioned problem entails
the determination according to (17) and (18) of λi(ω, y) and, respectively,
λs(ω, y) for a number of angular frequencies belonging to the active intervals.
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28 Franco Blanchini, Stefano Miani, and Umberto Viaro

The values of λi(ω, y, q) and λs(ω, y, q) in (17) and (18) correspond to
the real roots, if any, of the second–degree polynomial equation obtained, for
given ω, y, q, from the equation |S(ω, λ, y, q)| = γ with S(ω, λ, y, q) as in
(25). Their expressions are

λi(ω, y, q) =
1

K

{
ω2p−

√
ω4(p2 + ω2)

γ2
− ω2(Ky − ω2)2

}
(26)

λs(ω, y, q) =
1

K

{
ω2p+

√
ω4(p2 + ω2)

γ2
− ω2(Ky − ω2)2

}
. (27)

To find the minimum λi(ω, y) of (26) and the maximum λs(ω, y) of (27)
with respect to the plant parameters, it is useful to resort to the transforma-
tion

α :=
1

K
> 0 , β :=

p

K
= pα > 0 (28)

by which the rectangular uncertainty set of Figure 6a is transformed into the
trapezoidal set of Figure 6b.

C

D

B

A

(b)(a)

α

β

K

p

Fig. 6. (a) Rectangular set of allowable values of the original parameter vector
q := (K, p). (b) Trapezoidal set of allowable values of the transformed parameter
vector qt := (α, β) .

In this way, (26) can be rewritten as

λi(ω, y, q) = λ̂i(ω, y, qt) := ω2β −
√
ω4

γ2
(β2 + ω2α2) − ω2(y − ω2α2)2 (29)

where qt := (α, β). Since (29) decreases with β, its minimum occurs when β
takes the smallest value compatible with α, that is, β = pminα which lies on
the AB side of the trapezium represented in Figure 6b. Therefore, λi(ω, y)
can be found by minimizing

ω2pminα−
√

ω6α4 +

[
ω4

γ2
(p2

min + ω2) + 2ω4y

]
α2 − ω2y2 (30)
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with respect to α only.
Similarly, the maximum λs(ω, y) of (27) occurs for β = pmaxα which lies

on the CD side of the trapezium represented in Figure 6b, and can be found
by maximizing

ω2pmaxα+

√

ω6α4 +

[
ω4

γ2
(p2

max + ω2) + 2ω4y

]
α2 − ω2y2 (31)

with respect to α. Note that (31) increases with α so that its maximum occurs
at D.

6 Conclusions

By pursuing the analysis in [3], a characterization of the entire parameter
region for the controller (1) ensuring the satisfaction of the H∞ bound (3)
for all possible values of the uncertain plant parameters, has been provided.
In particular, it turns out that the controller parameter region is formed by
the union of a finite number of disjoint convex sets. The design task (Problem
1 in Section 2) can be accomplished by repeatedly solving the optimization
problems (13)–(14) or (17)–(18). The method has been applied in Section 5
to the bounded–sensitivity control of a dc–motor drive with an uncertain gain
and pole.
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1 Introduction

This work concerns with the problem of monitoring an Advanced Gas-cooled
Nuclear Reactor (AGR) core. This plant (figure 1) makes use of the heat
given by the nuclear efficient reaction to produce electricity by means of steam
turbines. These are driven by steam, which is heated, from the AGR gas using
a heat exchanger. One of the advantages of a gas cooled reactor is the high
temperature that the gas can achieve so that when it is used in conjunction
with the heat exchanger and steamed turbine the thermal efficiency is very
high.

In the United Kingdom the advanced gas-cooled reactor (AGR) nuclear
power stations are approaching the end of their predicted operational live. The
reactor core is composed of a hundreds of hollow graphite bricks (that acts as
neutron moderator), and the graphite ages because of neutron irradiation and
radiolytic oxidation causing distortion and potentially cracking of the bricks
since it is impossible to repair or replace the graphite bricks the graphite
core is one of the main components that determinate the operational life of
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32 Bonivento et al.

Fig. 1. Schematic diagram of an Advance Gas Cooled Reactor.

a nuclear station. In other terms the major factor that dictates the life of
a nuclear power station is the condition of the graphite reactor core, which
distort over time with prolonged exposure to heat and radiation.

Currently, it has been proposed to extend the operational lifetime of the
nuclear plants if the distortions of the reactor cores are not as severe as initially
predicted, and if it is possible to prove that the reactors are still safe to
operate. From this, it is clear how important is to keep under monitoring the
integrity of the plant and especially of the core; this is actually made possible
by a routine performed during planned station outage. These outages occur
roughly every three years and result in a large volume of detailed information
collected by a system called Channel Bore Monitoring Unit (CBMU). This
data consists of accurate measures of the channel bore diameter and tilt angles;
this information is used to provide an overall assessment of the health of the
core.

To perform a more accurate monitoring of the core over their predicted
operational life, the estimation of its state should be more frequent; on the
other side it is important that the reactor is not offline frequently or for long
periods. On the other hand data is also gathered during core refueling oper-
ations. Nuclear fission is used to generate heat in order to produce steam to
generate electricity from a turbine and, in order to sustain a constant power
output, the uranium dioxide fuel needs to be periodically replaced. This pro-
cess, called reactor refueling, take place with a weekly rate. An important
source of information during the refueling phase is the fuel grab load trace
data, that consists in collecting information on the position of the uranium
bar inserted in the core and information on the force produced by the inter-
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Estimation approach to monitoring AGR nuclear reactor 33

Fig. 2. The upper two diagram show a cut-away of a graphite brick with points A
and C illustrating the interface between two bricks. The lower two diagrams show
the load force applied on brushes.

action between the wall of the fuel channel and the fuel assembly supporting
brushes. Although not originally intended for core condition monitoring pur-
poses, the fuel grab load trace data contains a contribution from frictional
interface between the fueling channel wall and the fuel assembly. Since in-
terfaces between adjacent brick layers result in changes in the bore diameter
of the channel, as the brushes supporting the fuel rods pass through these
features, there is an equivalent change in the friction forces between the walls
and the brushes, which correspond to an apparent change of the load force
on the fuel assembly. This change in load manifest itself as peaks within the
refueling load trace. Figure 2 shows traces of data recorded during a refueling
operation. The reader can observe how peaks in the applied force correspond
to brick layer interfaces (points A and C); moreover damages over the graphite
bricks (e.g. point B) reflect on smaller peaks in the force applied on brushes
(see also [1], [2] and [3]).

In [4], CBMU data was compared with load trace data coming from dif-
ferent refueling event and it has been shown how a load trace and a CMBU
trace can furnish the same information: as depicted in figure 3 it is possible
to recover from the grab force data information on the friction force applied
between the supporting brushes and the fuel assembly, which can be used to
monitor possible cracks of graphite bricks and hence the health of the nuclear
core.
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34 Bonivento et al.

Fig. 3. Comparison of a channel bore monitoring unit trace of channel bore diameter
and a refuelling load trace from the same channel.

The purpose of this work is to present a monitoring system based on an-
alytical redundancy and directional residual generation using measurements
obtained during the refueling process. In short this problem consists of build-
ing an unknown input observer with the role to estimate the friction force
produced by the interaction between the wall of the fuel channel and the fuel
assembly supporting brushes. This let to estimate the shape of the graphite
bricks that comprise the core and, therefore, monitor any distortion of them.

The theoretical machinery exploited in this work is the Kalman filter the-
ory (e.g. [5],[6]), which is used to estimate the information above mentioned.
In a different nuclear context, in particular in safeguards problems, a similar
approach has been used in [7]. In this paper we will discuss the model of the
system used for estimation purposes and the application of a discrete-time
Kalman filter to estimate the friction force from the fuel grab load signal
stored during the refueling process. Since the initial condition of the system
are not known, and considering the fact that the estimation process is per-
formed off-line, a smoothing algorithm based on Kalman filter is introduced
to improve the estimate. This is important as a matter of fact that, even if the
grab load data is a time signal, as shown in figure 3, it should be considered
as parametrized in the height dimension of the fueling channel wall. Hence a
perfect estimate both for t = 0 and t = N is necessary.

Moreover it will be presented how to deal with the quantization of the
filtered data that introduce a noise in data streams (see e.g. [8], [9]). Finally
some experimental results will be presented.
More details about this approach, can be found in [10].
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Estimation approach to monitoring AGR nuclear reactor 35

2 Refueling model

Each refueling phase provides two data traces, one obtained by lowering the
fueling assembly into the nuclear core, and the other one by raising the fuel
assembly out from there. The fuel grab load trace data is obtained during
the refueling by load cells positioned on the refueling machine which directly
measure the force applied by the fuel assembly. This force depends on several
factors, among which the most significant are in the following described

a) The weight of the fuel assembly: this term depends on the fuel rod mass
which changes due to the nuclear reactions in the core. During the ex-
traction process it can be determined once the fuel assembly is out of the
reactor.

b) The frictional forces: is the quantity that we want to estimate, is caused by
the interaction with the stabilizing brushes on the fuel channel wall. These
brushes are set directly on the wall and the magnitude of the frictional
component depends on the shape of the wall: any distortion in the channel
geometry will reflects in friction force changes.

c) The buoyancy force: is caused by the gas that, circulating in the fuel cham-
ber, makes the fuel assembly appear lighter. This force is unknown and
changes its effect on the fuel assembly with the position of the uranium
bar into the channel. But keeping under consideration only a small part of
the fuel channel, as a brick, the effect of the buoyancy force can be taken
into account as an addictive noise.

During refueling process, the fuel assembly is governed by the interaction of
forces that simultaneously act on the fuel assembly:

ma =
∑

F ; (1)

where m is the fuel assembly mass and a is its acceleration.
The forces acting on the fuel assembly are, together with the grab load

force Fl applied by the supporting brushes on the assembly, its weight mg
(where g is the gravitational acceleration), the brushes friction forces Ff and
the aerodynamic force Fa due to the gas flow in the fuel chamber:

ma = Fl +mg + Fa + Ff . (2)

Rewriting equation (2) expliciting the velocity and the acceleration of the
assembly, we obtain:

[
ẋ1

ẋ2

]
=

[
0 0
1 0

] [
x1

x2

]
+

[
1/m

0

]
Ff +

[
−Fl/m− g

0

]
+ w

y =

[
0 0
1 0

] [
x1

x2

]
+ v ,

(3)

where x1 is the position of the fuel assembly, x2 is its speed, w is system
noise and v is measurements noise. The sign of the friction force is positive
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36 Bonivento et al.

because we consider just the reactor discharge, where the friction opposes the
movement of the assembly, and therefore narrowing of the channel will result
in an increase in a apparent load of the fuel assembly.

In order to rewrite equation (3) in a machine-computable form, we consider
its discrete-time approximation, calculating the derivatives of the position and
velocity as:

ẋ1 =
x1(t+ 1) − x1(t)

∆t

ẋ2 =
x2(t+ 1) − x2(t)

∆t
,

(4)

where t is discrete time and ∆t is the sample period. This approximation leads
to the following discrete time model of the system:

[
x1(t+ 1)
x2(t+ 1)

]
=

[
1 0
∆t 1

] [
x1(t)
x2(t)

]
+∆t

[
−1/m

0

]
Ff (t) +∆t

[
−Fl/m− g

0

]
+ w(t)

y(t) =

[
1 0
0 1

] [
x1(t)
x2(t)

]
+ v(t) .

(5)
In the following sections it will be to presented the use of a discrete-time
Kalman filter on system (5) to estimate of the amplitude of friction force Ff .

3 Using Kalman filter and smoother to estimate the core
condition

Aim of this section is to present an estimation procedure that, starting from
model (5) and having available the set of measures described in Section 1 (i.e.
the position of the fuel assembly along the channel and the grab force applied
on it), is able to estimate the friction force Ff . In order to estimate the friction
force Ff applied along the fueling channel wall, we will first consider it as an
unknown input for system (5) and, using an adapted version of Kalman filter
for systems with unknown inputs (see [11]), we will estimate the system state.
Having the state estimation it is possible to evaluate the friction force term
Ff using the first equation in (5). In order to improve the estimation for small
time instants (i.e. for the initial position of the fuel assembly), having a first
estimation of the unknown input Ff , it is possible to use a Kalman smoother
(see Appendix A) to process the system in the reverse way, find an estimation
of the state and, consequently, of the friction force at time t = N ;N−1; . . .1; 0.
Finally, in order to find an optimal estimation of the system state, and hence
an optimal estimation of the friction force, the system will be processed using
a forward known input Kalman filter. Roughly speaking running the Kalman
filter forward in time we estimate the state of the system, while running it
backward in time we make a correction of the previous estimate of the friction
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Estimation approach to monitoring AGR nuclear reactor 37

force thanks to additional information of the system gathered during the first
forward estimation.

Recalling system (5), our aim is to write it in the form

[
zd(t+ 1)
zf (t+ 1)

]
=

[
F1 F2

F3 F4

] [
zd(t)
zf (t)

]
+

[
D̄
0

]
d(t) +

[
Ḡ1

Ḡ2

]
+ w

y(t) =
[
C̄1 C̄2

] [ zd(t)
zf (t)

]
+ v(t) .

(6)

where the disturbance d(t) acts as the friction force Ff . Defining the non-
singular real matrix U

U =

[
1 −1
0 1

]
, (7)

it is possible to find the relation between system (5) and (6):

[
F1 F2

F3 F4

]
= U

[
1 0
∆t 1

]
U−1 := Ā (8)

[
D̄
0

]
= U

[
−∆t/m

0

]
:= B̄ (9)

[
C̄1 C̄2

]
=

[
1 0
0 1

]
U−1 := C̄ (10)

[
zd(t)
zf(t)

]
= Ux(t) :=

[
x̄1(t)
x̄2(t)

]
. (11)

Note that the term

∆t

[
−Fl/m− g

0

]
(12)

in first equation of system (5) is not present in the correspondent equation of
system (6); this matrix, referred as E, will be consider as a known input of
the system (5). Following this reasoning, the system can be rewritten in the
form [

x̄1(t+ 1)
x̄2(t+ 1)

]
= Ā

[
x̄1(t+ 1)
x̄2(t+ 1)

]
+ B̄Ff (t) + Ē + w

y(t) = C̄

[
x̄1(t+ 1)
x̄2(t+ 1)

]
+ v(t) .

(13)

where

Ē = UE = ∆t

[
−Fl − g

0

]
(14)

In order to estimate the system state in presence of an unknown input, its
effect on the system must be isolated; to this aim it is possible to define a
non-singular real matrix V , such that
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38 Bonivento et al.

V y(t) :=

[
ȳ1(t)
ȳ2(t)

]
= ȳ(t)

V C̄ =

[
C̄11 C̄12

0 C̄22

]

V v(t) =

[
v̄1(t)
v̄2(t)

]
(15)

in this way we have transformed the second equation of (13) in the following
form:

ȳ1(t) = C̄11x̄1(t) + C̄12x̄2(t) + v̄1(t)

ȳ2(t) = C̄22x̄2(t) + v̄2(t) ;
(16)

where C̄11 is a matrix with rank l in order to preserve system observability.
Now it is possible to rewrite the first equation in (16) as

x̄1(t) = C̄−1
11

[
ȳ1(t) − C̄12x̄2(t) − v̄1(t)

]
(17)

and substituting this into the first equation of (13) it is possible to find that

x̄2(t+ 1) = Ãx̄2(t) + B̃ȳ1(t) + Ē2 + G̃w̃(t)

ȳ2(t) = C̄22x̄2(t) + v̄2(t) ,
(18)

where
Ã =

[
Ā22 − Ā21C̄

−1
11 C̄12

]

B̃ = Ā21C̄
−1
11

G̃ =
[
Ḡ2 − Ā21C̄

−1
11

]

w̃(t) =
[
w(t) v̄1(t)

]T
.

(19)

Now system (18) is exactly the same as (89) in Appendix A, hence we can find
the estimate of the state applying the known input Kalman filter according
to the following procedure.

First iteration: unknown input Kalman Filter

State estimation a priori:

x̂2(t+ 1) = Ãx̂2(t | t) + B̃ŷ1(t) (20)

Error covariance a priori:

P2(t+ 1) = ÃP2(t | t)ÃT +Q2 (21)

Kalman gain matrix:

K(t+ 1) = P2(t+ 1)C̄T
22

[
C̄22P2(t+ 1)C̄T

22 +R2

]−1
(22)
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Estimation approach to monitoring AGR nuclear reactor 39

State estimation a posteriori:

x̂2(t+ 1 | t+ 1) = x̂2(t+ 1) +K(t+ 1)
[
ȳ2(t+ 1) − C̄22x̂2(t+ 1)

]
(23)

Error covariance a posteriori:

P2(t+ 1 | t+ 1) = P2(t+ 1) − P2(t+ 1)C̄T
22

[
C̄22P2(t+ 1)C̄T

22 +R2

]−1

C̄22P2(t+ 1)

= P2(t+ 1) −K(t+ 1)C̄22P2(t+ 1)
(24)

Initial conditions
x̂2(0) = 0 P2(0) = 1e7 . (25)

Having the estimate x̂2(t) it is possible to compute x̂1(t) from equation (17)
as

x̂1(t) = C̄−1
11

[
ȳ1(t) − C̄12x̂2(t | t)

]
(26)

with conditional covariance

P1(t) = C̄−1
11 C̄12P2(t | t)C̄T

12C̄
T
12

−1
+ C̄−1

11 R1(t)C̄−1
11

T
, (27)

where R1(t) is the covariance matrix of the noise term v1(t).
From the estimates x̂1(t) and x̂2(t) it is possible to compute the friction

force Ff (t) using the first equation of (13):

F̂f (t) = B̄−1
[
x̂1(t+ 1) − Ā11x̂1(t) − Ā12x̂1(t | t) − Ē1

]
. (28)

Moreover the estimate state x(t) of system (5) and its error covariant matrix
can be computed as:

x̂(t) = U−1

[
x̂1(t)
x̂2(t)

]

P (t) = U−1

[
P1(t | t) L(t)
LT(t) P2(t | t)

] (29)

where
L(t) = −C̄−1

11 C̄12P2(t | t) . (30)

The Kalman filter based algorithm just presented is able to estimate the state
of the system even if a disturbance (represented in our case by the friction
force determined by the brushes) is acting on it. From this estimate it is
possible to compute the magnitude of the friction force Ff simply using (13).
It is important to note that the statistic property of the friction force at the
instant time t = 0 are not known, and therefore the state estimation in t = 0
is not appropriate. Remember that this fact reflects in a wrong estimation of
the friction force applied on the fuel assembly around its initial position.
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The idea to deal with this problem is to use the estimation of the friction
force to improve the state estimates just by gathering information in the
reverse way. Thus, applying the backward Kalman filter on system (5), here
rewritten as

x̄(t+ 1) = Ax̄(t) +BFf (t) + E(t) + w(t)

y(t) = Cx̄(t) + v(t) ;
(31)

it is possible to obtain the optimal estimate of the friction force at time t = 0.
The backward Markovian model considering now the friction force as a known
input is

x̄b(t) = A−1x̄b(t+ 1) −A−1BF̂f (t) − Ā−1E(t) + w(t)

y(t) = Cx̄b(t) + v(t) ;
(32)

applying the Kalman smoothing algorithm to system (32) it is possible to
estimate its state from t = N up to t = 0 using the following procedure.

Second iteration: known input Kalman Smoother

State estimation a priori:

x̂b(t− 1 | t) = A−1x̂b(t | t) −A−1BFf (t− 1) −A−1E(t) (33)

Error covariance a priori:

Pb(t− 1) = A−1Pb(t | t)A−1T
+A−1Q(t)A−1T

(34)

Kalman gain matrix:

Kb(t− 1) = Pb(t− 1)CT
[
CPb(t− 1)CT +R(t− 1)

]−1
(35)

State estimation a posteriori:

x̂b(t− 1 | t− 1) = x̂b(t− 1) +Kb(t− 1) [y(t− 1) − Cx̂b(t− 1)] (36)

Error covariance a posteriori:

Pb(t− 1 | t− 1) = Pb(t− 1) −Kb(t− 1)CPb(t− 1) (37)

Initial conditions:

x̂b(N) = x̂(N |N) Pb(N) = P (N |N) (38)

Applying this algorithm, a new state estimate for t = N through t = 0 has
been computed, and, consequently, the estimate of the friction force from time
t = N up to t = 0 has been obtained using the second equation of (31).
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Running forward in time and backward in time the Kalman filter algo-
rithm, we have obtained an estimate of the static property of the disturbance
that acts on the system, which was not known; with this additional informa-
tion, it is possible to estimate the state of the system in a proper way using
a standard forward in time Kalman filter for systems with known inputs.

Third iteration: known input Kalman Filter

State estimation a priori:

x̂(t+ 1) = Ax̂(t | t) +BFf (t+ 1) + E(t) (39)

Error covariance a priori:

P (t+ 1) = AP (t | t)AT +Q(t) (40)

Kalman gain matrix:

K(t+ 1) = P (t+ 1)CT
[
CP (t+ 1)CT +R(t+ 1)

]−1
(41)

State estimation a posteriori:

x̂(t+ 1 | t+ 1) = x̂(t+ 1) +K(t+ 1) [y(t+ 1) − Cx̂(t+ 1)] (42)

Error covariance a posteriori:

P (t+ 1 | t+ 1) = P (t+ 1) −K(t+ 1)CP (t+ 1) (43)

Initial conditions:

x̂(0) = x̂b(0) P (0) = Pb(0) (44)

Finally the estimation of the friction force can be computed as

F̂f (t) = B−1 [x̂(t+ 1) −Ax̂(t) − E(t)] . (45)

4 Simulation results of the proposed estimation scheme

The three steps algorithm just explained has been applied to real data stored
during refueling operations. In figure 4 and 5 measurements of the grab force
Fl and of the fuel assembly position x2 gathered during the refueling process
are shown.

In figure 6 and figure 7 is depicted the estimation of the friction force after
the first step of the algorithm, i.e. after having applied the unknown input
Kalman filter. It is possible to observe that the estimated friction force has
the same trend of the grab force, but its shape is not exactly the same. This
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Fig. 4. Grab load trace data gathered during refueling.
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Fig. 5. Position of the fuel assembly during refueling.

is due to the fact that statistic property of the disturbance Ff are not known
for t = 0.

In figure 8 and figure 9 is presented the estimation of the friction force
after having applied the Kalman smoothing algorithm. The result obtained is
absolutely better (figure 7).

Remembering that the smoother algorithm has the role to propagate the
estimation of the friction force from time t = N , to time t = 0, a better result
can be obtained by processing the system once more by a forward Kalman
filter, where now the statistic property of the friction force for t = 0 are known,
because they are given by the combined use of the first forward Kalman filter
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Fig. 6. First iteration estimation.

and the smoother. The results of this third step are shown in figure 10 and
figure 11. In this case the trend and the shape of the estimate friction force are
exactly the same as the grab load, and this demonstrates that it is possible
to obtain an optimal estimation of the acting disturbance without an a priori
knowledge on it.

In figure 11 it is possible to observe that still some small errors in the
estimate are present; these imperfections are due to the approximate model
of the system used to estimate the friction force. For example the model does
not consider the noise introduced by the quantization of data, moreover both
the mass m of the fuel assembly and the value of the buoyancy force Fa are
approximated and considered constant.

In the following section a procedure to deal with the noise introduced by
the quantization of data is presented and final simulation results are discussed.

5 Dealing with quantization

Aim of this section is to give some guidelines on how to face the problem of
state estimation using quantized measurements; this is necessary since grab
load data are quantized and the quantization introduces a noise that affects
the estimate. In the following some necessary condition for the maximum like-
lihood estimate (see [12]) when the observations have been quantized will be
given and a Quantization Regression (QR) algorithm (still based on Kalman
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Fig. 7. First iteration estimation (zoom in).

filter) which generates an estimate of an autoregressive time series from quan-
tized measurements will be described.

As reported in [13], the effect of a uniform quantization can be modeled
as an additive noise that is uniformly distributed, uncorelated with the input
signal, and has white spectrum. Consider the following model with quantized
measurements:

xt+1 = f(xt, wt)
zt = h(xt) + et

yt = Qm(zt)
(46)

where Qm(·) is the quantization function. The problem of optimally estimate
the state of (46) is a problem of nonlinear non-Gaussian filtering; as explained
in [5] such a problem has a Bayesian solution given by

p(xt+1 |Yt) =

∫

Rn

p(xt+1|xt)dxt

p(xt |Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
.

This problem is in general not analytically solvable, but there exists two dif-
ferent approach to deal with it:

a) use an extended Kalman filter (EKF) that is a sub-optimal filter for an
approximate linear Gaussian model designed using the assumption that
the quantization introduce an additive uniform noise;
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Fig. 8. Second iteration estimation.

b) use a numerical approach to find a miximum-likelihood estimates of pa-
rameters, approximating in this way the optimal solution to the Bayesian
filtering problem.

Regarding the first approach, it can be easily introduced considering the
following linear Gaussian model with quantized observations:

xt+1 = Ftxt +Gtwt Cov(wt) = Qt

zt = Htxt + et Var(et) = σ2

yt = Qm(zt)
(47)

where yt represents the quantized measurements. Using the assumption that
the quantization introduce an additive uniform noise, the optimal filter is
given by Kalman filter by increasing the measurement covariance Rt by term
equal to q2/12, i.e.

Rt =

(
σ2

t +
q2

12

)
I , (48)

where q is the quantization box size and I is a suitably dimensioned identity
matrix. From (48) it turns out that the measurements covariance matrix Rt is
increased of a quantity that depends on how small the quantization box size
is and hence on the variance of the quantization noise (cf. [14]). Using (48)
it is therefore possible to tune the filter to obtain the best estimation for the
problem.
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Fig. 9. Second iteration estimation (zoom in).

In the following a slightly different Kalman filter obtained by the Bayesian
equation as shown in [15] will be introduced; considering this filter, necessary
conditions for the maximum-likelihood estimate of parameters when the ob-
servations are quantized will be formulated.

Consider the following linear measurement equation

z = Hx+ v (49)

where x is the vector to be estimated, z is the measurement vector, and v is
the measurement noise. Recall that, with non-quantized measurements, the
maximum-likelihood estimate (cf [12]) is the value of x that maximizes the
likelihood function L(z;x):

x̂ = arg[max
x

L(z, x)] = arg[max
x

p(z : x)] , (50)

where the notation p(z : x) means the probability-density function of z with
x as a parameter of the distribution.

When the measurements are quantized numerical values of z are not avail-
able and the knowledge of the measurements is reflected in the inequalities

{
ai ≤ zi < bi

}
, (51)

where ai and bi are the lower and upper bounds of the quantum interval
in which the i-th component of z is known to lie. Considering this fact, the
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Fig. 10. Third iteration estimation.

likelihood function to be used is the probability that the measurements fall in
the hypercube defined by equation (51):

L(ai, bi, x) =
∏

i

P
[
ai − (Hx)i ≤ vi < bi − (Hx)i

]
. (52)

Hence the maximum-likelihood estimate of x with quantized measurements is

x̂ = arg

{
max

x

∏

i

P
[
ai − (Hx)i ≤ vi < bi − (Hx)i

]
}
. (53)

Denoting with Pi the term P
[
ai − (Hx)i ≤ vi < bi − (Hx)i

]
, such that

Pi =

∫ bi−(Hx)i

ai−(Hx)i

pvi(u)du ,

the necessary condition for maximum likelihood estimate is the following:

1

L(ai, bi, x)

(
∂L(ai, bi, x)

∂x

)
=
∑

i

∂Pi/∂x

Pi
=

=
∑

i

pvi(bi − (Hx)i) − pi
v(ai − (Hx)i)

Pi
hi = 0 ,

(54)

where the row vector hi is the i-th row of H. Hence the problem can be
formulated as following. Given
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Fig. 11. Third iteration estimation (zoom in).

i) the measurement equation z = h(x, v),
ii) the joint probability density function of parameter and noise vectors

px,v(ξ, v),
iii) the constraint z ∈ A, where A is some hypercube for quantized measure-

ments,

the estimation problem with quantized measurements consists in :

A) finding the conditional mean of f(x) given a measurement z: E [f(x) | z],
B) averaging this function of z considering the constraint z ∈ A.

Assume that the state vector and measurements variables satisfy the rela-
tionships

xi+1 = Φixi + wi

zi = Hixi + vi

E(x0) = x̄0 cov(x0) = P0

E(wi) = 0 E(wiw
T
j ) = Qiδij

E(vi) = 0 E(viv
T
j ) = Riδij

E(wiv
T
j ) = 0 E(wix

T
0 ) = E(vix

T
0 ) = 0

(55)

where xi is the system state vector at time ti, Φi is the system transition
matrix from time ti to ti+1, wi is a realization of the process noise at ti, zi

is the measurement vector at time ti, Hi is measurements matrix at time
ti and vi is a realization of the observation noise at time ti. Each of the m
components of the normally distributed vector z has zero mean and lies in a
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interval whose limits are {ai} and {bi}, ai ≤ zi < bi, (i = 1, 2, 1 . . . ,m). Let
(γi) (i = 1, 2, 1 . . . ,m) be the m components of the geometric center vector γ
of the region A:

γi =
1

2
(bi + ai) , (56)

and let (αi) (i = 1, 2, 1 . . . ,m) be the m components of the quantum interval
half-widths vector α:

αi =
1

2
(bi − ai) . (57)

It is possible to show that, expanding the probability-density function in power
series in an interval containing γ and neglecting terms higher than the fourth
order, the mean and covariance of z conditioned on z ∈ A are given by

E(z | z ∈ A) ≈ γ −AΓ−1γ (58)

cov(z | z ∈ A) ≈ A =

{
(αi)2

3
δij

}
(59)

where Γ = E(zzT ) and δij is the Kronecker delta. In this case the minimum-
variance linear estimate x∗ and its covariance E∗ are given by

x∗ = x̄+K∗(γ −Hx̄) (60)

E∗ = M −MHT (Γ +A)−1HM (61)

where

K∗ = MHT (Γ +A)−1 (62)

Γ = cov(z) = HMHT +R . (63)

This problem can therefore be solved recursively with a modified Kalman fil-
ter, leading to the following result. Assuming the conditional distribution of
the state just before the i-th measurements being N(x̂i | i+1,Mi), then the
Gaussian fit alghorithm for a linear system with quantized system is the fol-
lowing:

x̂i | i = x̂i | i−1 +Ki[E(zi | zi ∈ Ai) −Hix̂i | i−1] (64)

Ki = MiH
T
i (HiMiH

T
i +Ri)

−1 (65)

Pi = Mi −MiH
T
i (HiMiH

T
i +Ri)

−1HiMi (66)

Ei = Pi +Kicov(zi | zi ∈ Ai)K
T
i (67)

x̂i+1 | i = Φix̂i | i (68)

Mi+1 = ΦiEiΦ
T
i +Qi , (69)

where x̂i | i is the conditional mean of xi for quantized measurements up to and
including ti, x̂i | i−1 is the conditional mean of xi for quantized measurements
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50 Bonivento et al.

up to and including ti−1, Ai is the quantum region in which zi falls, Mi

is the conditional covariance of xi for quantized measurements up to and
including ti−1, Ki is the Kalman filter gain matrix at ti, Pi is the conditional
covariance of estimate, and Ei is the conditional covariance of xi for quantized
measurements up to and including ti−1.

Note that equations (64) correctly describe the propagation of the first two
moments of the conditional distribution under the assumption of Gaussian
noises. Let e = x− x̂ be the estimation error, and consider the dynamic

ei+1 | i = Φiei | i − wi .

Since ei | i is not Gaussian, so ei+1 | i is not Gaussian too, but it tends to a
Gaussian distribution because of the addition of Gaussian process noise wi

and of the action performed by the state transition matrix Φi. Considering
this, equations (64) yield a good approximation of the conditional moments.

Concluding it is important to remark that the recursive algorithm de-
scribed by (64) is very similar to the algorithm describing the Kalman filter,
with two important differences:

• the conditional mean of the measurements vector at ti is used as an input
for the filter;

• the conditional covariance equation is being forced by the random variable
cov(zi | zi ∈ Ai).

Following the theory just presented a set of simulation with the modified
algorithm has been performed and the results are presented in figure 12. It is
possible to see that now the estimation algorithm leads to a perfect estimate
of the friction force.

6 Concluding remarks

In this work we have presented an estimation algorithm based on Kalman filter
to monitor the condition of the core of AGR nuclear stations. In particular,
using data stored during the core refueling phase, it is possible to estimate
the friction force that the fuel rod apply on the supporting brushes which are
embedded in the core wall. In this way it is possible to estimate the shape of
the graphite bricks that compose the core and therefore the condition of the
core itself.

Future works will consists in gathering existing and historical data in a
single location and define patterns in order to determinate whether time,
location, operating condition have an effect on the trace.
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Fig. 12. Estimation of friction force using the modified Kalman filter to deal with
quantization (zoom in).
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A Kalman filtering, prediction and smoothing

In order to collect symbols and definitions used along the paper, in this Ap-
pendix the main formulas of the celebrated Kalman machinery for filtering,
prediction and smoothing are briefly reported.

Consider a stochastic system represented by the following model:

xk = φk−1xk−1 + wk−1 (70)

yk = Hkxk + vk . (71)

Let x ∈ Rn (state of the system) and y ∈ Rl (measurements) be jointly
Gaussian random vectors with mean vectors µx = E {x} and µy = E {y}
respectively, and covariance matrixes

Σ =

[
Σxx Σxy

Σyx Σyy

]
:=

[
cov {x, x} cov {x, y}
cov {y, x} cov {y, y}

]
. (72)

Assume the covariance matrix Σ ∈ R(n+l)×(n+l) to be positive definite. The
measurement and plant noises vk and wk are assumed to be zero-mean Gaus-
sian sequences, while the initial value x0 is considered a Gaussian variate with
known mean x0 and known covariance matrix P0. According to the previous
definitions, the following statements hold:
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E 〈wk〉 = 0

E
〈
wkw

T
i

〉
= ∆(k − i)Qk

E 〈vk〉 = 0

E
〈
vkv

T
i

〉
= ∆(k − i)Rk

(73)

where∆(k−i) stands for the Kronecker delta function, and the noise sequences
wk and vk are assumed to be uncorrelated.

The problem of optimal estimation is to find the minimum variance esti-
mate x̂(t + m | t) of the state vector x(t + m) based on the observations up
to time t of the system (70). This means designing a filter that produce the
estimate x̂(t+m | t) minimizing the performance index

J = E
{
|x(t+m) − x̂(t+m | t)|2

}
(74)

We will refer to this problem as prediction if m > 0, filtering if m = 0 and
smoothing if m < 0.

Define the estimation error x̃(t +m | t) as the difference between the real
state value x(t+m) and the estimate x̂(t+m|t):

x̃(t+m | t) = x(t+m) − x̂(t+m | t) (75)

and let the error covariance matrix be

P (t+m | t) := E
{

[x(t+m) − x̂(t+m | t)][x(t+m) − x̂(t+m | t)]T
}
. (76)

Denoting with Yt the linear space generated by the observations, the minimum
variance estimation x̂(t+m | t) is given by the orthogonal projection of x(t+m)
onto Yt

x̂(t+m|t) = Ê {x(t+m) | Yt)} , (77)

i.e. the optimality of x̂(t+m | t) is obtained when the estimation error x̃(t+
m | t) is orthogonal to the data space:

x̃(t+m|t) = x(t +m) − x̂(t+m|t) ⊥ Yt ; (78)

moreover this estimate is unbiased, which means that

E {x̃(t+m|t)} = 0 for t = 0, 1, ... (79)

Consider now a multivariable Gaussian Markov discrete-time linear system

x(t+ 1) = A(t)x(t) + w(t) (80)

y(t) = C(t)x(t) + v(t)

where x ∈ Rn is the state vector, y ∈ Rp is the observation vector, w ∈ Rn

is the plant noise vector, and v ∈ Rp is the observation noise vector. Let
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A(t) ∈ Rn×n, C(t) ∈ Rp×n be deterministic function of the time t and w(t)
and v(t) zero mean Gaussian white noise vectors with covariance matrixes

E

{[
w(t)
v(t)

] [
w(t)T v(t)T

]}
=

[
Q(t) S(t)
ST (t) R(t)

]
(81)

where Q(t) ∈ Rn×n is nonnegative defined, and R(t) ∈ Rpxp is positive defined
for all t = 0, 1, . . .. The initial state x(0) is Gaussian with mean E {x(0)} =
µx(0) and covariance matrix

E
{

[x(0) − µx(0)] [x(0) − µx(0)]
T
}

= Π(0) ; (82)

moreover x(0) is uncorrelated with the noise w(t), v(t), t = 0, 1, .... By using
orthogonal projection operators, it is possible to define the following algorithm
for the one step ahed Kalman predictor.

State estimation a priori:

x̂(t+ 1) = A(t+ 1)x̂(t | t) (83)

Error covariance a priori:

P (t+ 1) = A(t)P (t | t)AT (t) +Q(t) (84)

Kalman gain matrix:

K(t+ 1) = P (t+ 1)CT (t+ 1)
[
C(t+ 1)P (t+ 1)CT (t+ 1) +R(t+ 1)

]−1

(85)
State estimation a posteriori:

x̂(t+ 1 | t+ 1) = x̂(t+ 1) +K(t+ 1) [y(t+ 1) − C(t+ 1)x̂(t+ 1)] (86)

Error covariance a posterior:

P (t+ 1 | t+ 1) = P (t+ 1) −K(t+ 1)C(t+ 1)P (t+ 1) (87)

Initial condition:
x̂(0) = µx(0) P (0) = Π(0) (88)

Consider now a discrete-time stochastic linear system with forcing input

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t) (89)

y(t) = C(t)x(t) + v(t) (90)

where u(t) ∈ Rm is the input vector, and B(t) ∈ Rn×m is input distribution
matrix. We assume that u(t) is measurable in the sense that u(t) is a function
of the outputs.
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Exploiting the linearity of the system it is possible to decompose state
trajectories in two terms: the free-response xw(t) and the forced-response
xu(t):

xw(t+ 1) = A(t)xw(t) + w(t), xw(0) = x(0) (91)

xu(t+ 1) = A(t)xu(t) +B(t)u(t), xu(0) = 0 ; (92)

the solution x(t+ 1) of (89) is expressed by the superimposition of the effects:

x(t+ 1) = xw(t+ 1) + xu(t+ 1), t = 0, 1, . . . .

The forced term xu(t) is known since u(t) is measurable and, defining the
state transition matrix Φ(t, s), it can be computed as

xu(t) =

t−1∑

k=0

Φ(t, k + 1)B(k)u(k), t = 0, 1, ... (93)

Since xu(t) is known, the algorithm should compute the estimates of the
vector xw(t) based on the observations and defining the measurements

ℓ(t) = y(t) − C(t)xu(t) = C(t)xw(t) + v(t) . (94)

Since the system

xw(t+ 1) = A(t)xw(t) + w(t) (95)

ℓ(t) = C(t)xw(t) + v(t) (96)

it is completely equivalent to the stochastic system of (80), it is possible to
write the Kalman filter algorithm for the stochastic linear dynamic system as
previously described, but using the following a priori state estimation equa-
tion:

x̂(t+ 1) = A(t+ 1)x̂(t | t) +B(t+ 1)u(t+ 1) (97)

A smoother estimates the state of a system at time t using measurements
made before and after time t. The accuracy of a smoother is generally better
the one obtained by a forward filter, because it use more measurements for
its estimate. So the optimum linear smoothing provides an estimate of the
past value of the desired quantities. It is possible to represent the problem
using a backward Markovian model and therfore to solve the problem using a
Kalman filter designed for the backward Markovian model. This filter is called
backward Kalman filter and is defined by the following algorithm.

State estimation a priori:

x̂s(t− 1 | t) = A−1(t)x̂s(t | t) −A−1D(t− 1)u(t− 1) (98)

Error covariance a priori:

Ps(t− 1) = A−1(t)Ps(t | t)A−1(t) +A−1(t)Q(t)A−1(t) (99)
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Kalman gain matrix:

Ks(t−1) = Ps(t−1)CT (t−1)
[
C(t− 1)Ps(t− 1)CT (t− 1) +R(t− 1)

]−1

(100)
State estimation a posterior:

x̂s(t−1 | t−1) = x̂s(t−1)+Ks(t−1) [y(t− 1) − C(t− 1)x̂s(t− 1)] (101)

Error covariance a posterior:

Ps(t− 1 | t− 1) = Ps(t− 1) −Ks(t− 1)C(t− 1)Ps(t− 1) (102)

Initial condition:

x̂s(N) = x̂(N |N) Ps(N) = P (N |N) (103)
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Stability Issues in the Disturbance Decoupling
Problem for Systems over Rings

Giuseppe Conte and Anna Maria Perdon
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Summary. The aim of this paper is to review the solvability conditions of
the disturbance decoupling problem for systems with coefficients in a ring
and to provide new results in case the additional requirement of stability, in
a suitable sense, is considered. The problem is approached by making use of
geometric methods and tools, which extend those developed for systems with
coefficients in a field. It is shown that the results can be interpreted in the
framework of time-delay systems, providing new conditions for the solution of
the disturbance decoupling problem with stability in that case.

1 Introduction

The problem of decoupling by a suitable feedback the output of a given sys-
tem from a disturbance input is a classic one in dynamical system and control
theory. The solution provided in the framework of linear systems by the geo-
metric approach (see [4], [24]) has been extended to various class of systems,
including nonlinear systems, periodic systems, time-delay systems and sys-
tems over rings. Here, after recalling a number of known results, we consider
the disturbance decoupling problem for system with coefficients in a ring with
the additional requirement of stability.
Motivations for our investigation, in addition to the interest in abstract sys-
tems over rings, come from the fact that results obtained in the ring framework
can be naturally interpreted in the framework of time-delay systems. These
have a great importance in several application, where delays due to trans-
portation of materials or to transmission of information cannot be neglected.
Here, in Section 2, we introduce systems with coefficients in a ring and, in Sec-
tion 3, we describe the relation between them and time-delay systems. Then,
in Section 4, we state formally the disturbance decoupling problem and we
recall the geometric condition for its solution. Computability of those condi-
tions and the practical design of a solution, in the ring framework, are non
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58 Giuseppe Conte and Anna Maria Perdon

trivial issues, but the inherent difficulties can be overcame by characterizing
solvability in an alternative way, as recalled in Section 5. From the result of
that Section, we derive, in Section 6, a set of new conditions for the solvabil-
ity of the problem with the additional requirement of stability, in a suitable
sense. By interpreting the result in the framework of time-delay systems, one
get condition for the solvability of the problem with the additional require-
ment of stability in the usual sense, which hold in more general situations
than those considered in [10].

2 Systems over rings

Let R denote a commutative ring. By a system with coefficients in R, or a
system over R, we mean a linear dynamical system Σ = (A,B,C) whose
evolution is described by a set of difference equations of the form

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where t ∈ N is an independents variable, x(·) belongs to the free module
X = Rn, u(·) belongs to the free module U = Rm, y(·) belongs to the free
module Y = Rp and A,B,C are matrices of suitable dimensions with entries
in R.
By analogy with the classical case of linear, dynamical, discrete-time systems
with coefficients in the field of real number, we think of the variables x, u and
y as of, respectively, the state, input and output of Σ.
Besides being considered as abstract algebraic objects, systems with coefficient
in a ring have been proved to be useful for modeling and studying particular
classes of dynamical systems, such as discrete-time systems with integer coef-
ficients, families of parameter dependent systems and time delay systems (see
[17], [18] and Section 3).
General results concerning the theory of systems with coefficients in a ring
and a number of related control problems can be found in [22],[23], [6], [11]
and the references therein. In particular, a geometric theory, similar to the
existing one for linear systems over a field (see [4], [24]), has been developed
and related concepts, like the notion of controlled invariance and that of con-
ditioned invariance, maintain their relevance in the solution of several design
problems in the ring framework (see [11]).
Computation issues in the theory of systems with coefficients in a ring have
been considered in [20] and [21], providing tools and methods for a practical
application of the geometric approach.
In the following, we will mainly deal with Noetherian rings, that is rings in
which non decreasing chains of ideals are stationary (see [3] or [19] for more
details), having no zero divisors. Examples of Noetherian rings which are of
interest in control theory are the rings of polynomials in one or several vari-
ables with real coefficients R[∆1, ..., ∆k], k ≥ 1. For k = 1, R[∆] is, in addition,
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Stability Issues in the DDP for Systems over Rings 59

a principal ideal domain (p.i.d), that is a ring in which any ideal has a single
generator.

3 Time delay systems and systems over rings

As a motivation to study systems over rings, let us recall the relationship
between them and time delay systems. In general, a time-invariant, linear,
time delay system with non commensurable delays h1, . . . , hk, hi ∈ R+, for
i = 1, . . . , k, is described by equations of the the following form

Σd =

{
ẋ(t) =

∑k
i=1

∑a
j=0 Aijx(t − jhi) +

∑k
i=1

∑b
j=0 Biju(t− jhi)

y(t) =
∑k

i=1

∑c
j=0 Cix(t− jhi)

(2)

where Aij , Bij , and Cij are matrices of suitable dimensions with entries in R.
In the last years, a great research effort has been devoted to the development
of analysis and synthesis techniques for this kind of systems, mainly extending
tools and methods from the framework of linear systems with coefficients in
a field (see e.g. [5] and [13]). A large part of the difficulties in dealing with
systems of the form (2) is due to the fact that their state space has infinite
dimension. In order to circumvent this, it is useful to associate to a time
delay system a suitable system with coefficients in a ring, as described in the
following.
For any delay hj , let us introduce the delay operator δj defined, for any time
function f(t), by δjf(t) := f(t− hj). Accordingly, we can re-write the system
(2) as

Σd =

{
ẋ(t) =

∑a
i=1

∑k
j=0 Aijδ

i
jx(t) +

∑b
i=1

∑k
j=0 Bijδ

i
ju(t)

y(t) =
∑c

i=1

∑k
j=0 Cijδ

i
jx(t)

Now, by formally replacing the delay operators δj by the algebraic unknowns
∆j , it is possible to associate to Σd the discrete-time system Σ over the ring
R = R[∆1, ..., ∆k] defined by the equations

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

where the matrices A,B,C are defined as

A :=

a∑

i=1

k∑

j=0

Aij∆
i
j , B :=

b∑

i=1

k∑

j=0

Bij∆
i
j , C :=

c∑

i=1

k∑

j=0

Cij∆
i
j

Actually, the time delay system Σd and the associated system Σ over
R[∆1, ..., ∆k] are quite different objects from a dynamical point of view, but
they share the structural properties that depend on the defining matrices.
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60 Giuseppe Conte and Anna Maria Perdon

Therefore, control problems concerning the input/output behavior of Σd can
be naturally formulated in terms of the input/output behavior of Σ and they
can possibly be solved in the framework of systems over rings, whose state
spaces are finite dimensional modules. In turn, solutions found in that frame-
work often can be interpreted in the original delay-differential framework, to
solve the original problem. This is the case, for instance, of the Disturbance
Decoupling Problem considered below, as well as many as for others (see [9],
[11] and references therein).

4 Statement of the Disturbance Decoupling Problem

Let the system Σ be described over the ring R by equations of the form

Σ =

{
x(t+ 1) = Ax(t) +Bu(t) +Dq(t)

y(t) = Cx(t)
(3)

where q ∈ Q = Rk is a disturbance.

The Disturbance Decoupling Problem with Measurable Disturbances
(DDPM) for Σ consists in finding an integer na ≥ 0 and a dynamic feedback
law of the form

{
xa(t+ 1) = A1x(t) +A2xa(t) +G1q(t)

u(t) = Fx(t) +Hxa(t) +G2q(t)
(4)

where xa ∈ Xa := Rna , A1, A2, F,H,G1 and G2 are matrices of suitable di-
mensions with entries in the ring R, such that the output of the compensated
system Σc does not depend on q.
In case na = 0, (4) reduces to a static feedback law.

The standard way to solve the DDPM makes use of fundamental notions of
the geometric approach, as recalled below.

Definition 1. [14] Let Σ be a system defined over R by equations of the form
(1). A submodule V ⊆ X = Rn is called
i) (A,B)-invariant or controlled invariant if

AV ⊆ V + ImB

ii) (A+BF )-invariant or controlled invariant of feedback type, shortly feedback
invariant, if there exists a linear map F : X −→ U such that

(A+BF )V ⊆ V

Any such F is called a friend of V.
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Stability Issues in the DDP for Systems over Rings 61

The family of controlled invariant submodules contained in a given submodule
K ⊆ Rn is closed with respect to the sum, therefore, if R is a Noetherian ring,
it has a maximum element denoted by V∗(K).
The main result concerning the DDPM is stated as follows.

Proposition 1. [7] Given a system Σ, defined over the Noetherian ring R by
equations of the form (3), the DDPM for Σ is solvable if and only if

Im D ⊆ V∗ + ImB (5)

where V∗ is the maximum (A,B)-invariant submodule contained in Ker C.

It has to be remarked that, if R is a field, i) and ii) in Definition 1 are
equivalent (see [4], [24]). In that case, as well as in all cases in which V∗ is
feedback invariant, a static solution to the DDPM, when (5) holds, is simply
given by any friend F of V∗, whose feedback action causes V∗ to become
invariant with respect to the closed loop dynamics and forces the image of
the disturbance to evolve in Ker C. Obviously, any other controlled invariant
V ⊆ Ker C such that Im D ⊆ V + ImB can be alternatively used to define,
by any friend, a solution.
If R is not a field, i) and ii) are no longer equivalent (easy examples can for
instance be constructed over the ring of real polynomials in one indeterminate,
see [14]) and, if V∗ is not of feedback type, in order to obtain a solution it is
necessary to construct a suitable extension Σe of Σ. This is motivated by the
following result.

Proposition 2. [9] Let Σ be a system defined by equations of the form (1)
over a Noetherian ring R. Assume that the controlled invariant submodule V
is a direct summand of the state module X , i.e. there exists a submodule W
such that X = W ⊕V, then V is of feedback type.

Basically, the procedure to find a solution to the DDPM consists in considering
the system extension Σe given by the equations

Σe =

{
xe(t+ 1) = Aexe(t) +Beue(t) + Deq(t)

y(t) = Cexe(t)
, (6)

with

xe =

[
x(t)
xa(t)

]
, ue =

[
u(t)
ua(t)

]

Ae =

[
A 0
0 0r×r

]
, Be =

[
B 0
0 Ir×r

]
, De =

[
D

0r×r

]
, Ce = [C 0r×r]

where r is the dimension of V∗. The module Ve generated by the columns of

the matrix Ve =

[
V
Ir×r

]
, where V is a matrix whose columns generates V∗,
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62 Giuseppe Conte and Anna Maria Perdon

is, by construction, a direct summand of Xe = Rn
⊕Rr contained in Ker Ce

and
Im De ⊆ Ve + Im Be.

Henceforth, a solution is represented by a friend of Ve. Remark that the above
construction can be carried on starting from any controlled invariant submod-
ule V ⊆ Ker C for which Im D ⊆ V + Im B.

Remark 1. Proposition 1 provides a complete characterization of the solvabil-
ity of the DDPM over a Noetherian ring, but its use in practice requires the
possibility to compute V∗. If R is a field this can be done by the so called In-
variant Subspace Algorithm (ISA)(see [24]). Unfortunately ISA does not work
if R is not a field and, although an alternative algorithm has been given in
[2] for Principal Ideal Domains, no algorithm is available for the more general
case of Noetherian rings.

5 A computable solution

A different way to construct a solution to the DDPM, which avoids the use
of V∗ and is based on computable submodules, has been proposed in [1]. To
describe it, let us introduce some other geometric notions.

Definition 2. Let Σ be a system defined over R by equations of the form (1).
A submodule S ⊆ X is called (A,C)-invariant or conditioned invariant if

A(S ∩ kerC) ⊆ S

The family of all conditioned invariant submodules containing a given sub-
module K has a minimal element, denoted by S∗(K). It can be shown that
S∗(K) coincides with the limit of the following sequence

S0 = K
Si+1 = K +A(Si ∩ kerC)

(7)

Over a Noetherian ring the a sequence (7) being non decreasing, converges
in a finite number of steps, so providing an algorithm to compute practically
S∗(K) (see [21]).

Definition 3. [8], [9] Let Σ be a system defined over R by equations of the
form (1). A submodule R ⊆ X is said to be a pre–controllability submodule if

i) R is controlled invariant;
ii) R = S∗(R), where S∗(R) is the minimum element of the family SR

SR = {S ⊆ X such that S = R∩ (AS + ImB)}. (8)
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Stability Issues in the DDP for Systems over Rings 63

The family of all pre–controllability submodules contained in a given submod-
ule K has a maximum element, denoted by R∗(K).
It has been shown in [1] that R∗(K) coincides with the limit of the following
sequence {

R0 := S∗(Im B) ∩ K ∩A−1(ImB)
Rk := S∗(Im B) ∩ K ∩A−1(Rk−1 + Im B)

(9)

where A−1 denotes the inverse image of A and S∗(Im B) the minimal condi-
tioned invariant submodule containing Im B.
Over a Noetherian ring R the a sequence (9), being non decreasing, converges
in a finite number of steps, so providing an algorithm to compute practically
R∗(K) (see [21]).
Remark that in case of a system Σ defined by equations (3) we can construct
pre–controllability submodules using either the input matrix B or the input
matrix [B D]. If necessary, we will make distinction by using a suffix.
We can now give an alternative, computable condition for the solution of
DDPM.

Proposition 3. [1] Given a system Σ, defined over the Noetherian ring R by
equations of the form (3), the DDPM for Σ is solvable if and only if

ImD ⊆ R∗
[BD](Ker C) + Im B (10)

where R∗
[B D](Ker C) is the maximum pre-controllability submodule in Ker C

constructed with respect to the input matrix [B D].

The proof of Proposition 3 relies on the fact that condition (10) is equivalent
to condition (5) of Proposition 1, namely Im D ⊆ V∗ + Im B, as shown in
[1].

6 DDPM with stability

In addition to being useful for stating a computable condition for the solution
of the DDPM, pre–controllability subspaces are instrumental in analyzing the
structure of the closed loop system in which the disturbance is decoupled.
This fact turns out to be useful in considering the DDPM with the additional
requirement of stability. Since a ring cannot, in general, be endowed with a
natural metric structure, stability for systems with coefficient in a ring must
be dealt with in a formal way as follows (see [16] and [12]).
Given a ring R, a subset S ⊆ R[z] of polynomials in the indeterminate z
with coefficients in R is said to be an Hurwitz set if (i) it is multiplicatively
closed, (ii) it contains at least an element of the form z − α, with α ∈ R,(iii)
it contains all the monic factors of all its elements.

Definition 4. Given a system Σ of the form (1) with coefficients in R and
an Hurwitz set S, Σis said S-stable if det(zI −A) belongs to S.
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64 Giuseppe Conte and Anna Maria Perdon

Remark 2. Referring to the relation between time delay systems and systems
over rings in the case of a single delay, S-stability in the ring framework
corresponds to stability in the time delay framework if the Hurwitz set S is
chosen as

S = {p(z,∆) ∈ R[z] such that p(γ, e−γh) 6= 0
for all γ ∈ CwithRγ ≥ 0}. (11)

The Disturbance Decoupling Problem with Measurable Disturbances
and S-stability (DDPMS) for a system Σ of the form (3) and a given Hur-
witz set S consists in finding an integer na ≥ 0 and a dynamic feedback law of
the form (4), such that the compensated system Σc is S-stable and its output
does not depend on q.

To investigate the solvability conditions of the DDPMS let us consider the con-
struction of the solution to the DDPM described in Section 4. There, in order
to extend Σ to Σe, we start from a controlled invariant submodule V ⊆ X
of dimension r, for which Im D ⊆ V + Im B holds, which can be either V∗

, if it can be computed, or R∗
[B D](Ker C). In both cases let us denote by

W the maximum pre–controllability submodule R∗
[B](V). In Σe we have the

(Ae, Be)-invariant submodules We = span

[
W
I

]
and Ve = span

[
V
I

]
, where

W and V are matrices whose columns span W and V , respectively.
Assuming that We is a direct summand of Ve, as it happens when R =
R[∆1, . . . , ∆k], we can write Xe = X ⊕Rr = We⊕W1⊕W2 for some submod-
ules W1 and W2, such that Ve = We ⊕W1. Choosing a basis of Xe consisting
of the union of basis of We, W1, W2 and expressing Ae and Be accordingly,
we get

Ae =




A11 A12 A13

0 A22 A23

A31 A32 A33



 ;Be =




B1 0
0 0
0 B3



 . (12)

The structure of Be depends on the fact that Im B
⋂V is contained in R∗

[B].

The structure of Ae depends on this and on the fact that We is (Ae, Be)-
invariant. The dynamic matrix Aec of the compensated system, for any friend

F =

[
F11 F12 F13

F21 F22 F23

]
of Ve, takes therefore the form

Aec =




A11 +B1F11 A12 +B1F12 A13 +B1F13

0 A22 A23

0 0 A33 +B3F23



 (13)

showing that the dynamics of the block A22 remains fixed for any choice of
the friend F .
We can therefore state the following Proposition.

Proposition 4. With the above notations, a necessary condition for the solv-
ability of the DDPMS for Σ is that det(sI −A22) belongs to S.
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Stability Issues in the DDP for Systems over Rings 65

From the structure of Aec, it can be seen that a sufficient condition for the
solvability of the DDPMS for Σ depends on the possibility of choosing F11

and F33 so that det(sI − (A11 + B1F11) and det(sI − (A33 + B3F23)) are
elements of S. Note that the components F11 and F33 of F can actually be
chosen arbitrarily. To this aim it is useful to recall the following definition.

Definition 5. Let the system Σ be described over the ring R by equations
of the form (1). Σ, or, alternatively, the pair (A,B), is said to be coefficient
assignable if, by a suitable choice of the feedback F , the coefficients of det(sI−
(A+BF )) can be arbitrarily assigned.

Proposition 5. With the above notations, a sufficient condition for the solv-
ability of the DDPMS for Σ is that det(sI − A22) belongs to S and that the
pairs (A11, B1) and (A33, B3) are coefficient assignable.

Coefficient assignability for systems over rings is related to structural proper-
ties, like (strong) reachability, in different ways, depending on the properties
of the ring of coefficients (see e.g. [6]).

Remark 3. Keeping in mind the content of Section 2, it is clear that the
DDPMS has a corresponding version in the time-delay framework. Letting
the Hurwitz set S be chosen as in (11), the above results can be applied to
the disturbance decoupling problem with the requirement of stability, in the
classical sense, in the time-delay framework, getting conditions for its solv-
ability. These hold in a more general situation than that considered in [10],
where the slightly restrictive hypothesis V∗⋂ Im B was assumed.
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Some comments on ν-Support Vector Machines

Francesco Dinuzzo and Giuseppe De Nicolao

Dipartimento di Informatica e Sistemistica, Università di Pavia,
francesco.dinuzzo@gmail.com, giuseppe.denicolao@unipv.it

1 Introduction

In the last decade, Support Vector Machines (SVM) [11] have emerged as
powerful methods for learning from examples. Indeed, they have been applied
successfully to both classification and regression problems. A notable property
of obtained solutions is that they depend only on a sparse selection of training
examples called support vectors.

However, the performance of SVM heavily depends on the choice of some
design parameters like the complexity parameter C in classification and also
the width of the dead zone ǫ in regression. More precisely, the complexity
parameter controls the degree of regularization that is forced into the solu-
tion and corresponds to the inverse of the regularization parameter used in
the Tikhonov regularization approach to the solution of ill-posed problems.
On the other hand, the ǫ parameter is just the width of the dead zone in
the ǫ-insensitive loss function, meaning that residuals smaller than ǫ are not
accounted for in the cost function. By the way, this guarantees insensitivity
of the solution against the data associated with such residuals.

The search for automated tuning procedures for the design parameters is
motivated by the fact that these parameters, especially the complexity one,
do not have an intuitive interpretation that could be exploited to get hints on
their optimal values. A robust tuning of the design parameters could be ob-
tained by k-fold cross validation that has the further advantage of not relying
on strong statistical assumptions. However, k-fold cross validation is compu-
tationally expensive as it requires the calculation of k distinct solutions for
each candidate vector of design parameters, which renders the search of the
optimal parameter vector rather cumbersome. This motivates the interest for
alternative tuning methods. In the regression context, it appears natural to
extend approaches already available for other kernel methods, such as reg-
ularization networks and Gaussian processes. Among these approaches one
may mention so-called objective criteria such as GCV, AIC, Cp. All these
criteria rely on the degrees of freedom of the estimator, a measure of the
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68 Francesco Dinuzzo and Giuseppe De Nicolao

sensitivity of the estimate with respect to the training data. Such sensitivity
is trivially evaluated for linear algorithms, e.g. regularization networks and
Gaussian processes, but, until recently, a thorough analysis was not available
for SVM.

Recent results have demonstrated that the approximate degrees of freedom
of regression SVM are equal to the number of marginal support vectors, that
is the number of residuals whose absolute value equals ǫ [2, 3, 6]. This result
opens the way to the use of several established tuning criteria. However, due
to the intrinsic nonlinearity of SVM, the number of support marginal vectors
constitutes only an approximation of the true degrees of freedom. Moreover,
the tuning of classification SVM remains an open problem.

An alternative way to address the tuning problem is to introduce modified
SVM whose parameters are more easily interpreted. Along this direction, ν-
SVM [8] rely on the parameter ν that is directly related to the number of
support vectors. More specifically, it can be shown that ν is a lower bound to
the fraction of support vectors and an upper bound to the fraction of outliers1.
Moreover, under proper assumptions, it can be shown that ν converges with
probability 1 to the asymptotic fraction of support vectors as the training set
size grows to infinity. This facts are collectively known as the “ν-property”
[7]. It is apparent that ν is directly related to the degree of sparsity of the
solution so that, differently from parameter C, sensible values of ν may be
guessed from the properties of the problem at hand.

Although SVM are often introduced as finite dimensional optimization
problems, it is well known that they can be seen as the solution of regulariza-
tion problems in Reproducing Kernel Hilbert Spaces (RKHS) with convex and
non-smooth loss functions. Subdifferential calculus is an analytic tool that is
particularly well suited for dealing with non-smooth convex problems. In par-
ticular, subdifferential calculus has been recently used to obtain quantitative
representation results for kernel machines [9, 1, 2, 4]. The main purpose of
the present note is to provide an alternative derivation of the “ν-property”,
showing that it follows directly from a restatement of a necessary condition
for optimality involving subdifferentials.

After some preliminaries (Section 2), the derivation is carried out for re-
gression SVM (Section 3), classification SVM (Section 4), and also novelty
detection SVM (Section 5). A generalized formulation of the ν-property that
encompasses all the previous cases is given in Section 6. Regression ν-SVM
with the Huber loss function are discussed in Section 7, where the solution to
an open problem stated in [7] is provided. Finally, in the conclusions (Section
8), we conjecture that better bounds for ν could be obtained if the order of
application of the necessary conditions were exchanged.

1 Here, the term “outlier” is used in a generic sense to indicate support vectors
that do not fall at the margin of the used loss function.
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Some comments on ν-Support Vector Machines 69

2 Preliminaries

First, let us introduce some notation relative to supervised and unsupervised
learning problems. In a supervised learning problem, we have two sets X
(input set) and Y (output set). A training set D = {(xi, yi)}ℓ

i=1 of pairs
independently extracted from a distribution P over X × Y is available. The
goal is to estimate a decision function

g : X → Y,

that predicts the output, given a test input. In a two-class classification prob-
lem, the output set can be taken as Y = {−1,+1}, while, in a regression
problem, the set Y is the set of real numbers R.

In an unsupervised learning problem, we only have one set X . The training
data are D = {xi}ℓ

i=1, independently extracted from a distribution P over X ,
and the goal is to extract some relevant information about P .

Let us introduce a similarity measure in X

K : X ×X → R,

(x1, x2) → K(x1, x2),

namely a function that, given two inputs x1 and x2, returns a real number
that measures their similarity. More specifically, we are interested in similarity
measures, called kernels, that corresponds to dot products in some dot product
space H. We suppose that the input data are mapped into H via a nonlinear
operator Φ (feature map)

Φ : X → H,
x → x,

and that K is defined as

K(x1, x2) = 〈Φ(x1),Φ(x2)〉H = 〈x1,x2〉H .

Support Vector Machines are kernel-based learning algorithms and are able
to deal with classification, regression and unsupervised learning problems.

As an example, let us formulate the ν-SVM algorithm for classification,
hereafter named ν-SVC. Its aim is to estimate a decision function of the form
ĝ(x) = sgn(f̂(x)), with

f̂(x) = 〈w,Φ(x)〉H + b

w ∈ H, b ∈ R.

Vector w (weights) and scalar b (bias) are obtained by solving the optimization
problem
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70 Francesco Dinuzzo and Giuseppe De Nicolao

min
w∈H,

ξ∈R
ℓ

ρ,b∈R

(
1

2
‖w‖2 − νρ+

1

ℓ

ℓ∑

i=1

ξi

)
,

subject to yi(〈w,xi〉H + b) ≥ ρ− ξi,

ξi ≥ 0,

ρ ≥ 0.

In order to solve this problem, it is usual to consider its dual Lagrangian
formulation, which is just a quadratic programming problem. It turns out
that the weight vector is given by

w =

ℓ∑

i=1

yiαiΦ(xi),

where αi are the Lagrange multipliers of the dual formulation. By substituting
this expression in the decision function, we have

g(x) = sgn

(
ℓ∑

i=1

yiαi 〈Φ(xi),Φ(x)〉 + b

)
= sgn

(
ℓ∑

i=1

yiαiK(xi, x) + b

)
.

In general, some coefficients αi will be equal to zero, so that the decision
function depends only on the subset of training data associated with nonzero
multipliers. These data are called support vectors. If, for some given i, it
results yif̂(xi) > ρ, we say that we have a margin error.

A major motivation for the introduction of ν-SVC is that they enjoy the
following property.

Proposition 1 (ν-property [7]). Suppose that we run ν-SVC with some
kernel K, with the result ρ > 0. Then:

1. ν is an upper bound on the fraction of margin errors.
2. ν is a lower bound on the fraction of support vectors.
3. Suppose that the joint distribution P (x, y) is such that neither P (x, y = 1)

nor P (x, y = −1) contains any discrete component. Suppose, moreover,
that the kernel K is analytic and non-constant. With probability 1, asymp-
totically, ν equals both the fraction of support vectors and the fraction of
margin errors.

The original proof of this property relies on the analysis of the dual problem.
However, Support Vector Machines can be also formulated as regularization
problems in RKHS, see e.g. [5] . In the following sections, assuming that H is
an RKHS of functions f : X → Y , we will show that the ν-property admits
a simple and direct proof based on subdifferential calculus. Without loss of
generality, we will neglect the bias term b in the formulation of the algorithm.
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Some comments on ν-Support Vector Machines 71

In this note, we are interested only in the first two points of the ν-property.
The third point guarantees that, under the stated assumption on the distri-
bution P and the kernel, the bounds for ν of the first two points become more
accurate as the sample size ℓ grows to infinity. An intuitive justification for
the third point is that the asymptotic margin tends to a zero measure set in
the input space, so that the fraction of data that lie exactly on the margin
tends to zero.

3 ν-Support Vector Regression

The ν-SVR (Support Vector Regression) problem consists of finding the pair

(f̂ , ǫ̂) that satisfies

(f̂ , ǫ̂) = arg min
f∈H
ǫ∈R

+

(
ℓCνǫ+ C

ℓ∑

i=1

V
(
yi − f(xi), ǫ

)
+

1

2
‖f‖2

H

)
,

where ν ∈ [0, 1], C > 0 and V is the ǫ-insensitive loss function defined by

V (yi − f̂(xi), ǫ) =

{
0, |yi − f̂(xi)| ≤ ǫ

|yi − f̂(xi)| − ǫ, |yi − f̂(xi)| > ǫ

Note that in standard formulations of SVR, ǫ is a fixed parameter. On the
contrary, here we write V (yi − f̂(xi), ǫ) to underline the dependency of the
loss function on ǫ .

Observe that V (yi − f̂(xi), ǫ) is convex in both the arguments yi − f̂(xi)
and ǫ. This observation can be used to obtain in a very simple way the so-
called ν-property. First, consider the case in which the optimal value of ǫ is
different from zero. Then, by minimizing with respect to ǫ, we can write the
following necessary condition for optimality:

0 ∈ ∂ǫ

(
ℓCνǫ+ C

ℓ∑

i=1

V
(
yi − f(xi), ǫ

)
+

1

2
‖f‖2

H

)
,

where ∂ǫ denotes the subdifferential with respect to ǫ.
Since the regularization term does not depend on ǫ and, by standard prop-

erties of subdifferentials, the subdifferential of the sum of convex functions
coincides with the sum of subdifferentials, we can write

ν ∈ −1

ℓ

ℓ∑

i=1

∂ǫV
(
yi − f(xi), ǫ

)
.

It is easy to see that
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72 Francesco Dinuzzo and Giuseppe De Nicolao

∂ǫV
(
yi − f(xi), ǫ

)
=






{0}, |yi − f(xi)| < ǫ
[−1, 0], |yi − f(xi)| = ǫ
{−1}, |yi − f(xi)| > ǫ

Let
I = {1, 2, . . . , ℓ},

and define the index sets Iin, IM , Iout associated with data inside the ǫ-tube,
on the margin of the ǫ-tube, and outside the ǫ-tube, respectively:

Iin = {i ∈ I : |yi − f̂(xi)| < ǫ},
IM = {i ∈ I : |yi − f̂(xi)| = ǫ},
Iout = {i ∈ I : |yi − f̂(xi)| > ǫ.}

The set ISV that identifies the support vectors is

ISV = IM ∪ Iout.

Then, the ν-property immediately follows observing that

∂ǫV
(
yi − f(xi), ǫ

)
=






{0}, i ∈ Iin
[−1, 0], i ∈ IM
{−1}, i ∈ Iout

implies

ν ∈ −1

ℓ

[
ℓ∑

i∈IM

[−1, 0] +

ℓ∑

i∈Iout

(−1)

]
=

[
#Iout

ℓ
,

#ISV

ℓ

]
.

Note that when the optimal value of ǫ is zero, we still have ν ≥ #Iout/ℓ.
Indeed, let us impose that the right derivative of the functional with respect
to ǫ is nonnegative:

D+
ǫ

(
ℓCνǫ+ C

ℓ∑

i=1

V
(
yi − f(xi), ǫ

)
+

1

2
‖f‖2

H

)
≥ 0,

Then,

ν ≥ −1

ℓ

ℓ∑

i∈Iout

(−1) −
ℓ∑

i∈IM∪Iin

0 =
#Iout

ℓ
.

4 ν-Support Vector Classification

The ν-SVC algorithm amounts to solving the variational problem
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Some comments on ν-Support Vector Machines 73

(f̂ , ρ̂) = arg min
f∈H
ρ∈R

+

(
−ℓνρ+

ℓ∑

i=1

V
(
yif(xi), ρ

)
+

1

2
‖f‖2

H

)
,

where ν ∈ [0, 1], and V is the hinge loss function with adaptive margin defined
by

V (yif̂(xi), ρ) =
(
ρ− yif̂(xi)

)

+
.

It can be easily seen seen that V (yif̂(xi), ρ) is convex with respect to both its
arguments. Suppose that the optimal value of ρ is strictly positive. Then, by
minimizing with respect to ρ, we have

0 ∈ ∂ρ

(
−ℓνρ+

ℓ∑

i=1

V
(
yif(xi), ρ

)
+

1

2
‖f‖2

H

)
,

that is

ν ∈ 1

ℓ

ℓ∑

i=1

∂ρV
(
yif(xi), ρ

)
.

Define the index sets

Iin = {i ∈ I : yif̂(xi) < ρ}
IM = {i ∈ I : yif̂(xi) = ρ}
Iout = {i ∈ I : yif̂(xi) > ρ}
ISV = IM ∪ Iout.

The subdifferential of the loss function is equal to

∂ρV
(
yif(xi), ρ

)
=






{0}, i ∈ Iin
[0, 1], i ∈ IM
{1}, i ∈ Iout

Again, it follows that

ν ∈ 1

ℓ

[
ℓ∑

i∈IM

[0, 1] +

ℓ∑

i∈Iout

1

]
=

[
#Iout

ℓ
,

#ISV

ℓ

]
.

5 Algoritms for novelty detection

We now consider two algorithms for novelty detection: the One-Class SVM
algorithm [7] and the Soft Margin Ball algorithm with ν-parametrization [7,
10]. In the novelty detection problem, it is assumed that all the training data
belong to the same class and the goal is to estimate a function that decides if
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74 Francesco Dinuzzo and Giuseppe De Nicolao

a new test point belongs to the same class of the training data or is a novel
object.

The One-Class SVM algorithm is very similar to ν-SVC and can be for-
mulated as follows:

(f̂ , ρ̂) = arg min
f∈H
ρ∈R

(
−ℓνρ+

ℓ∑

i=1

(ρ− f(xi))+ +
1

2
‖f‖2

H

)
.

Note that there are two subtle differences with respect to ν-SVC. First, the
value of ρ is not constrained to be nonnegative (this is useful when ν = 0).
Second, there are no labels yi. As a matter of fact, when ν > 0, the One-
Class SVM algorithm coincides with ν-SVC where all the labels yi are set to
+1. The derivation of the ν-property by means of subdifferential arguments
is analogous to that for ν-SVC and is therefore omitted.

The Soft Margin Ball algorithm has to do with enclosing the images of the
input data produced by the feature map

Φ : X → H, Φ(x) = K(x, ·),

in a small ball of radius R in the space H, while allowing some outliers to be
out of the ball. The associated variational problem is

(f̂ , R̂) = arg min
f∈H

R∈R
+

(
ℓνR2 +

ℓ∑

i=1

(
‖f(·) −K(xi, ·)‖2

H −R2
)
+

)

Minimization with respect to R yields

0 ∈ ∂R

(
ℓνR2 +

ℓ∑

i=1

(
‖f(·) −K(xi, ·)‖2

H −R2
)
+

)

implying

ν ∈ 1

ℓ

ℓ∑

i=1

∂
(
‖f(·) −K(xi, ·)‖2

H −R2
)
+

In analogy with the previous derivations, we define the index sets:

Iin = {i ∈ I : ‖f(·) −K(xi, ·)‖H < R}
IM = {i ∈ I : ‖f(·) −K(xi, ·)‖H = R}
Iout = {i ∈ I : ‖f(·) −K(xi, ·)‖H > R}

Then, once again, the ν property follows:

ν ∈ 1

ℓ

[
ℓ∑

i∈IM

[0, 1] +

ℓ∑

i∈Iout

1

]
=

[
#Iout

ℓ
,

#ISV

ℓ

]
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Some comments on ν-Support Vector Machines 75

6 Generalized ν-property

By comparing all the previous cases, we can conclude that the ν-property is
a simple consequence of the structure of the subdifferential for the hinge loss
and is associated with two general forms of variational problem:

(f̂ , ρ̂) = arg min
f∈H
ρ∈R

+

(
−ℓνρ+

ℓ∑

i=1

(ρ− Φi(f))+ +Ω(f)

)
,

(f̂ , ǫ̂) = arg min
f∈H
ǫ∈R

+

(
ℓνǫ+

ℓ∑

i=1

(Φi(f) − ǫ)+ +Ω(f)

)
,

where Φi (i = 1, . . . , ℓ) and Ω are generic nonlinear functionals from H into
R.

All the specific examples in the previous sections can be seen as particular
cases of the above forms in which Ω(f) = 1

2‖f‖2
H:

• The ν-SVR algorithm corresponds to the second form with

Φi(f) = |f(xi) − yi|,

• The ν-SVC algorithm corresponds to the first form with

Φi(f) = f(xi)yi,

• The One Class SVM algorithm corresponds to the first form with

Φi(f) = f(xi),

• The Soft Margin Ball algorithm corresponds to the second form with

Φi(f) = ‖f(·) −K(xi, ·)‖2
H, ǫ = R2

In general, by defining the index sets

Iin = {i ∈ I : Φi(f) < ρ}
IM = {i ∈ I : Φi(f) = ρ}
Iout = {i ∈ I : Φi(f) > ρ}
ISV = IM ∪ Iout,

we always have

ν ≥ #Iout

ℓ
,

and, for ρ 6= 0 (ǫ 6= 0), we also have

ν ∈
[

#Iout

ℓ
,

#ISV

ℓ

]
. (1)
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76 Francesco Dinuzzo and Giuseppe De Nicolao

7 ν-SVR with Huber loss function

This section can be viewed as the solution of the open problem stated in
exercise 9.21 of [7]. More precisely, we generalize ν-SVR to the Huber loss
function, which is quadratic within a tube and linear outside (differently from
the usual ǫ-insensitive one which is zero inside the ǫ-tube and linear outside).
Moreover, we highlight the relationship between ν and the breakdown point
σ of the Huber loss function.

Consider the problem

(
f̂ , σ̂

)
= arg min

f∈H
σ∈R

+

(
νℓσ

2
+

ℓ∑

i=1

V
(
yi − f(xi), σ

)
+

1

2
‖f‖2

H

)

where V is the Huber loss function defined by

V (yi − f̂(xi), σ) =

{
1
2σ (yi − f̂(xi))

2, |yi − f̂(xi)| ≤ σ

|yi − f̂(xi)| − σ
2 , |yi − f̂(xi)| > σ

Once again, the loss function is convex with respect to both its arguments.
Moreover, V

(
yi − f(xi), ·

)
is also differentiable, so that it is not necessary to

employ subdifferentials. It is sufficient to impose

0 =
d

dσ

(
νℓσ

2
+

ℓ∑

i=1

V
(
yi − f(xi), σ

)
+

1

2
‖f‖2

H

)
,

that is

ν = −2

ℓ

ℓ∑

i=1

d

dσ
V
(
yi − f(xi), σ

)
.

Now, we have

d

dσ
V
(
yi − f(xi), σ

)
=

{ −1
2σ2 (yi − f̂(xi))

2, |yi − f̂(xi)| ≤ σ

− 1
2 , |yi − f̂(xi)| > σ

In analogy with the previous section, define the index sets

IQ = {i ∈ I : |yi − f̂(xi)| ≤ σ}
IL = {i ∈ I : |yi − f̂(xi)| > σ}

associated with the data whose residuals falls in the quadratic trait or in the
linear trait of the Huber loss functions, respectively. We have

ν =
1

σ̂2ℓ

∑

i∈IQ

(yi − f̂(xi))
2 +

#IL
ℓ
,
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Some comments on ν-Support Vector Machines 77

σ̂ =
1√
ν

√√√√
∑

i∈IQ
(yi − f̂(xi))2

ν − #IL

ℓ

.

This last expression is interesting because it can be seen as an estimate of the
noise standard deviation, parameterized by ν. Moreover, we see that it must
be

ν >
#IL
ℓ

implying that, also in this case, ν is an upper bound for the fraction of outliers.

8 Conclusions

In this note, we analyzed ν-SVM algorithms within the framework of Regu-
larization Theory in Reproducing Kernel Hilbert Spaces. We considered the
following algorithms: ν-SVC, ν-SVR, One Class SVM, Soft Margin Ball, and
ν-Huber SVR. By exploiting the convexity of the objective functional, we
showed that the so-called “ν-property” is a simple consequence of an optimal-
ity condition involving the subdifferential. We also showed that the ν-property
can be generalized to a large class of kernel methods.

An interesting question is whether the inclusion (1) can be improved. In
order to obtain (1), we just imposed the optimality condition with respect to
ρ (or ǫ). Consider, for simplicity, the case of ν-SVC and suppose that we fix ρ
to some feasible value. Now, we exchange the order of application of necessary
conditions by first minimizing with respect to f . Then, the resulting f̂ would
also depend on ρ so that

ρ̂ = arg min
ρ∈R+

(
−ℓνρ+

ℓ∑

i=1

V
(
yif̂(xi; ρ), ρ

)
+

1

2
‖f̂(·; ρ)‖2

H

)
.

We conjecture that this expression could be the starting point for deriving
better bounds for ν.
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The Iterative–Interpolation Approach to L2

Model Reduction

Augusto Ferrante1, Wies law Krajewski2, and Umberto Viaro3

1 Dipartimento di Ingegneria dell’Informazione, Università di Padova, via
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To the memory of our friend Toni

Summary. This paper is concerned with the construction of reduced–order
models of high–dimensional linear systems in such a way that the L2 norm
of the impulse–response error is minimized. Two convergent algorithms that
draw on previous procedures presented by the same authors, are suggested:
one refers to s–domain representations, the other to time–domain state–space
representations. The algorithms are based on an iterative scheme that, at any
step, satisfies certain interpolation constraints deriving from the optimality
conditions. To make the algorithms suitable to the reduction of very large–
scale systems, resort is made to Krylov subspaces and Arnoldi’s method. The
performance of the reduction algorithms is tested on two benchmark examples.

Keywords. Linear systems, model reduction, output–error minimization, L2

norm, Krylov subspaces, Arnoldi’s algorithm.

1 Introduction

Linear time–invariant models are often used to describe phenomena in phys-
ical and economic contexts because many tools are available for their study.
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80 Augusto Ferrante, Wies law Krajewski, and Umberto Viaro

However, when the system complexity is high or its size big, the number of
state variables may be too large for simulation and control purposes, and it
is mandatory to approximate the original high–order model by means of a
lower–order one.

Many approaches to model reduction have been proposed over the past
decades. Among the most popular ones, we can mention the Padé-like methods
leading to the retention of some Markov parameters and time moments [1],
the aggregation techniques retaining some modes of the original system [2],
the Hankel–norm optimization methods [3], the techniques based on principal
component analysis and balanced realizations [4], and the methods aiming at
the retention of suitable first–order information indices (Markov parameters
or time moments) and second–order information indices (impulse–response
powers) [5], [6].

Recently, the techniques based on moment matching have been tackled
with the aid of numerically robust and reliable procedures such as the Arnoldi,
Lanczos or rational Krylov methods (see, for example, [7], [8] and [9]) thus
allowing the reduction of very large–scale systems. On the other hand, the
techniques based on the minimization of an error norm still seem to be more
appropriate to model reduction which is essentially an optimization problem.

This paper deals with the minimization of the L2 norm of the output er-
ror, defined as the difference between the impulse responses of the original
and reduced–order model. The L2 norm has an appealing physical interpreta-
tion (power) which explains its wide–spread use (see, for example, [10], [11],
[12] concerning the time domain, and [13], [14], [15] concerning the frequency
domain).

Finding the L2–optimal reduced–order model of a complex system is a
hard task that often requires the solution of an ill–conditioned mathematical
programming problem. Many of the available methods are therefore difficult
to implement and rather inefficient; in particular, gradient techniques are
not always satisfactory. Among the non–gradient approaches, the iterative–
interpolation algorithm first suggested in [16] and further developed in [14]
and [17] with reference to the frequency domain seems to be one of the most
efficient procedures. This algorithm, however, is not always convergent. To
overcome this difficulty, a variant of the method characterized by steps of
shortened length has been proposed in [18]. The iterative–interpolation ap-
proach has recently been extended to time–domain state–space representa-
tions [19]. In this paper we pursue the ideas in [18] and [19] by suggesting two
convergent algorithms in frequency and time domain, respectively

The next part of the paper is organized as follows. Section 2 formulates the
L2–optimal model–reduction problem and recalls the iterative interpolation
method. Section 3 shows how convergence can be guaranteed and proposes
two algorithms for models in either input–output or state–space form. These
algorithms are applied in Section 4 to two benchmark examples that show the
efficiency of the proposed techniques.
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The Iterative–Interpolation Approach to L2 Model Reduction 81

2 Problem statement and iterative–interpolation method

Let the state–space equations of the original full–order linear time–invariant
asymptotically–stable system be

ẋ(t) = Ax(t) + b u(t) , (1)

y(t) = c x(t) , (2)

where x(t) ∈ Rn, y(t) ∈ R, u(t) ∈ R, and n is the dimension of a minimal
realization. The input–output behavior of system (1)–(2) is characterized by
the transfer function

f(s) =
n(s)

d(s)
= c (s I −A)−1 b , (3)

where deg d(s) = n and deg n(s) ≤ n − 1. Similarly, assume that the state–
space equations of the reduced–order model are:

˙̃x(t) = Ãx̃(t) + b̃u(t) , (4)

ỹ(t) = c̃x̃(t) , (5)

where x̃(t) ∈ Rñ with ñ < n, ỹ(t) ∈ R, u(t) ∈ R. The related transfer function
is

g(s) =
m(s)

c(s)
= c̃ (s I − Ã)−1 b̃ , (6)

where deg c(s) = ñ and deg m(s) ≤ ñ− 1.

In frequency domain, the optimal model–reduction problem can be for-
mulated as follows: given an original transfer function f(s) of order n, find a
transfer function g(s) of preassigned lower order ñ < n in such a way that the
(squared) H2 norm of e(s) := f(s) − g(s), that is,

‖e‖2
2 =

1

2π

∫ ∞

−∞
e(jω)e∗(jω)dω , (7)

is minimized (the star indicates complex conjugate).

The time–domain state–space version of this problem can be formulated
as follows: given a state–space model (A, b, c) of minimal dimension n, find a
model (Ã, b̃, c̃) of dimension ñ < n so as to minimize the (squared) L2 norm
of the output error e(t) := y(t) − ỹ(t), that is,

‖e‖2
2 =

∫ ∞

−∞
e2(t) d t , (8)

where y(t) and ỹ(t) are the responses of the full–order and reduced–order
model to a unit–impulse input u(t).
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82 Augusto Ferrante, Wies law Krajewski, and Umberto Viaro

Assuming for notational simplicity that all of the poles of g(s) are sim-
ple (but not necessarily real) and denoting them by p1, . . . , pñ, function g(s)
minimizes (7) only if the following interpolation conditions are satisfied [10]:

f(−pk) − g(−pk) = 0 ,
f ′(−pk) − g′(−pk) = 0 ,

}
k = 1, 2, . . . , ñ . (9)

These conditions can be expressed more compactly in terms of the numerator
and denominator polynomials in (3) and (6) as

n(s) c(s) −m(s) d(s) = q(s) c2(−s) , (10)

where q(s) is a polynomial whose degree is, at most, n− ñ− 1.
Equating the coefficients of the equal powers of s on both sides of the

polynomial identity (10), we obtain n + ñ− 1 equations in the 2 ñ unknown
coefficients of m(s) and c(s) as well as in the n− ñ− 1 unknown coefficients
of the “auxiliary” polynomial q(s). These equations can be solved by means
of an iterative procedure based on the recurrence relation

n(s) c(h+1)(s) −m(h+1) (s)d(s) = q(h+1)(s) [c(h)(−s)]2 , (11)

which determines polynomials c(h+1)(s) and m(h+1) from the polynomial
c(h)(s) previously computed.

The resulting algorithm can be presented as follows:

Algorithm 1

1. Make a guess of the initial reduced–order denominator polynomial c(0)(s)
and set h = 0.

2. Given c(h)(s), evaluate c(h+1)(s), m(h+1)(s) and q(h+1)(s) on the basis of
(11).

3. If the stopping criterion is satisfied, form the reduced–order denominator
and numerator as c(s) = c(h+1)(s) and m(s) = m(h+1)(s), respectively.
Otherwise, set h = h+ 1 and return to phase 2.

Phase 2 requires the solution of a set of linear equations. The corresponding
system matrix is sparse with a structure that guarantees the efficiency of the
procedure whose details are illustrated in [14]. Equation (11) can be given
an interesting interpretation; precisely, it states that function g(h+1)(s) must
interpolate the original transfer function f(s), with intersection number 2, at

the opposites of the poles p
(h)
1 , . . . , p

(h)
ñ of g(h)(s), that is,

f(−p(h)
k ) − g(h+1)(−p(h)

k ) = 0 ,

f ′(−p(h)
k ) − (g(h+1))′(−p(h)

k ) = 0 ,

}
k = 1, 2, . . . , ñ . (12)

In other words, the numerator of the current error function e(h+1)(s) := f(s)−
g(h+1)(s) must contain the factor [c(h)(−s)]2. This is the reason why the above
procedure has been called iterative–interpolation algorithm.
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The Iterative–Interpolation Approach to L2 Model Reduction 83

The idea of iterative interpolation has been recently extended to state–
space representations such as (4) and (5) in [19] where the interpolation prob-
lem arising at each iteration is solved by means of Krylov–subspace methods.

To this purpose, denoting by p
(h)
k the ñ eigenvalues λk(Ã(h)), k = 1, 2, . . . , ñ,

of the reduced–order system matrix Ã(h) computed in the preceding iteration,
two matrices V and Z are formed in the current iteration such that

Im(V ) = span{(−p(h)
1 I −A)−1b, . . . , (−p(h)

ñ I −A)−1b)} , (13)

Im(Z) = span{(−p(h)
1 I −AT )−1cT , . . . , (−p(h)

ñ I −AT )−1cT )} (14)

and ZTV = I. In this way the reduced–order model (4) and (5) with

Ã = Ã(h+1) := ZT AV , b̃ = b̃(h+1) := ZT b , c̃ = c̃(h+1) := c V (15)

satisfies the following interpolation conditions analogous to (12) [9], [20]:

c(−p(h)
k I −A)−1b = c̃(h+1)(−p(h)

k I − Ã(h+1))−1b̃(h+1)

c(−p(h)
k I −A)−2b = c̃(h+1)(−p(h)

k I − Ã(h+1))−2b̃(h+1)

}
k = 1, 2, . . . , ñ .

(16)
The corresponding algorithm can be presented as follows:

Algorithm 2

1. Make a guess of the eigenvalues p
(0)
1 , . . . , p

(0)
ñ of the initial reduced–order

system matrix Ã(0) (often, the ñ dominant eigenvalues of A represent a
good starting point) and set h = 0.

2. Choose V and Z such that
Im(V ) = span {(−p(h)

1 I −A)−1 b, . . . , (−p(h)
ñ I −A)−1 b} ,

Im(Z) = span {(−p(h)
1 I −AT )−1 cT , . . . , (−p(h)

ñ I −AT )−1 cT } ,
Z = Z (ZT V )−T .

3. Compute Ã(h+1) = ZT AV .
4. If the stopping criterion is satisfied, form the reduced–order model ma-

trices as Ã = Ã(h+1), b̃ = ZT b and c̃ = c V . Otherwise, let p
(h+1)
k =

λk(Ã(h+1)), k = 1, . . . , ñ, set h = h+ 1 and return to phase 2.

To find V and Z, the rational Arnoldi method can conveniently be applied [19],
which makes the above algorithm suitable to the reduction of very large–scale
systems.

Algorithms 1 and 2 have proven to be efficient [14], [19] but are not always
convergent. The next section shows how these algorithm can be modified to
ensure convergence.
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84 Augusto Ferrante, Wies law Krajewski, and Umberto Viaro

3 Convergent variants of the iterative–interpolation
algorithms

Denoting by c(i) the vector formed from the coefficients of sñ−1, sñ−2, . . . ,
s0, in every monic polynomial c(i)(s) generated by (11), recursion (11) can be
reformulated as

c(h+1) = Φ(c(h)) , (17)

where Φ : Rñ → Rñ is a continuously differentiable function. Therefore, the
reduced–order model minimizing (7) corresponds to a fixed point ĉ of Φ:

ĉ = Φ(ĉ) . (18)

It has been shown in [14] and [18] that:
(i) the eigenvalues of the Jacobian ∂Φ

∂c
at every fixed point ĉ are real,

(ii) at a fixed point ĉ corresponding to a saddle point of the objective function
at least one eigenvalue of the Jacobian is greater than 1, and
(iii) at a fixed point corresponding to a minimum of the objective function
every eigenvalue of the Jacobian is less than 1 but not necessarily greater
than −1, which explains why the iterative–interpolation algorithm (17) is not
always convergent.

To avoid this difficulty, resort can be made to Newton–like fixed–point
algorithms [21], [22] which are, however, computationally demanding. The
approximation problem can be solved more efficiently by replacing Φ in (17)
by another continuously differentiable function with the following properties:
(i) it has the same fixed points ĉ as Φ,
(ii) all the eigenvalues of its Jacobian at every ĉ have magnitude less than 1,
and
(iii) it can be obtained easily from Φ with no a priori information about ĉ.

These properties are exhibited, for a suitably small value of the real pa-
rameter α, by the function Φα : Rñ → Rñ obtained from Φ according to

Φα(c) = αΦ(c) + (1 − α)c , (19)

Therefore, the iterative procedure (17) can be replaced by

c̄(h+1) = Φα(c̄(h)) , (20)

Starting from c̄(h) = c(h), recursion (20) determines vector c̄(h+1) as a linear
combination of c(h) and c(h+1) = Φ(c(h)) according to the combination coef-
ficients 1 − α and α, respectively.
Denoting by λm the smallest eigenvalue of ∂Φ

∂c
(ĉ), if

0 < α < αm =
2

1 − λm
, (21)
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The Iterative–Interpolation Approach to L2 Model Reduction 85

then all the eigenvalues of ∂Φα

∂c
(ĉ) have magnitude less than 1 [18], and the

sequence of vectors {c̄(i)} generated by (20) converges to ĉ from a suitable
neighbourhood of ĉ.

From the above arguments the following algorithm is obtained:

Algorithm 3

1. Select α ∈ (0, 1), make a guess of the initial coefficient vector c̄(0), and set
h = 0.

2. Let c(h) = c̄(h) and compute c(h+1) = Φ(c(h)) on the basis of (11) as in
Algorithm 1.

3. Form c̄(h+1) = α c(h+1) + (1 − α) c̄(h).
4. If the stopping criterion is satisfied, form the reduced–order denominator

and numerator as c(s) = c(h+1)(s) and m(s) = m(h+1)(s), respectively.
Otherwise, set h = h+ 1 and return to phase 2.

Therefore the steps made by Algorithm 3 at each iteration are α times shorter
than the steps made by Algorithm 1.

A similar approach can be followed to ensure the convergence of a variant
of the time–domain state–space iterative–interpolation procedure. It suffices
to introduce a few additional operations into Algorithm 2 for: (i) computing
the characteristic polynomial c(h+1)(s) associated with Ã(h+1), (ii) shortening
the step made at every iteration by a factor α, and (iii) evaluating the roots
p̄1, . . . , p̄ñ of the polynomial c̄(h+1)(s) formed from c̄(h+1).

The resulting algorithm is outlined next:

Algorithm 4

1. Select α ∈ (0, 1), and form the coefficient vector c̄(0) by choosing the roots

p̄
(0)
1 , . . . , p̄

(0)
ñ of the characteristic polynomial c̄(0)(s) associated with the

initial reduced–order system matrix Ã(0). Set h = 0.
2. Choose V and Z such that
Im(V ) = span {(−p̄(h)

1 I −A)−1 b, . . . , (−p̄(h)
ñ I −A)−1 b} ,

Im(Z) = span {(−p̄(h)
1 I −AT )−1 cT , . . . , (−p̄(h)

ñ I −AT )−1 cT } ,
Z = Z (ZT V )−T .

3. Compute Ã(h+1) = ZT AV .
4. If the stopping criterion is satisfied, form the reduced–order model matri-

ces as Ã = Ã(h+1), b̃ = ZT b and c̃ = c V . Otherwise:
(i) find the characteristic polynomial c(h+1)(s) associated with Ã(h+1) and
form the related coefficient vector c(h+1),
(ii) compute c̄(h+1) = α c(h+1) + (1−α) c̄(h) and form the related polyno-
mial c̄(h+1)(s),

(iii) evaluate the roots p̄
(h+1)
k , k = 1, . . . , ñ, of c̄(h+1)(s), and

(iv) set h = h+ 1 and return to phase 2.
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86 Augusto Ferrante, Wies law Krajewski, and Umberto Viaro

Shortening the steps by α ensures the convergence of Algorithms 3 and
4 also when Algorithms 1 and 2 do not converge. However, if the latter al-
gorithms converge, which is not known a priori, their modified versions may
require a larger number of iterations to find a (locally) optimal solution, as
shown by the examples in the next section.

4 Examples

In the following, the modified iterative–interpolation approach is applied to
two meaningful examples. The purpose of this section is threefold, that is:
(i) to show that the modified algorithms can find an optimal solution also
when the original iterative–interpolation algorithms fail, (ii) to see how the
convergence of the modified algorithms depends on α, and (iii) to compare
the speed of the modified algorithms with that of the original ones when the
latter converge.

A Model of the ACES structure

The state–space model describing the dynamic relation between a torque ac-
tuator and an approximately collocated torsional rate sensor for the ACES
(Active Control Technique Evaluation for Spacecraft) structure at NASA Mar-
shall Space Flight Center has dimension 17 [23]. The nonzero entries of the
matrix A are:

a1,1 = −0.031978272 a1,2 = −78.54 a1,17 = 0.0097138566
a2,1 = 78.54 a2,2 = −0.031978272 a2,17 = −0.0060463517
a3,3 = −5.152212 a3,4 = −51.457677 a3,17 = −0.021760771
a4,3 = 51.457677 a4,4 = −5.152212 a4,17 = 0.0054538246
a5,5 = −0.1351159 a5,6 = −15.417859 a5,17 = −0.02179972
a6,5 = 15.417859 a6,6 = −0.1351159 a6,17 = −0.015063913
a7,7 = −0.42811443 a7,8 = −14.698408 a7,17 = 0.01042631
a8,7 = 14.698408 a8,8 = −0.42811443 a8,17 = 0.0088479697
a9,9 = −0.064896745 a9,10 = −12.077045 a9,17 = −0.030531575
a10,9 = 12.077045 a10,10 = −0.064896745 a10,17 = −0.030260987
a11,11 = −0.048520356 a11,12 = −8.9654448 a11,17 = −0.016843335
a12,11 = 8.9654448 a12,12 = −0.048520356 a12,17 = −0.011449591
a13,13 = −0.036781718 a13,14 = −4.9057426 a13,17 = −0.1248007
a14,13 = 4.9057426 a14,14 = −0.036781718 a14,17 = 0.0005136047
a15,15 = −0.025112482 a15,16 = −3.8432892 a15,17 = −0.035415526
a16,15 = 3.8432892 a16,16 = −0.025112482 a16,17 = −0.028115589

a17,17 = −92.399784 ,

The vectors b and c are given by:
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b =





1.8631111
−1.1413786
−1.2105758
0.31424169
0.31424169

−0.211128913
0.19552894

−0.037391511
−0.01049736
−0.011486242
−0.029376402
0.0082391613
−0.012609562
−0.0022040505
−0.030853234
0.0011671662

0





, cT =





−0.0097138566
0.0060463517
0.021760771

−0.0054538246
0.02179972
0.015063913
−0.01042631

−0.0088479697
0.030531575
0.030260987
0.016843335
0.011449591
0.1248007

−0.0005136047
0.035415526
0.028115589
184.79957





.

Matrix A has one real eigenvalue at −92.399784 and eight pairs of
complex conjugate eigenvalues at −0.03198 ±  78.54, −5.152 ±  51.457,
−0.135 ±  15.418, −0.428 ±  14.698, −0.065 ±  12.077, −0.0485 ±  8.965,
−0.037 ±  4.906, −0.025 ±  3.843.

As is often the case in L2 model reduction, the objective functional has
different local minima. Starting from a 6th–order system matrix Ã(0) with
eigenvalues at −1, −2, −3, −4, −5 and −6, Algorithm 2 finds a locally optimal
6th–order model (Ã, b̃, c̃) in 11 iterations. The resulting matrix Ã has three
pairs of complex conjugate eigenvalues at −0.0320 ±  78.5402, −0.0247 ±
 3.8429 and −0.0368±  4.9042; the square norm of the related output error is
‖e‖2

2 = 0.0094. If, instead, the eigenvalues of the initial reduced–order matrix
Ã(0) are −10, −20, −30, −40, −50 and −60, Algorithm 2 finds in 10 iterations
a different locally optimal 6th–order solution (Ã, b̃, c̃) characterized by a square
norm of the output error equal to ‖e‖2

2 = 0.0065. In this case matrix Ã has
three pairs of complex conjugate eigenvalues at −0.0320± 78.5400,−0.1061±
 15.4379 and −5.3888 ±  52.3342. Similar results are obtained by applying
Algorithm 1 to models in transfer–function form.

Finding a reduced–order model of dimension 7 is harder. If the eigen-
values of the 7th–order Ã(0) are −10, −20, −30, −40, −50, −60 and −70,
Algorithm 2 finds a locally optimal 7th–order solution (Ã, b̃, c̃) in 163 itera-
tions. The resulting matrix Ã has three pairs of complex conjugate eigenval-
ues at −0.0320±  78.5400, −0.1091±  15.4289, −4.8710±  51.2334 and one
real eigenvalue at −11.1231. The square norm of the related output error is
‖e‖2

2 = 0.0063.
Algorithm 2, however, can not find a solution if the eigenvalues of the initial

7th–order matrix Ã(0) are −1, −2, −3, −4, −5, −6 and −7. Instead, starting
from this initial guess Algorithm 4 finds three different locally optimal 7th–
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88 Augusto Ferrante, Wies law Krajewski, and Umberto Viaro

order models (Ã, b̃, c̃) depending on the value of α. Precisely, for α = 0.8 and
α = 0.7 the resulting optimal matrix Ã has three pairs of complex conjugate
eigenvalues at −0.0319±  78.5401, −0.0230±  3.8441, −0.0330±  4.9037 and
one real eigenvalue at −76.2562; this solution is reached in 61 iterations for
α = 0.8 and 63 for α = 0.7. The value of the square error norm for this first
solution is 0.0086. For α = 0.6, α = 0.5 and α = 0.4 the locally optimal matrix
Ã has three pairs of complex conjugate eigenvalues at −0.0320 ±  78.5402,
−0.0247 ±  3.8429, −0.0368 ±  4.9043 and one real eigenvalue at −0.2860;
this solution is reached in 29 iterations for α = 0.6, 39 for α = 0.5 and 50 for
α = 0.4. The value of the square error norm for this second solution is 0.0094.
For α = 0.3, α = 0.2 and α = 0.1 the locally optimal matrix Ã has three pairs
of complex conjugate eigenvalues at −0.8.2380± 47.1055, −0.0340± 4.9038,
−0.0234± 3.8437 and one real eigenvalue at −58.6214; this solution is reached
in 43 iterations for α = 0.3, 60 for α = 0.2 and 114 for α = 0.1. The value of
the square error norm for this third solution is 0.0701.

B Model of a CD player

The full–order state–space model describing the dynamic relation between the
lens actuator and the radial–arm position of a portable CD player is charac-
terized by 120 state variables [24]. Since all of the poles of this system are
complex (sixty complex conjugate pairs), it is difficult to find an optimal ap-
proximant of odd order. For example, starting from the (arbitrary) initial
guess p0

1 = −0.5, p0
2 = −1, p0

3 = −2, p0
4 = −3, p0

5 = −4, p0
6 = −5, p0

7 = −6,
p0
8 = −7, p0

9 = −8, Algorithm 2 can not find a 9th–order model. Instead,
Algorithm 4 with α = 0.1 finds an optimal solution of order 9 in 55 iterations
starting from the same initial guess. The square norm of the related output er-
ror is ‖e‖2

2 = 30.2335. Note, by comparison, that the 9th–order model obtained
according to the popular TBR (Truncated Balanced Realization) method [4]
is characterized by ‖e‖2

2 = 35.149. With α = 0.5 Algorithm 4 arrives at the
optimal solution in only 16 iterations.

Algorithm 2 finds an optimal 10th–order approximant in 7 iterations start-
ing from p0

1 = −0.5, p0
2 = −1, p0

3 = −2, p0
4 = −3, p0

5 = −4, p0
6 = −5, p0

7 = −6,
p0
8 = −7, p0

9 = −8, p0
10 = −10. The corresponding square error norm is

‖e‖2
2 = 21.04. As is expected, Algorithm 4 requires a larger number of itera-

tions to arrive at the same solution. Table 1 shows how this number depends
on α.

Table 1. Number of iterations vs. α for the optimal 10th–order approximant

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

number of iterations 48 30 22 22 21 17 15 12 9 7
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The Iterative–Interpolation Approach to L2 Model Reduction 89

5 Conclusions

The iterative–interpolation algorithms for L2–optimal model reduction have
proven to be very efficient compared to alternative procedures with the same
objective. In Section 3, two algorithms that ensure convergence to an optimal
solution have been presented . Essentially, this result is obtained by shortening
the steps made at every iteration by the original algorithms outlined in Section
2. Two benchmark examples have been worked out in Section 4 to show how
the algorithms perform and how the speed of convergence depends on the step
size.
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1 Introduction

The search for connections between observations (“laws of nature”) is at the
basis of the development of scientific knowledge and can be traced back at
least some thousand years as shown, for instance, by the large amount of
clay tablets concerning the so called astronomical diaries compiled by the
Mesopotamian astronomers. This search for knowledge is characterized by
two basic steps, the necessity of performing a quantification of observations,
i.e. the transformation of observations into numerical entities and the sub-
sequent extraction of relations between the obtained values, to be used for
interpretation, prediction, control or other purposes. If we observe n different
variables

x1, x2, . . . , xn (1)

and denote with
x1i, x2i, . . . , xni (2)

the values that these variables assume at the i-th observation, the search for a
law describing the behavior of the process that has generated the observations
is the search for a mathematical relation

f(x1, x2, . . . , xn) = 0 (3)

satisfied by every set of observations, i.e. such that, for every i,

f(x1i, x2i, . . . , xni) = 0. (4)

Even assuming that the considered process is actually governed by a law of the
type (3), the observations will never satisfy, in all practical situations, relation
(4) because of the errors that will be inevitably introduced during the quan-
tification step (e.g. noise in analog systems, finite number of possible values
and noise in digital environments etc.). The deduction of the law behind the
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92 R. Guidorzi, R. Diversi, U. Soverini

observations is thus a problem that does not admit any solution because the
observations will not satisfy, in general, any relation. All procedures leading
to the extraction of abstract relations from real data rely, in fact, on modified
observations. This modification process should be carried out on the basis
of the exact knowledge of the nature of the errors since it affects, in a very
substantial way, the final result.

As a simple example to illustrate this point, let us assume the existence of a
linear relation, described by the scalars α1, α2, . . . , αn, linking the variables
(1):

α1x1 + α2x2 + · · · + αnxn = 0. (5)

The same relation can be described also, when αi 6= 0, by means of the
equivalent, asymmetric relation

xi = β1 x1 + · · · + βi−1 xi−1 + βi+1 xi+1 + · · · + βn xn (6)

where βj = −αj/αi. Let us assume also that only one of the observations,
xki is affected by zero–mean additive errors. By denoting with x̂ji the true
values, with x̃ji the observation errors and with xji the actual observations,
these quantities will be linked by the relations

xji = x̂ji for j 6= k (7)

xki = x̂ki + x̃ki. (8)

This is the well known context of the least squares and we can easily find
the optimal and asymptotically unbiased solution (Gauss–Markov theorem)
by means of the least squares algorithm. Note, however, that this can be done
if and only if we actually know which variable is affected by observation errors
since, from a geometrical point of view, we perform an orthogonal projection of
the vector of the N noisy observations [xk1 xk2 . . . xkN ]T on the (hyper)plane
defined by the vectors of noiseless observations [xj1 xj2 . . . xjN ]T (j 6= k) and
substitute [xk1 xk2 . . . xkN ]T with its orthogonal projection. If we remain in
this context (a single observation is affected by errors) but with no a priori
information about which of the variables is noisy, the problem cannot be
solved. In fact it is impossible to select the correct solution among the n
possible ones that can be obtained by considering as affected by errors in turn
x1, x2, . . . , xn. Moreover, if the errors are not restricted to a single variable,
none of these n solutions will be, even asymptotically, correct.

This elementary example outlines two basic points:

1) The extraction of models from data affected by errors requires, as interme-
diate step, the deduction of new data from the available ones. The model will
then be deduced from these new data, not from the original ones.

2) In absence of precise information on the errors it is possible to formulate
different assumptions, each leading, in general, to extract different sets of data
from the observations and, consequently, to different models.
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The Frisch Scheme in Algebraic and Dynamic Identification Problems 93

Every systematic procedure to deduce a model (or a family of models) from
data affected by errors is defined as a “scheme” [1, 2]. Many different schemes
have been investigated and described in the literature. None of these schemes
can be considered, per se, as superior to any other; what changes is simply
the set of assumptions. As a consequence, the results that can be obtained by
applying different schemes to the same set of data depend essentially on the
“distance” between the assumptions behind the scheme and the actual situa-
tion; all other claims are related more to faith than to science. A very complete
analysis of the assumptions behind different schemes has been proposed by
Kalman in [1, 2, 3].

The content of this paper falls inside the Errors-in-Variables (EIV) context
that assumes the presence of additive noise on all variables. This is a challeng-
ing environment that has seen an increasing amount of research only during
the last decades. One of the appealing features of the models that can be de-
duced in EIV contexts concerns their intrinsic capability of relying on a limited
set of a–priori assumptions. This feature suggests the use of EIV models in
applications like, for instance, diagnosis, where the interest is focused on a
realistic description of a process rather than on other aspects, like predic-
tion. For a complete overview on EIV identification see [4] and the references
therein.

This paper concerns the scheme proposed by the Nobel prize Ragnar Frisch in
1934 [5] and its application to the problem of deducing linear relations from
noisy observations concerning both algebraic processes (this term is used here
to denote static processes that can be described by sets of relations link-
ing measures performed at the same time) and dynamic processes (i.e. pro-
cesses described by difference equations). The Frisch scheme is an interesting
compromise between the great generality of the EIV environment and the
possibility of performing real applications. Moreover, the Frisch scheme en-
compasses some other important schemes like, for instance, Least Squares and
the Eigenvector Method and plays, consequently, an important role also from
a conceptual point of view.

The Frisch scheme does not lead, at least in the algebraic case, to a single
solution but to a whole family of solutions compatible with a given set of
noisy observations. This fact has often diverted the attention towards simpler
schemes leading to a single solution so that the smart environment proposed
by Frisch has not received, for many decades, the attention that it deserved.

As will be shown in the following, the analysis of the Frisch scheme leads to
two separate loci of solutions, one in the parameter space and another in the
space of the noise variances; of course the points of these loci are linked by
well defined relations. Some fundamental results [1, 3] describe these maps as
well as the shape of the loci in the parameter space under specific conditions.
Unfortunately, however, the locus of solutions in the parameter space can be
easily defined only when the data are compatible with a single linear relation;
in all other cases the performed analyses have evidentiated the extremely
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94 R. Guidorzi, R. Diversi, U. Soverini

complex structure of this locus, that prevents its practical use [6]. On the
contrary, the investigation of the properties of the locus of solutions in the
noise space has offered a key for a deeper analysis that shows that this locus
does never degenerate and enjoys some consistent properties [7, 8].

A problem of great importance in the econometric field consists in determin-
ing the maximal number of linear relations compatible with a given set of
noisy data. The importance attributed to this problem is due to the fact that
its solution is considered as linked to the extraction of the maximal infor-
mation from the data [9]. The solution of this problem in the context of the
Frisch scheme has been possible only by making reference to the properties
of the locus of solutions in the noise space [10]; other approaches have led to
determine an upper bound for this number [11].

When the data are generated by a linear time–invariant dynamic process and
the Frisch context is used for its identification, it is necessary to consider the
loci of solutions under the constraints imposed by the time shift properties of
dynamic systems [12]. It can be surprising to discover that, in this respect,
the dynamic case can be seen as a subcase of the algebraic one and that the
shift properties of dynamic systems lead (in general) to a unique solution
[13, 14, 15]. Moreover this solution is linked to the solution of the maximal
corank problem in the algebraic case.

All previous statements are true when the assumptions behind the Frisch
scheme are exactly fullfilled and this can be assumed only in asymptotic con-
ditions. In all practical cases this cannot be achieved not only because real
data sets are necessarily limited but also because of a whole series of viola-
tions due to non linearity, non stationarity etc. Frisch identification procedures
require thus the introduction of suitable criteria [16, 17, 18].

The Frisch scheme in the identification of dynamic processes enjoys some pecu-
liarities that make it particularly suitable for the solution of specific problems
like filtering and fault detection and isolation [19, 20, 21].

The purpose of this paper is to outline some results obtained in the analy-
sis of the Frisch scheme in its original algebraic context and, in particular,
to discuss the solution of the problem of determining the maximal number
of linear relations compatible with a given set of noisy data. Other relevant
topics of this analysis concern the properties of the loci of the Frisch solutions
in the noise and parameter spaces as well as the possibility of obtaining sin-
gle solutions. This discussion is carried out in Section 2. The second part of
the paper regards the extension of the original algebraic environment to the
dynamic one, where it is shown how the Frisch scheme can lead, differently
from the algebraic case, to a single solution. This topic and the associated
algorithms required for the application to real processes are discussed in Sec-
tion 3, first in the SISO case and then in the MIMO one. Section 4 shows how
mapping some classical problems like the blind identification of FIR trans-
mission channels and the identification of noisy autoregressive models into a
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The Frisch Scheme in Algebraic and Dynamic Identification Problems 95

dynamical Frisch context can extend the limits of previous approaches. Some
concluding remarks are finally reported in Section 5.

2 The Frisch scheme in the algebraic case

A Estimating linear relations from noisy data: statement of the
problem

Consider the linear algebraic process (5); by denoting with X the N×nmatrix
whose rows contain the N observations (2)

X =





x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
x1N x2N . . . xnN




, (9)

relation (5) can be written in the form

X A = 0 (10)

where
A =

[
α1, α2, . . . , αn

]T
. (11)

In the more general case of q linear relations between the variables, A will be
a (n×q) matrix with columns given by the q sets of coefficients describing the
q = n − rankX independent linear relations linking the data. Relation (10)
can be rewritten also by substituting X with

Σ =
XTX

N
(12)

i.e., under the assumption of null mean value of the variables, with the sample
covariance matrix of the data. In absence of noise and in presence of linear
relations Σ will be singular and positive semidefinite

Σ ≥ 0. (13)

Every solution, A, with maximal rank, of the equation

ΣA = 0 (14)

is a basis of kerΣ. When the data are corrupted by noise, rankX = n, no
linear relations are compatible with the observations and Σ is positive definite

Σ > 0. (15)

In situations of this kind, linear relations can be extracted only by modifying
X or Σ, i.e. the data.
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96 R. Guidorzi, R. Diversi, U. Soverini

B Assumptions behind estimation schemes

If no assumptions are introduced, any set of noisy data is compatible with any
solution. The assumptions usually introduced on the errors (noise) to restrict
the number of admissible solutions are the following:

1) The noise is additive; every observation is the sum of an unknown exact
part x̂i, and of a noise term x̃i:

xi = x̂i + x̃i (16)

2) The mean value of x̂i and x̃i is null:

N∑

t=1

x̂it = 0,

N∑

t=1

x̃it = 0. (17)

3) The sequences of noise samples are orthogonal to the sequences of noiseless
variables:

N∑

t=1

x̃it x̂jt = 0 ∀ i, j. (18)

Under these assumptions:
X = X̂ + X̃ (19)

X̂T X̃ = 0 (20)

Σ = Σ̂ + Σ̃ (21)

Σ > 0 (22)

Σ̃ ≥ 0 or Σ̃ > 0 (23)

Σ̂ ≥ 0 and det Σ̂ = 0. (24)

The problem of determining linear relations compatible with noisy data can
be formulated as follows:

Problem 1 [1, 2] – Given a sample covariance matrix of noisy observations,
Σ, determine positive definite or semidefinite noise covariance matrices Σ̃ such
that

Σ̂ = Σ − Σ̃ ≥ 0 and det Σ̂ = 0. (25)

Any basis of ker Σ̂ will describe a set of linear relations compatible with the
data and with assumptions (16)–(18).
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The Frisch Scheme in Algebraic and Dynamic Identification Problems 97

C The Frisch scheme

This scheme, proposed by Ragnar Frisch in 1934 [5], is based on assumptions
(16)–(18) and on the further assumption of mutual independence of the noise
sequences

N∑

t=1

x̃it x̃jt = 0 ∀i 6= j. (26)

As a consequence of (26), the sample covariance matrix of the noise will be
diagonal. By introducing the suffix n to denote the dimension of square ma-
trices, we will thus have

Σ̃n = diag
[
σ̃2

1 , . . . , σ̃
2
n

]
≥ 0 or > 0 (27)

where σ̃2
1 , . . . , σ̃

2
n are the sample variances of the noise terms x̃1, . . . , x̃n. Every

positive definite or semidefinite diagonal matrix Σ̃n such that

Σ̂n = Σn − Σ̃n ≥ 0 and det Σ̂ = 0 (28)

is a solution of the Frisch scheme. The corresponding point P = (σ̃2
1 , . . . , σ̃

2
n) ∈

Rn can be considered as an admissible solution in the noise space while the
parameters αi in (5) or βi in (6) define the associate solution in the parameter
space.

It can be observed that the set of parameters (5) or (6) refers only to the case of
dim ker Σ̂n = 1. A solution in the noise space can, however, be associated also
with noise covariance matrices Σ̃n such that dim ker Σ̂n > 1 that correspond to
multiple independent linear relations between the columns (rows) of Σ̂n. The
maximal dimension of ker Σ̂n will be denoted in the following as MaxcorF (Σn)
(maximal corank of Σn under the assumptions of the Frisch scheme) [2].

Properties of the solutions in the noise space

A problem of great importance in the analysis of the properties and in the
application of the Frisch scheme concerns the description of the loci of solu-
tions in the noise and parameter spaces. While the locus of solutions in the
parameter space has nice properties only in a well defined case (compatibility
of the data with a single linear relation under the assumptions of the Frisch
scheme, i.e. MaxcorF (Σn) = 1), the locus of solutions in the noise space is the
same in every situation and is described by the following theorem [12].

Theorem 1 – All admissible solutions in the noise space lie on a convex
(hyper)surface S(Σn) whose concavity faces the origin and whose intersections
with the coordinate axes are the points (0, . . . , σ̃2

i , . . . , 0) corresponding to the
n least squares solutions (see Fig. 1).

Definition 1 [7] – The (hyper)surface S(Σn) will be called singularity (hy-
per)surface of Σn because its points define noise covariance matrices Σ̃n as-
sociated with singular matrices Σ̂n.
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σ̃2
2σ̃2

1

σ̃2
3

S(Σ′
3)

S(Σ′′
3 )

Fig. 1. Loci S(Σ3) of admissible noise points for n = 3 and different amounts of
noise

A problem of great relevance concerns the conditions under which a covari-
ance matrix is compatible with more linear relations i.e. the evaluation of
MaxcorF (Σn). A fundamental result concerning this problem is the following
[2].

Theorem 2 – MaxcorF (Σn) = 1 if and only if all entries of Σ−1
n are positive

or can be made positive (Frobenius–like according to the definition of Kalman
[2]) by changing the sign of some variables.

Under the conditions of Theorem 2, the locus of solutions in the parameter
space is described by the following theorem that shows the great relevance
of the n least squares solutions (that correspond to the assumption that only
one variable is affected by errors):

Theorem 3 – When MaxcorF (Σn) = 1, the coefficients α1, . . . , αn of all
linear relations compatible with the Frisch scheme lie (by normalizing one of
the coefficients to 1) inside the simplex whose vertices are defined by the n
least squares solutions (see Fig. 2).

Other important properties of the loci of solutions in the noise and parameter
spaces are described by the following theorems.

Theorem 4 – When MaxcorF (Σn) = 1 the points of the simplex of solutions
in the parameter space are linked by a one–to–one relation (isomorphism) to
the points of S(Σn).

Theorem 5 [22] – When MaxcorF (Σn) > 1, S(Σn) is nonuniformly convex.

Theorem 6 [10] – All points of S(Σn) where Cor (Σn) = k (k > 1) are
accumulation points for those where Cor (Σn) = k − 1.

Computation of MaxcorF (Σn)

Despite its simple formulation, the problem of determining the maximal num-
ber of linear relations compatible with a set of noisy data in the context of
the Frisch scheme has remained unsolved for many years. One of the reasons
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0 1 2 3 4 5 6
0

1

2

3 α1

α2

Fig. 2. Loci of admissible parameters for n = 3 and different amounts of noise

is probably due to the focus of many researches on the locus of the solutions
in the parameter space and to the practical impossibility of describing this
locus, when MaxcorF (Σn) > 1, except than in elementary cases. An upper
bound to MaxcorF (Σn) has been given in [11]; geometric conditions to evalu-
ate MaxcorF (Σn) have, instead, been given in [10] on the basis of the analysis
of the properties of the locus of the solutions in the noise space.

Define, to this purpose, the singularity (hyper)surface S(Σn/r) as the locus of
the points (σ̃2

1 , . . . , σ̃
2
r ) ∈ Rr such that

Σn − diag
[
σ̃2

1 , . . . , σ̃
2
r , 0, . . . , 0

]
≥ 0 (29)

and Σr as the sample covariance matrix of the first r variables. Then the
following geometric relations hold:

Theorem 7 [23] – S(Σn/r) lies always under or on S(Σr) (see Fig. 3).

Theorem 8 [10] – MaxcorF (Σn) ≥ q if and only if S(Σn−q+1)∩S(Σn/n−q+1) 6=
{0} for every subset of n − q + 1 variables, i.e. for every permutation of the
data leading to different subgroups in the first n− q + 1 positions.

Theorem 8 allows the straightforward formulation of an algorithm to compute
MaxcorF (Σn) by testing whether it is ≥ 2, 3, . . . until the required conditions
are no longer satisfied.

Radial parameterization for Frisch singularity hypersurfaces

The existence of common points between different singularity hypersurfaces
can be easily and efficiently verified by relying on a radial parameterization
of these surfaces. A parameterization of this kind can be used effectively for
computing the points of S(Σn) and also to perform fast searches on S(Σn) to
minimize a given cost function. It has been originally introduced in [24] to solve
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0 2 4
0

1

2

3

S(Σ3/2)

S(Σ2)

Fig. 3. Common points between S(Σ2) and S(Σ3/2) in a (3× 3) covariance matrix
with MaxcorF (Σ3) = 2

the congruence problems associated with the identification of multivariable
processes by associating multivariable models to directions in the noise space
instead than to specific points of singularity hypersurfaces [25]. It is important
to note that this parameterization can be used also for the direct computation
of the distance between two singularity hypersurfaces along a given direction.

Radial parameterizations will be described here for the algebraic case; their
extension to the dynamic case is straightforward.

Let ξ = (ξ1, . . . , ξn) be a generic point in the first orthant of Rn; the inter-
section, P = (σ̃2

1 , . . . , σ̃
2
n), between the straight line through the origin and ξ

with S(Σn) satisfies the conditions

Σn − Σ̃n ≥ 0 (30)

and
λP = ξ with λ > 0. (31)

It follows that

det

(
Σn − 1

λ
Σ̃ξ

n

)
= 0 (32)

where
Σ̃ξ

n = diag
[
ξ1, . . . , ξn

]
. (33)

Relation (32) is equivalent (Σn > 0) to

det
(
λ I −Σ−1

n Σ̃ξ
n

)
= 0 (34)

so that the solution compatible with condition (30) is given by

P =
ξ

λM
(35)

with
λM = max eig

(
Σ−1

n Σ̃ξ
n

)
. (36)
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The Frisch Scheme in Algebraic and Dynamic Identification Problems 101

The points of S(Σn) associated with straight lines from the origin can thus be
obtained by computing Σ−1

n and the intersection between any line and S(Σn)
by means of (35) and (36).

These results define a parameterization of singularity hypersurfaces that asso-
ciates their points with the sheaf of lines from the origin in the first orthant.

D Computation of a single solution in the context of the Frisch
scheme

The properties of the loci of solutions in the noise and parameter spaces
show that, given a (sample) data covariance matrix Σn it is impossible to
discriminate any solution (i.e. any decomposition of Σ) against any other,
unless additional information (e.g. noise variance ratios) is available. It is
however possible to take advantage of the differences between data belonging
to two finite sequences and estimate, under some conditions, the linear relation
actually linking the noiseless data. For this purpose we will introduce some
abstract definitions and conditions that will eventually lead to algorithms
appliable in real cases.

Complete sets of data for the Frisch scheme

The definitions and properties that follow concern the asymptotic case (infinite
sequence of data).

Definition 2 [7] – Two noise–free data covariance matrices of the same linear
algebraic process, Σ̂1 and Σ̂2 are defined as independent if

dim ker Σ̂1 = dim ker Σ̂2 = dim ker
(
Σ̂1 − Σ̂2

)
= 1. (37)

Property 1 – If Σ̂1 and Σ̂2 are independent there exists a unique (modulo
scaling) vector A satisfying the conditions

Σ̂1 A = Σ̂2 A =
(
Σ̂1 − Σ̂2

)
A = 0. (38)

Definition 3 [7] – Two noisy data covariance matrices of the same linear
algebraic process, Σ1 > 0 and Σ2 > 0 are defined as independent if

dim ker
(
Σ1 −Σ2

)
= 1. (39)

Theorem 9 [7] – Two independent noisy covariance matrices, Σ1 and Σ2,
satisfy the following conditions under the Frisch scheme

dim ker
(
Σ1 − Σ̃

)
= dim ker

(
Σ2 − Σ̃

)
= 1 (40)

(
Σ1 −Σ2

)
A =

(
Σ1 − Σ̃

)
A =

(
Σ2 − Σ̃

)
A = 0, (41)
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102 R. Guidorzi, R. Diversi, U. Soverini

where A = [α1 α2 . . . αn]T defines the process model (5) and Σ̃ ≥ 0 is a
diagonal matrix satisfying the conditions

Σ1 − Σ̃ ≥ 0, det (Σ1 − Σ̃) = 0, (42)

Σ2 − Σ̃ ≥ 0, det (Σ2 − Σ̃) = 0. (43)

Theorem 10 [7] – Among all points common to the hypersurfaces of admis-
sible noise points associated with the independent noisy covariance matrices
Σ1 and Σ2, one and only one point is mapped, according to Σ1 and Σ2, into
the same point of the parameter space (see Figs. 4 and 5).

Corollary 1 – The Frisch scheme leads to a unique solution determined by
every pair of independent noisy data covariance matrices of the process.

Corollary 2 – Two independent noisy data covariance matrices of a process
constitute a complete set of data for the Frisch scheme.

σ̃2
2σ̃2

1

σ̃2
3

S(Σ1)

S(Σ2)

•

Fig. 4. Admissible noise points (n = 3).

0 0.3 0.6 0.9 1.2
0

1

2

3

4

•

Fig. 5. Admissible model parameters (n = 3).
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The Frisch Scheme in Algebraic and Dynamic Identification Problems 103

Determination of the Frisch solution from real data

In all practical cases, even when two data sets are available, it is worthless
testing whether they meet the independence conditions. Theorem 10, however,
allows defining a consistent criterion to search for solutions even when the
intersection between S(Σ1) and S(Σ2) does not contain any point mapped,
by Σ1 and Σ2 into the same point of the parameter space.

Criterion 1 [26] – Consider a pair of covariance matrices Σ1 and Σ2 and their
loci of solutions, S(Σ1), S(Σ2) in the noise space. The best approximation of
the actual noise variances will be given by the point P ∈ S(Σ1) ∩ S(Σ2) that
minimizes the Euclidean norm of the distance between the parameter vectors
A′ and A′′ associated to P by Σ1 and Σ2.

Remark 1 – Criterion 1 is consistent since the cost function f(P ) = ‖A′ −
A′′‖2 annihilates when Σ1 and Σ2 are independent.

Remark 2 – Once that the minimum of f(P ) has been found, two solutions,
A′ and A′′ will be available and their distance is a measure of the reliability
of the procedure. Their mean value can be taken as problem solution.

Remark 3 – It can be observed that the outlined procedure can be applied
even when the simplexes associated with Σ1 and Σ2 do not share common
points.

3 The Frisch scheme in the dynamic case

A The SISO case

The extension of the Frisch scheme to the identification of dynamical processes
can rely on some properties that, differently from the algebraic case, allow
to obtain a single solution also when a single sequence of data is available.
To allow a simpler formulation of the problem, the SISO case will be firstly
considered while the identification of MIMO systems will be treated only in
a second time. Consider a dynamic SISO system of order n described by the
input–output model

ŷ(t+ n) =

n∑

k=1

αk ŷ(t+ k − 1) +

n+1∑

k=1

βk û(t+ k − 1) (44)

where û(t) denotes the input at time t and ŷ(t) the output. Consider also
noisy input/output observations, u(t) and y(t) given by

u(t) = û(t) + ũ(t) (45)

y(t) = ŷ(t) + ỹ(t) (46)
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û(t) ŷ(t)

ũ(t) ỹ(t)

u(t) y(t)

+ +

System

Fig. 6. The dynamic Frisch scheme context

where ũ(t) and ỹ(t) are white processes with zero mean, mutually uncorrelated
and uncorrelated with û(t) (see Fig. 6).

Define now the Hankel matrices

Xk(y) =





y(1) . . . y(k)
y(2) . . . y(k + 1)

...
. . .

...
y(N) . . . y(k +N − 1)




, (47)

Xk(u) =





u(1) . . . u(k)
u(2) . . . u(k + 1)

...
. . .

...
u(N) . . . u(k +N − 1)




, (48)

the matrix of input/output samples

Xk =
[
Xk+1(y) Xk+1(u)

]
(49)

and the sample covariance matrices Σk given by

Σk =
XT

k Xk

N
=

[
Σ(yy) Σ(yu)

Σ(uy) Σ(uu)

]
. (50)

Denoting with σ̃2∗
u and σ̃2∗

y the variances of ũ(t) and ỹ(t) and with P ∗ the
point

P ∗ =
(
σ̃2∗

y , σ̃2∗
u

)
, (51)

the previous assumptions establish that, when N → ∞

Σk = Σ̂k + Σ̃∗
k (52)

where
Σ̃∗

k = diag
[
σ̃2∗

y Ik+1, σ̃
2∗
u Ik+1

]
. (53)
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The Frisch Scheme in Algebraic and Dynamic Identification Problems 105

The identification problem, in the context of the Frisch scheme, consists in
determining the order and the parameters of model (44), or of any equivalent
state–space model, and the additive noise variances σ̃2∗

y , σ̃2∗
u on the basis of

the knowledge of the noisy sequences u(·), y(·) or, equivalently, of the sequence
of increasing–dimension matrices Σk for k = 1, 2, . . . .

Model (44) implies, for every input sequence persistently exciting of order
n+ 1, the nonsingularity of Σ̂1, . . . , Σ̂n−1 and the singularity of Σ̂k for k ≥ n.
For any value of k (lower, equal or larger than n), a point P = (σ̃2

y , σ̃
2
u)

belonging to the first orthant of the noise space, defines an admissible solution
if and only if

dim ker
(
Σk − Σ̃k

)
= 1, (54)

Σk − Σ̃k ≥ 0 (55)

where Σ̃k is the noise covariance matrix defined by P

Σ̃k = Σ̃k(P ) = diag [σ̃2
y Ik+1, σ̃

2
u Ik+1]. (56)

The corresponding solution in the parameter space, θ(P ) = [α1(P ), . . . , αn(P ),
−1, β1(P ), . . . , βn+1(P )]T , is univocally defined by ker (Σk − Σ̃k), i.e. by the
relation

Σ̂k(P ) θ(P ) =
(
Σk − Σ̃k(P )

)
θ(P ) = 0. (57)

Theorem 11 [12] – For every k > 0 all admissible points define a convex curve
S(Σk) in the first quadrant of the noise plane R2 with a concavity facing the
origin. The point P ∗ = (σ̃2∗

y , σ̃2∗
u ) associated with the actual noise variances

belongs to all curves S(Σk) when k ≥ n and θ(P ∗) is the true parameter
vector, θ∗.

Theorem 12 [12] – If i and j are integers with j > i, then S(Σj) lies under
or on S(Σi).

Remark 4 – S(Σk) partitions the noise space R2 into the regions of the points
σ+ associated with positive definite matrices Σ̂k = Σk − Σ̃+ and of the points
σn associated with non definite and negative definite matrices Σ̂k = Σk−Σ̃−.
These regions lie under and over S(Σk) respectively.

Remark 5 – Note that the dimension of the noise space is always equal to the
total number of inputs and outputs (two for the SISO case) i.e. to the number
of variables, like in the algebraic case. The dimension of the parameter space
depends also on the order of the process.

Remark 6 – Theorem 11 can be considered as a corollary of Theorem
8 since, because of the well–known shift property of dynamical systems,
MaxcorF Σk = k − n+ 1 when k ≥ n.
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106 R. Guidorzi, R. Diversi, U. Soverini

B Frisch identification of real processes and model selection
criteria

The key property described by Theorem 1 holds only when the (asymptotic)
properties assumed for the additive noise sequences (mutual orthogonality
and orthogonality with the input/output sequences) hold, i.e. when ũ(·) and
ỹ(·) are uncorrelated white sequences with infinite length. In all other cases
no common point between different curves can be observed. Similar conse-
quences follow from violations on the linearity and time–invariance assump-
tions. Moreover, the algorithms that can be developed to estimate a single
solution from real data can exhibit robustness and reliability problems that
require the development of suitable criteria.

The number of criteria that can be developed is relatively large. Many of them,
however, are not endowed with sufficient robustness for real applications. As
an example, it is possible to cite the selection criterion based on the minimal
radial distance between two adjacent curves or, more generally, hypersurfaces.
It is easy to show that such a criterion can select any point by properly scaling
the data and insensitivity to data scaling is just one of the requirements for
possible criteria.

Among the criteria that have shown a good robustness level it is possible to
mention the following ones.

The shifted relation criterion [16, 17]

This criterion is based on the rank deficiency property of the matrices Σ̂k(P ∗)
for k ≥ n and is based on a cost function that requires the computation of
the intersections of a line from the origin with the curve associated with the
considered model order, S(Σn) and with the subsequent one S(Σn+1).

The covariance–matching criterion [19]

This criterion is based on a cost function that compares the theoretical co-
variances of the EIV process

γ(t) = α1 y(t) + α2 y(t+ 1) + · · · − y(t+ n) + β1 u(t) + · · · + βn+1 u(t+ n)

= α1 ỹ(t) + α2 y(t+ 1) + · · · − ỹ(t+ n) + β1 ũ(t) + · · · + βn+1 ũ(t+ n)

with the sample values computed from the data. Both values are associated
with the considered point of the curve and are (asymptotically) coincident
only in the point corresponding to the actual noise variances.

A criterion based on high–order Yule–Walker equations [18]

This criterion, that can also be considered as belonging to the family of instru-
mental variable methods, is based on the computation of the closing errors of

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



The Frisch Scheme in Algebraic and Dynamic Identification Problems 107

a set of high order Yule–Walker equations. Also in this case the closing error
depends on the considered model and is asymptotically null only in the point
associated with the true noise variances and process parameters.

The application of the described or of other possible criteria can be performed
by minimizing their value on the singularity curve associated with the selected
model order. This can be performed by using standard search algorithms and
by selecting a suitable stop threshold. The efficiency of practical implementa-
tions can take great advantage from parameterizations of the curves that allow
to perform the search by computing only a very limited number of points, like
the radial parameterization described in [24] that can be easily extended to
the dynamic case [25].

C The MIMO case

The extension of Frisch identification techniques to the MISO case is straight-
forward; this is not the case for MIMO processes that face conceptual and
practical congruence problems not present in the single–output case.

The multivariable identification problem

The MIMO dynamic systems considered in this section are described by the
input–output model

P (z) ŷ(t) = Q(z) û(t), (58)

where û(t) ∈ Rr, ŷ(t) ∈ Rm and P (z), Q(z) are (m × m) and (m × r) left
coprime polynomial matrices in the unitary advance operator z. By selecting
a minimal parameterization [27], model (58) can be partitioned into the set
of m relations

ŷi(t+ νi) =
m∑

j=1

νij∑

k=1

αijk ŷj(t+ k − 1) +
r∑

j=1

νi∑

k=1

βijk ûj(t+ k − 1) (59)

where the integers νi (i = 1, . . . ,m) that appear in (59) and describe the
structure of the model are the observability invariants of the system. The
integers νij are completely defined by these invariants through the relations

νij = νi for i = j (60)

νij = min (νi + 1, νj) for i > j (61)

νij = min (νi, νj) for i < j . (62)

For a complete description of the properties of the scalars {νi, αijk, βijk} see
[27]. The order of system (59) is given by
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108 R. Guidorzi, R. Diversi, U. Soverini

n =
m∑

i=1

νi ; (63)

νM will denote, in the following, the maximal observability index, i.e.

νM = maxi {νi, i = 1, . . . ,m} . (64)

In an errors–in–variables context, the noise–free signals û(t) and ŷ(t) linked
by model (59) are not directly accessible and only the noisy observations

u(t) = û(t) + ũ(t) (65)

y(t) = ŷ(t) + ỹ(t) , (66)

are available. In this paper the additive noises ũ(t) and ỹ(t) satisfy the fol-
lowing assumptions.

1) The processes ũ(t) and ỹ(t) are zero–mean, mutually uncorrelated white
noise sequences, with unknown covariance matrices Σ̃∗

u = diag [σ̃2∗
u1
, . . . σ̃2∗

ur
]

and Σ̃∗
y = diag [σ̃2∗

y1
, . . . σ̃2∗

ym
];

2) The processes ũ(t) and ỹ(t) are uncorrelated with the the noise–free signal
û(t).

The EIV MIMO identification problem can be stated as follows: given N noisy
input–output observations u(·), y(·), estimate the noise covariance matrices
Σ̃∗

u, Σ̃∗
y and the coefficients αijk, βijk of model (59).

Properties of EIV MIMO systems

Consider the Hankel matrix

Hk(ŷi) =





ŷi(1) . . . ŷi(k)

ŷi(2) . . . ŷi(k + 1)
...

...

ŷi(N) . . . ŷi(k +N − 1)




, (67)

and the analogous matricesHk(yi), Hk(ỹi),Hk(ûi),Hk(ui) andHk(ũi). Define
also the multi–index kM = (k1, . . . , km+r) and the matrix

Ĥ(kM ) =
[
Hk1(ŷ1) . . .Hkm

(ŷm)Hkm+1(û1) . . . Hkm+r(ûr)
]
.

Relations (59) can be used to write an overdetermined set of linear equations
in the unknowns αijk and βijk. In fact, by considering the multi–index νM =
(ν1 + 1, . . . , νm + 1, νM , . . . , νM ), relations (59) imply that

Ĥ(νM )Θ = 0 , (68)

where
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Θ =
[
θ1 θ2 · · · θm

]
, (69)

and

θi =
ˆ
αi11 · · · αi1νi1 0 · · · 0

| {z }

(ν1+1−νi1)

| · · · | (70)

|αii1 · · · αiiνi
− 1 | · · · |αim1 · · · αimνim

0 · · · 0
| {z }

(νm+1−νim)

|

|βi11 · · · βi1νi
0 · · · 0
| {z }

(νM−νi)

| · · · |βir1 · · · βirνi
0 · · · 0
| {z }

(νM−νi)

˜T
.

By defining the covariance matrix Σ̂(νM ) as

Σ̂(νM ) =
1

N
Ĥ(νM )T Ĥ(νM ) =





Σ̂(ŷ1ŷ1) Σ̂(ŷ1ŷ2) . . . Σ̂(ŷ1ûr)

Σ̂(ŷ2ŷ1) Σ̂(ŷ2ŷ2) . . . Σ̂(ŷ2ûr)
...

...
. . .

...

Σ̂(ûrŷ1) Σ̂(ûr ŷ2) . . . Σ̂(ûrûr)




, (71)

equation (68) implies that
Σ̂(νM )Θ = 0 . (72)

Define now the point P ∗ as

P ∗ =
(
σ̃2∗

y1
, . . . σ̃2∗

ym
, σ̃2∗

u1
, . . . σ̃2∗

ur

)
; (73)

the assumptions of noise additivity and independence at the basis of the Frisch
scheme lead, for N → ∞, to the decomposition

Σ
(
νM
)
= Σ̂

(
νM
)
+Σ̃∗(νM

)
, (74)

where

Σ̃∗(νM ) = diag
[
σ̃2∗

y1
Iν1+1, . . . , σ̃

2∗
ym
Iνm+1, σ̃

2∗
u1
IνM

, . . . , σ̃2∗
ur
IνM

]
. (75)

Consider now the generic subsystem i described by relation (59), the multi–
index

νM
i = (νi1, . . . , νi + 1, . . . , νim, νi, . . . , νi) (76)

and the i–th set of parameters

ηi =
[
αi11, . . . , αii1, . . . , αiiνi

,−1, . . . , αimνim
, βi11, . . . , βi1νi

, . . . , βirνi

]T
; (77)

then
Σ̂(νM

i ) ηi =
[
Σ(νM

i ) − Σ̃∗(νM
i )
]
ηi = 0. (78)

By defining the relation between multi–indices

kM < hM if ki < hi for i = 1, . . . ,m+ r , (79)
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110 R. Guidorzi, R. Diversi, U. Soverini

it is possible to state the following theorems whose proofs can be carried out
along the lines considered in [10, 12] for the MISO case.

Theorem 13 – For every structure ξ = (ν1, . . . , νm), the admissible noise–
space solutions associated with the i–th subsystem, i.e. the locus of points
(σ̃2

1 , . . . σ̃
2
m+r) such that

Σ̂(νM
i ) = Σ(νM

i ) − Σ̃(νM
i ) ≥ 0 , (80)

is a convex hypersurface S(Σ(νM
i )) belonging to the first orthant of Rm+r

whose concavity faces the origin (singularity hypersurface).

Theorem 14 – If kM
i and hM

i are multi–indices with hM
i > kM

i , then
S(Σ(hM

i )) lies under S(Σ(kM
i )).

Theorem 15 – All hypersurfaces S(Σ(kM
i )), (i = 1, . . . ,m) with kM

i > νM
i

have the single common point P ∗ corresponding to the actual variances of the
noise on the data.

Theorems 13, 14 and 15 give a picture of the multivariable case similar to the
pictures of the SISO and MISO cases. The existence of a single point (exact
noise variances) common to the singularity hypersurfaces associated with the
different subsystems, allows to solve the MIMO identification problem in a
way similar to the SISO and MISO cases, by computing, in a congruent way,
the parameters of every subsystem, defined by the kernels of the matrices
S(Σ̂(νM

i ));

EIV MIMO identification

The identification of real processes requires, as in the SISO or MISO cases,
the definition of suitable selection criteria since the common point described
by Theorem 15 will no longer exist. The criteria described for the SISO (or
MISO) case, as well as others, could be applied to every subsystem and this
would lead to a complete parameterization of the multivariable model.

It must however be noted that a procedure of this kind would lead to an incon-
gruent solution because the identification of the different subsystems would
lead to the estimation of (slightly) different points in the noise space and the
corresponding variances would be different and characterized by different ra-
tios. As a consequence, the obtained model would be no longer associated with
a single point in the noise space but with a set of points and this constitutes
a serious limit to the congruence of the model and to some of its possible
applications like, for instance, filtering.

The solution of this problem can be obtained by using radial parameterizations
that allow to establish a one to one relation between directions in the noise
space [25] and model parameters and by suitable extensions of the already
described selection criteria. The identification of multivariable EIV models is
described in detail in [25, 28].
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4 Applications of Frisch identification techniques

A Blind identification of SIMO FIR systems

The blind identification of dynamic systems is of great relevance in many fields
like telecommunications, sismology, radioastronomy, etc. The purpose is the
reconstruction of the transfer function of a transmission channel starting from
noisy measurements performed only on its output [29, 30].

Blind identification relies on linear models describing a set of parallel channels
driven by an unknown sequence and characterized by a finite impulse response
(FIR). These models can describe a single unknown source in presence of
multiple spatially and/or temporally distributed sensors. In the two–channel
case the process is described (see Fig. 7) by the model

u(t)

ŷ1(t)

ŷ2(t)

H1(z−1)

H2(z−1)

+

+

ỹ1(t)

ỹ2(t)

y1(t)

y2(t)

Fig. 7. Two–channel FIR system

ŷi(t) = Hi(z
−1)u(t) =

n∑

k=0

hi(k)u(t− k), i = 1, 2 (81)

Hi(z
−1) = hi(0) + hi(1) z−1 + · · · + hi(n) z−n, i = 1, 2 (82)

yi(t) = ŷi(t) + ỹi(t), i = 1, 2 (83)

where ỹ1(t) and ỹ2(t) are mutually uncorrelated white noises, uncorrelated
with u(t) and with unknown variances σ̃2∗

y1, σ̃
2∗
y2. Relations (81) allow mapping

the blind identification problem into an errors–in–variables identification one
that can be solved (in the case of two channels) by using the identification pro-
cedures described for the SISO case or with more specific procedures [31]. The
multichannel case is more complex and cannot be reconducted to the MISO
or MIMO cases; a procedure solving this problem is described in [32]. In both
cases the proposed approaches extend the existing blind channel identification
procedures to the case of unbalanced channel noises.
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112 R. Guidorzi, R. Diversi, U. Soverini

B Identification of noisy autoregressive models

Autoregressive (AR) models are commonly used in a wide range of engineer-
ing applications, like spectral estimation, speech and image processing, noise
cancellation etc.

A considerable attention has been dedicated, in the literature, to the problem
of estimating the AR parameters from signals corrupted by white noise.

In this case the estimates obtained with classical AR identification methods
(least–squares, Yule–Walker equations) are poor, particularly for low signal–
to–noise ratio conditions [33, 34]. Consider the noisy AR model

x(t) = α1 x(t− 1) + · · · + αn x(t− n) + e(t), (84)

y(t) = x(t) + w(t), (85)

where x(t) is the noise–free AR signal, e(t) is the driving noise and y(t) is
the available observation affected by the additive noise w(t); e(t) and w(t) are
zero–mean white processes, mutually uncorrelated, with unknown variances
σ2∗

e and σ2∗
w .

The AR+noise identification problem consists in estimating α1, . . . , αn and
σ2∗

e , σ2∗
w starting from the available measurements y(1), y(2), . . . , y(N). Also

this problem can be mapped into an EIV identification problem whose solution
must be searched on a limited portion of a suitable singularity surface by
applying the already described procedures [35, 36]. Other applications of blind
FIR identification and AR+noise procedures concern speech enhancement [37,
38, 39].

5 Conclusions

This paper has presented an overview of several results concerning the prop-
erties of the Frisch scheme and its application to the estimation of linear
relations from data affected by unknown amounts of additive noise and to the
identification of dynamic processes in an Errors–in–Variables context. While
it does not present new results, it integrates in an unitary view many results
previously scattered in different works and underlines the links, not previ-
ously described, between the algebraic and dynamic contexts where the Frisch
scheme can be applied.
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Multivariable Feedback with Geometric Tools

Giovanni Marro
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Viale Risorgimento 2, 40136 Bologna, Italy
gmarro@deis.unibo.it

1 Introduction

I remember Toni for his personal warmth and innate respect; for a friendship
you could feel. He would give important and less important bits of advice,
throwing in the odd comment, or dropping a hint, never insisting, to show
he meant no offence. I remember how attached he was to us in Bologna.
During the first research doctorate the university seats of Bologna, Florence
and Padua had formed a consortium, but he would still take the train to
Bologna to hold his lectures because he liked to breathe the atmosphere of
the city and walk across its main square, Piazza Maggiore.

I keep in my library a very simple, clear and attractive small book with a
nice friendly hand-written dedication to me by Toni [1]. The book presents
feedback in simple terms but reflects Toni’s in-depth knowledge, highlighting
the presence of feedback in many branches of the scientific world. Inspired
by this book and recalling that many years ago Toni probably read our first
paper on geometric tools in Italian [2], I decided to dedicate this contribution
to feedback in geometric terms. In this short monograph I will try to explain
how these tools not only enable a neat extension to the multivariable case
of the most basic features of feedback control for single variable systems,
including the internal model of the exosystem, hence steady-state robustness,
but they are just within arm’s reach using a certain number of algorithms
available in a specific Geometric Approach toolbox for Matlabr. Although
this approach sounds didactic and somewhat out of standard, it nevertheless
contains an original idea: A proposal to extend model-following control to
non minimal phase systems. Being a non optimal, but only pseudo-optimal
solution, the proposal explains the detailed illustration of this toolbox and its
use in the synthesis of multivariable control systems.

The geometric approach to system analysis and control suffered from a very
slow and inconsistent growth for about four decades, with papers by numerous
authors in many different styles, often aiming to impress readers (or reviewers)
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116 Giovanni Marro

with intricate mathematics rather than giving them the most direct insight
and feeling. This makes it very difficult now to gain a clean and simple out-
look of the features and possibilities of the geometric environment from these
papers. In most cases neither the authors nor the reviewers of these papers
perceived that numerous, apparently different, problems could be framed to-
gether and led to the same unifying solution. Duality, in particular, detected
early on as being a basic feature of the geometric approach [3], was almost
never used or pointed out.

Notation

Through this contribution, Rn stands for the set of all n-tuples of real numbers
and Cg denotes the open left-half complex plane. Script capitals, like X , denote
vector spaces and subspaces, while italic capitals, like A, denote matrices
and linear maps. dimX and X⊥ denote the dimension and the orthogonal
complement of subspace X . The image, the null space, the transpose, the
inverse and the pseudoinverse of a generic matrix A are denoted by imA,
kerA, AT , A−1 and A# respectively, while the number of rows and columns
of A are denoted by mA and nA.

Regarding the standard notation of the geometric approach [4, 5, 6], V and S
stand for a generic controlled invariant and a generic conditioned invariant,
Z(V) for the internal unassignable spectrum of V . Referring to a given con-
tinuous or discrete-time LTI system Σ≡ (A,B,C,D), V∗ and S∗ denote the
maximum output nulling controlled invariant and the minimum input con-
taining conditioned invariant of Σ, while Z(Σ) =Z(V∗) is used for the set
of all invariant zeros of Σ. For a quick review of numerous basic problems
presented with this notation, refer to [7].

2 A short literature on model following

The model following problem (MFP), i.e. that of synthesizing a state or output
feedback law for a given plant in order to make the impulse response matrix
of the compensated system exactly equal to that of a prespecified model, has
been studied for different classes of systems since the early 1970’s [8, 9, 10, 11].
These early investigations were primarily concerned with problem solvability
under various hypotheses.

In [12] the MFP was precisely stated by Morse, and necessary and sufficient
geometric conditions for its resolution using algebraic feedforward compen-
sation and a state feedback with some dynamics added were provided. The
internal stability problem was discussed, but only a few preliminary results
were given.

Several papers extended and refined Morse’s early results. In [13] the set of
all stable solutions to the MFP was presented in a parametric form. In [14]
the extension to quadruples (A,B,C,D) was proposed, and necessary and
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Multivariable Feedback with Geometric Tools 117

sufficient conditions under which solutions exist using regular output feedback
were provided. In [15] a new geometric proof for a solvability condition of the
MFP expressed in terms of the infinite zero structure was presented.

Many variations of the original MFP were also proposed in the literature in
the last decades. The most remarkable examples are the partial state-feedback
MFP and the partial MFP, (see respectively [16] and [17] and the references
therein).

Recently, in [18] a new procedure to synthesize minimal-order regulators for
exact model following by output feedback with stability has been proposed.
The approach, completely embedded in the geometric framework, exploits
the properties of self-bounded controlled invariant subspaces and provides an
effective treatment of nonminimum-phase systems.

Nevertheless the design strategy in [18] requires that all unstable invariant
zeros of the nonminimum-phase system are replicated in the model, thus sig-
nificantly constraining the performance of the resulting overall feedforward
(or feedback) system.

In order to solve this problem, an original design layout for the solution of
the feedforward and feedback model following problem for nonminimum-phase
plants is presented in this contribution. This work was particularly inspired
by the recent investigations on H2 disturbance decoupling (see [19, 20]) and
it proposes to solve the MFP for a new controlled system where the output
matrix is replaced with an equally sized matrix allowing the H2-optimal con-
trol problem to be approached as a disturbance decoupling while keeping the
same relative degree and the steady-state gain of the original system. The new
matrix is derived by applying the standard geometric approach tools to the
Hamiltonian system instead of the original plant and using some refinements
to adapt the solution of the H2-optimal decoupling problem to the require-
ments of model following. The proposed constructive procedure to determine
the output matrix can be readily implemented using the basic routines of the
geometric approach.

Note that in [21, 22] geometric methods were also presented for the resolution
of singular H2 control problems. However the procedure adopted therein is
less direct and very far from the standard geometric approach computational
environment.

The rest of the work is organized as follows. In Sect. 3 the exact feedforward
model following problem as presented in [18] is reviewed. In Sect. 4 the H2-
optimal decoupling problem is stated and its geometric solution is briefly
recalled. In Sect. 5 the H2-optimal model following problem is discussed and a
convenient pseudo optimal solution is derived. In Sect. 6 a numerical example
is presented in some detail. in Sect. 7 some information on the geometric
algorithms is given, while in Sect. 8 the major contributions of the paper are
summarized and some concluding remarks are provided.
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118 Giovanni Marro

3 A review of the exact model following problem

The purpose of this section is to briefly recall the various aspects of the exact
model following problem and the corresponding solutions with the geometric
approach tools.

A Exact feedforward model following

The most elementary model following problem is stated in the following terms.

Problem 1. (Exact feedforward model following) Refer to Fig. 1. Given a
plant Σ described by

ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t)

(1)

where x∈X = Rn, u∈Rp and y ∈Rp denote the state, the control input and
the controlled output, respectively, and a model Σm described by

ẋm(t) = Am xm(t) +Bm h(t)
ym(t) = Cm xm(t)

(2)

where xm ∈ Xm = Rq, h ∈ Rp and ym ∈ Rp denote the state, the exogenous
input and the output, design a linear dynamic stable feedforward compensator
Σc ≡ (Ac, Bc, Cc, Dc) such that the forced evolution of y is equal to that of
ym for every admissible (piecewise continuous) input h.







 hh u y
Σc Σ

ym

Σm

Fig. 1. Feedforward model following.

For the sake of simplicity both Σ and Σm are assumed to be minimal, stable,
with no common poles and zeros, square, left and right invertible, (i.e., such
that V∗ ∩S∗ = {0}, V∗ +S∗ =X and V∗

m ∩S∗
m = {0}, V∗

m +S∗
m =Xm), and

steady-state completely output controllable (i.e., with the matrices C A−1B
and Cm A−1

m Bm finite and nonsingular) 1.

Theorem 1. Problem 1 is solvable if

ρ(Σ) ≤ µ(Σm) (3)

Z(Σ) ⊆ Cg (4)

1 The left invertibility assumption can be overcome by using squaring down (see
the routine extendf in Sect. B).
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Multivariable Feedback with Geometric Tools 119

where ρ denotes the global relative degree of Σ and µ the minimum delay
of Σm

2.

Proof. The relative degree ρ is the minimum value of the time derivative of
any output function of Σ reproducible starting from the zero state by apply-
ing a suitable piecewise continuous input function. The minimum delay µ is
the minimum value of the time derivative of any possible ouput function of
Σm corresponding to a piecewise continuous input function. Hence condition
(3) guarantees structural feasibility of exact model following. Condition (4)
implies condition (8) of Corollary 2 below, that guarantees internal stability.

Conditions (3)-(4) are presented as only sufficient, but indeed they also are
almost necessary, i.e., generally also necessary, except for some pathological
cases whose investigation may be interesting, but beyond the introductory
scope of this contribution.

Feedback solutions have been proposed in most of the numerous treatments
of the model following problem available in the literature to include the over-
all stability requirement when Σ is unstable. However stabilization of Σ by
feedback through a full or reduced order observer is unrelated to solvability
of the model following problem. In fact, if Σ is not stable but stabilizable and




+

_



 



u y
Σ

Σo

Σ,Σo

v

Fig. 2. Using a stabilizer.

detectable (recall that it has been assumed to be minimal in this case) it is
possible to use a stabilizing feedback through a full or reduced order observer
Σo as shown in Fig. 2, thus replacing it with a new stable system denoted here
and thereafter by Σ,Σo. In fact, under the minimality assumption, Σ is both
reachable and observable.

Definition 1. (Invariant zero structure) Refer to Fig. 3, representing an ex-
osystem Σe, described by the differential equation v̇(t) =W v(t) with initial
state v0, algebraically connected to Σ. W is an invariant zero structure of Σ

2 Recall that the global relative degree is computed in geometric terms as the
minimum value of i such that V∗ +Si =X , where Si denotes the i-th subspace
in the well-known sequence for computing S∗. The minimum delay of a triple is
defined as the minimum value of i such that C Ai B is nonzero.
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v0 δ(t) x0 =X v0 δ(t)

Σe L Σ
v u y

Fig. 3. The definition of invariant zero structure.

if and only if there exist nonzero matrices L and X such that the evolution
x(t) of the state of Σ from x0 =X v0 and with the control input u(t) =Lv(t)
completely belongs to kerC.

Let us refer again to Fig. 3 and assume that W and A have no common
eigenvalues. By solving the Sylvester equation

AX −XW = −B L

where now L is given, we obtain an initial state X v0 that makes Σ to behave
as an algebraic connection (with all its modes equal to zero, already in the
steady-state condition), described by y(t) = − (C A−1B L) v(t), where the
matrix in brackets on the right can be made nonsingural by a suitable choice
of L, owing to the left anf right invertibility of Σ. The following lemma is
crucial to point out the pole-zero structure of the compensator Σc in the
model following problem.

Lemma 1. Let the LTI system Σ≡ (A,B,C) be stable, left and right invert-
ible, steady-state output controllable, completely observable but not completely
reachable and with the eigenvalues of the reachable subsystem different from
those of the unreachable subsystem. Then, the eigenvalues of the unreachable
subsystem are invariant zeros of Σ.

Proof. Without any loss of generality, we can assume

A =

[
A12 A12

O A22

]
, B =

[
B1

O

]
, C =

[
C1 C2

]

Note that the reachable subsystem Σ1 ≡ (A1, B1, C1) must be left and right
invertible by assumption, since (A22, C2) is neutral with respect to control. Let
us refer to Fig. 4, representing the block diagram corresponding to W =A22,
x0,2 = v0 and to choosing X1 such that the modes of A11 are all zero at the
initial time. This choice depends on L and A12. By means of a suitable choice
of L (with consequent adjustemnt of X1) it is possible to have a complete
control on the linear combination of the modes of W al the output, i.e., to
attain the condition y= 0. Hence matrix A22 is an invariant zero structure of
Σ owing to Definition 1.

Corollary 1. The overall system whose block diagram is shown in Fig. 2, with
algebraic state feedback F through an observer, has the eigenvalues of the
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+



+

+











L
v

A12

u

Σ1Σe

x1,0 =X1 v0 δ(t)

C2

y2

y

y1

v0 δ(t)

x2

x2

Fig. 4. The structure in Fig. 3 for an unreachable system.

observer and those of A+BF as poles and the invariant zeros consisting
of the invariant zeros of Σ and the poles of Σo. However, due to lack of
controllability of the observer, the overall system is not minimal, but it is
input-output equivalent to a n-th order system with the poles of A+BF as
poles and with the same invariant zeros as Σ.















+

_h

u y

ym

η= 0
ΣΣc

Σm

Σ

Fig. 5. Model following as a MDDPS.

It is well known that Problem 1 is a particular case of the standard (exact)
measurable disturbance decoupling problem with stability (MDDPS) for an
extended system Σ also including the model, as shown in Fig. 5. It is worth
recalling herein the statement and the solution to this problem in geometric
terms.

Problem 2. (Measurable signal decoupling with stability) Refer to Fig. 6,
where Σ is assumed to be modelled by

ẋ(t) = Ax(t) +B u(t) +H h(t)

y(t) = C x(t)
(5)

Design a linear dynamic stable feedforward compensatorΣc ≡ (Ac, Bc, Cc, Dc)
such that the forced evolution of y is identically zero.

Conditions ensuring the solvability of Problem 2 are stated by the following
theorem, that is well known in the literature and is here recalled without
proof.
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h

u Σ

Σc

y

Fig. 6. Measurable signal decoupling.

Theorem 2. Problem 2 is solvable if and only if

H ⊆ V∗
g + B (6)

where H= imH, B = imB and, as it is usual, V∗
g denotes the restriction of

V∗ to include only the stable zeros of Σ.

If Σ is minimum-phase clearly V∗
g =V∗. The conditions stated in the following

corollary are equivalent to (6), but refer to an (A,B)-controlled invariant
Vm ⊆V∗

g , more convenient than V∗
g as a resolvent. In fact, using Vm as a

resolvent instead of V∗
g may yield a compensator Σc with less state dimension.

Corollary 2. Problem 2 is solvable if and only if

H ⊆ V∗
(B,C) + B (7)

Z(Vm) ⊆ Cg (8)
with

Vm := V∗
(B,C) ∩ S∗

(B+H,C) (9)

Condition (7) was first stated in [23], while (8) is due to [24]. Note that
solvability of Problem 1 as stated in Theorem 1 and of Problem 2 as stated in
Corollary 2, like that of many other problems in the geometric control theory,
requires both a structural condition, like (3) and (7), and a stabilizability
condition, like (4) and (8). The subspace Vm defined in (9) is simply the
reachable subspace on V∗

(B,C) with both inputs h and u.

Remark 1. Conditions (3)-(4), only sufficient but more directly intelligible as
straightforward extensions of the SISO case, imply (7)-(8), that they are nec-
essary and sufficient, but stated in strict geometric terms. Note that in (3)-(4)
the vector (i.e., componentwise) relative degree and the vector minimum delay
may be used instead of the global relative delay, thus achieving more definite
conditions. However this is not valid in the extension to the non-minimum
phase case considered in Sect. 5.

B From feedforward to feedback model following

The main contribution to exact model following is a very straightforward so-
lution for the feedback connection shown in Fig. 7. In fact, it has also been
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Multivariable Feedback with Geometric Tools 123

pointed out in [18] that exact feedback model following can be obtained with
some simple manipulation from the feedforward solution as stated in Prob-
lem 1 and under the conditions established in Theorem 1. Moreover, a multiple
internal model with simple or multiple poles at the origin can be imposed in
the feedback regulator Σc if Σm is suitably chosen with this aim. This makes
the model following approach to multivariable regulation problems particu-
larly attractive from the standpoint of engineering practice.

Consider the modified scheme shown in Fig. 8. Note that replacing the feed-
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Σ

Σm
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η= 0
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Fig. 7. Exact feedback model following.
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Fig. 8. A structurally equivalent connection.
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Fig. 9. Another structurally equivalent connection.
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back connection in Fig. 7 with that shown in Fig. 8 does not affect the struc-
tural properties of the system since the signals y and ym are still equal for
all t, but may affect stability. The new block diagram represents a feedforward
model following problem. In fact, note that h is obtained as the difference of
r (applied to the input of the model) and ym (the output of the model). This
corresponds to the parallel connection of Σm and a diagonal algebraic system
with gain −1, that is invertible, having zero relative degree. Its inverse is Σm

with a feedback connection through a diagonal algebraic system with unit
gain, as shown in Fig. 9.

It is thus evident that from a structural point of view, the modified feedback
model following in Fig. 7 is equivalent to a modified feedforward problem
which refers to the model Σ′

m ≡ (Am +BmCm, Bm, Cm). It is then possible
to bring back the feedback model following problem to the feedforward prob-
lem discussed in Sect. A by means of the above algebraic manipulations, that
guarantee existence of equal solutions of the differential equations describing
the overall two systems (called herein structural equivalence of the two in-
volved systems), but not guarantee stability. In fact, the condition η(t) = 0 for
all t≥ 0 in the modified system may be obtained as the difference of diverg-
ing signals y and ym. However, stability is recovered when going back to the
original feedback connection represented in Fig. 7, that ensures that all the
modes present in the impulse response of Σm are stable.

Adding row-by-row decoupling and including an internal model

Row-by-row decoupling is a standard problem of control theory. It is also
called Morgan’s problem in the literature, from the name of the first author
who approached it using the state-space formulation [25]. Morgan’s solution
was based on state algebraic feedback and algebraic precompensation. More
recently the problem has been discussed and solved in geometric terms [26].

The previous solutions, that appear very intricate, are overcome by the ap-
proach presented herein, since row-by-row decoupling can be very easily ob-
tained in feedforward or feedback model following by simply assuming a model
Σm consisting of q independent SISO systems with suitable relative degrees.

It is also possible to include in every feedback loop concerning Σ′
m (Fig. 9)

poles at the origin with arbitrary multiplicity γ by assuming these SISO sys-
tems with transfer functions having the γ coefficients corresponding to the
lower powers of s (including the constant term) equal in the numerator and
denominator polynomials. These poles at the origin are repeated as an inter-
nal model in the compensator, so that both Σ′

m and the compensator may be
unstable systems. However, as previously pointed out, the original feedback
connection in Fig. 7 is stable since it has the same poles as Σm.
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4 From exact decoupling to H2-optimal decoupling

Let us consider again Problem 2 and assume that Σ is non-minimum phase,
so that condition (6) or (7)-(8) may be (and in general are) not satisfied. In
this case a possible resort is to consider the following problem as “the best we
can do”.

Problem 3. (H2-optimal decoupling with stability) Refer again to Fig. 6,
where Σ is assumed to be modelled by (5). Design a dynamic stable feed-
forward compensator Σc ≡ (Ac, Bc, Cc, Dc) such that the H2 norm of the
overall system from input h to output y is minimal.

Let us recall that the H2-norm of a triple Σ≡ (A,B,C) is defined as

‖Σ‖2 =

√

tr
(∫ ∞

0

g(t) gT (t) dt
)

(10)

where “tr” denotes the trace of a matrix and g(t) denotes the impulse response
of the system.

Problem 3 is traced back to Problem 2. In fact, by using the standard op-
timal control framework it is easily shown that “almost exact decoupling”
corresponds to exact decoupling for the Hamiltonian system Σ̂ defined by

˙̂x(t) = Â x̂(t) + B̂ u(t)

0 = Ĉ x̂(t)
, x̂ =

[
x
p

]
(11)

with

Â =

[
A 0

−CT C −AT

]
, B̂ =

[
B
O

]
,

Ĉ =
[
O BT

]
(12)

It is well known ([27] (adapted from discrete to continuous-time systems) that

if Σ is left invertible, Σ̂ is both right and left invertible, and if Σ is left and
right invertible, Z(Σ̂) consists of all the elements of Z(Σ) and their opposites.
The set of equations (11) can be considered to refer to an LTI dynamic system

whose output is constrained to be zero. Denote by V̂∗ the maximum output
nulling controlled invariant subspace of Σ̂, whose internal eigenvalues are the
elements of Z(Σ̂), and by

V̂∗
g = im

[
V1

P1

]
(13)

its restriction to the stable internal eigenvalues. Clearly, the dimension of V̂∗
g

is equal to that of V∗. It follows that minimizing the H2 norm of the overall
system in Fig. 6 is equivalent to the perfect decoupling problem for the triple
(Â, B̂, Ĉ). The necessary and sufficient condition (6), adapted to this case, is
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im

[
H
O

]
⊆ V̂∗

g (14)

Thus we have proven the following theorem.

Theorem 3. Problem 3 is solvable if and only if

H ⊆ V1 + B (15)

where V1 := imV1 with matrix V1 defined in (13).

Remark 2. Owing to the structure of the Hamiltonian system (12) V1 is clearly
an (A,B)-controlled invariant, not necessarily contained in kerC.

Remark 3. Under the assumed condition that Σ is both left and right invert-
ible the inclusion Z(V∗)⊆Z(V1) holds, so that if Σ is minimum-phase, inclu-
sion (6) implies (15) and V1 is contained in kerC. In other terms, Problem 3
can be regarded as a straightforward extension of Problem 2.

5 H2-pseudo optimal model following

According to the above considerations, when Σ is nonminimum-phase, it ap-
pears to be natural to replace the exact model following problem (Problem 1)
with a more general H2-optimal model following problem. This can easily
be stated as the problem of minimizing the H2-norm of the overall system
in Fig. 5 from input h to output η. This solution is feasible, but has several
drawbacks in practice. The most important are considered in the following
list.

1. Zero steady-state tracking error, that is an essential requirement in every
control system design, is not guaranteed. In fact, the H2 norm as defined
in (10) refers to the impulse response, not to the step response.

2. Contrary to the exact case, the relative degree condition (3) does not imply
the necessary and sufficient condition (6). Actually, it can be proved that
when ρ(Σ) ≥ 2 the problem does not admit solutions of the type sketched
in Fig. 5 (since Σc cannot generate distributions).

3. Extension to the feedback case, including row-by-row decoupling and in-
clusion of an internal model in the compensator, as described in Sect. B,
is not possible, since the output η of the overall system is not any longer
identically zero.

In order to solve these problems, a suitable pseudo optimal solution to the
problem is proposed herein.
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Multivariable Feedback with Geometric Tools 127

A Introducing a new output matrix C1

Refer to the modified feedforward scheme shown in Fig. 10. Replace matrix C
with another matrix C1 such that the new system Σ1, corresponding to the
triple (A,B,C1), is minimum-phase, the ℓ2 norm of output y1 is minimal for
the maximum set of initial states compatible with a control without distri-
butions and the steady-state gain from v to y1 is equal to that from v to y.
This auxiliary output may be provided by a full or reduced order observer Σo

connected to the input and output of the original plant (see Fig. 2). Σo could
also be used to stabilize the system or give it a more favourable pole place-
ment for optimal (H2 or H∞) rejection of inaccessible disturbances directly
acting on Σ. C1 can be computed as shown in the constructive proof of the
following theorem.











+

_



h

v
y

ym

η

Σ,ΣoΣc

Σm

y1

Fig. 10. Modified feedforward model following.

Theorem 4. Refer to system Σ and assume that it is nonminimum-phase,
with no purely imaginary invariant zeros. A unique matrix C1 exists such
that:
1 - the exact disturbance decoupling problem with state feedback for any in-

put disturbance matrix H such that imH ⊆V∗
1 , where V∗

1 is referred to the
triple (A,B,C1), corresponds to a minimal H2-norm solution for the triple
(A,B,C);
2 - the number of outputs of (A,B,C1) is equal to those of (A,B,C);
3 - the triple (A,B,C1) is minimum-phase;
4 - the triple (A,B,C1) has the same global relative degree as (A,B,C);
5 - the steady-state gain of (A,B,C1) is equal to that of (A,B,C).

Proof. Refer to equation (13). V∗
1 := imV1 is an (A,B)-controlled invariant

that, by construction, satisfies property 1 of the statement. The dimension of
V∗

1 is equal to that of V∗, but V∗
1 is not contained in kerC if and only if Σ

is nonminimum-phase. Let us refer the symbol S∗ to the triple (A,B,C) and
S∗

1 to (A,B,C1). It will be shown now that

V∗
1 ∩S∗ = {0} (16)

From (12) and from the inclusion V̂∗
g ⊆ V̂∗, it follows that
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128 Giovanni Marro

imB ⊆ (imP1)⊥ (17)

Moreover, from the cost formulation of the optimal control problem, it is well
known that V T

1 P1 6= 0 since in our case the cost (the H2 norm) is nonzero,
and consequently

imV1⊆ (imP1)⊥ (18)

From (17) and (18), one obtains im V1 ∩ imB= {0}, hence

V∗
1 ∩S∗

1 = {0} (19)

To prove (16), it still remains to show that S∗
1 =S∗. From the algorithm for

the computation of the minimum input containing conditioned invariant [5],
it follows that

S∗
1 ⊇ S∗ (20)

while from a simple consideration on subspaces dimensions, i.e. dimS∗
1 = dimS∗,

from (20) it follows that S∗
1 =S∗. This completes the proof of (16).

Let C := kerC. To conclude the proof of the theorem, consider the identity

C = V∗ + (S∗ ∩C) (21)

obtained by intersection of V∗ +S∗ =X with C, and set

C1 = V∗
1 + (S∗ ∩C) (22)

Owing to (16) and the dimensions of V∗ and V∗
1 being equal, the subspaces C1

and C have the same dimension. Let C̄1 be the transpose of any basis matrix
of the orthogonal complement of the subspace C1 defined in (22), hence having
C1 as its kernel. The new matrix C1 is defined as

C1 = GḠ−1 C̄1 (23)

where G denotes the steady-state gain of the triple (A,B,C) and Ḡ that of
the triple (A,B, C̄1).

- Property 1 in the statement is satisfied because the maximum (A,B)-
controlled invariant contained in kerC1 = C1 is V∗

1 , since V∗
1 ∩S∗ = {0}.

- Property 2 is satisfied since C and C1 have the same dimension.

- Property 3 is satisfied since the invariant zeros of (A,B,C1) are the internal
eigenvalues of V∗

1 , stable by construction.

- Property 4 is satisfied since both the triples (A,B,C1) and (A,B,C) have
S∗ as the minimum conditioned invariant containing imB and, since both V∗

1

and V∗ have null intersection with S∗, the dimensions of V∗
1 +Si and V∗ +Si

are each other equal for all i.

- Property 5 is due to relation (23). Uniqueness of matrix C1 is due to unique-
ness of all the subspaces involved in the constructive procedure described
above and to relation (23) that sets a unique value for the steady-state gain
of (A,B,C1).
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Multivariable Feedback with Geometric Tools 129

Remark 4. Refer to the block diagram in Fig. 10 and recall Property 1. If the
auxiliary output y1 is obtained through an observer, connected to Σ as shown
in Fig. 2, due to lack of controllability of the observer, the overall system
(Σ,Σo in the figure) is not minimal, but it is input-output equivalent to a n-
th order system with the poles of A+BF as poles and with the same invariant
zeros as Σ1, hence minimum-phase.

Remark 5. It can be proven that the original triple (A,B,C) and the corre-
sponding minimum-phase triple (A,B,C1) have equal H2 norms. However the
proof of this property is beyond the scope and space of this treatise.

6 A worked example

The purpose of this section is to show how the tools of the Geometric Approach
toolbox can be used for the complete synthesis of a multivariable feedback
regulator for a nonminimum-phase controlled system 3.

Suppose that the plant Σ is defined by

A =





−5 1.00 2.00 3.00 4.00

0 −8.95 −6.45 0 0

0 2.15 −0.35 0 0

0 −10.89 −40.94 −16.10 −7.95

0 8.17 28.87 7.07 −0.20




, B =





0 0

1 10

0 0

0 1

1 0




,

C =

[
1 0 0 0 0
0 2 1 5 6

]
, D =

[
0 0
0 0

]

First, we check whether the conditions stated in Problem 1 are satisfied by
the controlled system Σ.

>> V=vstar(A,B,C,D);

>> S=sstar(A,B,C,D);

>> Yc=sums(V,S);

>> Uo=ints(V,S);

>> p=eig(A);

>> z=gazero(A,B,C,D);

>> rho=reldeg(A,B,C,D);

3 The main commands of the toolbox are detailed in Sect. 7. The software is freely
downloadable from the web page:
http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/downloads.htm

To understand the synthesis procedure considered in this section, refer to the help
command of the routines as they are cited herein.
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130 Giovanni Marro

The plant Σ is stable, since pT =
[
−5 −2.5 −10.795 −6.7 −5.505

]
, right-

invertible, being Yc a full rank matrix (hence with imYc =X ), left invert-
ible, being Uo = {0}, nonminimum-phase, since zT =

[
14.7907 −9.7907

]
,

and with relative degree ρ= 2. From the step response shown in Fig. 11 it
appears that Σ is very far from being row-by-row decoupled.

Time (sec.)
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Fig. 11. The step response of the plant Σ.
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Fig. 12. Modified feedback model following.

For this system, we want to design a feedback regulator of the type shown in
Fig. 12, with a partial-order observer Σo (with state dimension nA−nC = 3)
included in the feedback loop, a model Σm SISO-parallel (hence steady-state
row-by row decoupling), and a type one (i.e., with single poles at the origin)
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Fig. 13. The step response of the model Σm.

internal model, to achieve steady-state robustness. Let assume for the two
rows of the model the transfer functions

G1(s) =
1

s2 + 1.2 s+ 1
, G2(s) =

0.25

s2 + 0.6 s+ 0.25

corresponding to the state space realization

Am =





0 −100 0 0
1 −12 0 0
0 0 0 −25
0 0 1 6



 , Bm =





1 0
0 0
0 1
0 0



 ,

Cm =

[
0 100 0 0
0 0 0 25

]
, Dm =

[
0 0
0 0

]

and to the step response shown in Fig. 13. To justify our choice of a pseudo
optimal solution instead of a optimal one, it is interesting to check whether
relation (15) is satisfied in the case under examination. Refer to Fig. 5 and
define system Σ≡ (Ā, B̄, C̄). The check is done through the following Matlab
lines.

>> nA=length(A); nB=size(B,2); mC=size(C,1);

>> nAm=length(Am); nBm=size(Bm,2);

>> Abar=[A zeros(nA,nAm); zeros(nAm,nA) Am];

>> Bbar=[B; zeros(nAm,nB)];
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132 Giovanni Marro

>> Cbar=[C, Cm];

>> Dbar=zeros(mC,nB);

>> Hbar=[zeros(nA,nBm); Bm];

>> V1bar=vstargh2(Abar,Bbar,Cbar,Dbar);

>> VB=sums(V1bar,Bbar);

>> VBH=sums(VB,Hbar);

The routine vstargh2 provides matrix V1 in (13), that is a basis matrix of
V1. Matrix V B, whose image is V1 +B, has less columns than V BH , whose
image is V1 +B+H, hence (15) is not satisfied and exact H2-optimal model
following is not feasible in this case.

Let compute the matrix C1 with the procedure outlined in the proof of The-
orem 4 in Sect. A.

>> V=vstar(A,B,C,D);

>> S=sstar(A,B,C,D);

>> V1=vstargh2(A,B,C,D);

>> Vr=sums(V1,ints(S,ker(C)));

>> C1=ortco(Vr)’;

>> G=-C*inv(A)*B; G1=-C1*inv(A)*B;

>> C1=G*inv(G1)*C1;

>> z1=gazero(A,B,C1,D);

We have zT
1 =

[
−14.7907 −9.7907

]
, hence the new system Σ1 ≡ (A,B,C1, D)

is minimum-phase. We can easily check that it is left and right invertible and
that its relative degree is 2.

We go ahead with the synthesis of a partial-order observer, connected to the
system as shown in Fig. 2. It provides an estimate of the state, that is used to
obtain the new output y1. To design the observer, the following command is
used.

>> [Ao,Bo1,Bo2,Co,Do1,Do2]=redobs(A,B,C,D);

The routine redobs implements a standard reduced-order state observer. In the
output list the matrices B01 and D01 refer to input u, while B02 and D02 refer
to input y. While running, the poles to be assigned for the dynamics of the
observer are asked for. In our design we choose the values (−10, −12, −15).
The following command generates the overall system Σn ≡ (An, Bn, Cn, Dn)
that provides an estimate of the state as output.

>> nA=length(A); nAo=length(Ao);

>> An=[A zeros(nA,nAo); Bo2*C Ao];

>> Bn=[B; Bo1+Bo2*D];

>> Cn=[Do2*C Co];

>> Dn=Do1+Do2*D;

If we want to change the poles of the minimal form of Σn (that are those of
Σ by now), we have to add the commands
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Multivariable Feedback with Geometric Tools 133

>> F=-place(A,B,p);

>> An=An+Bn*F*Cn;

(where p is the vector of the poles to be assigned) that correspond to the
feedback connection shown in Fig. 2. The overall new system for the design of
the compensator Σc is Σt ≡(At, Bt, Ct), with

>> At=An; Bt=Bn; Ct=C1*Cn;

To simplify computations, we can also directly use the minimal realization of
Σt and define

>> At=A-B*F; Bt=B; Ct=C1;
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Fig. 14. The actual step response tracking error.

Now we perform on the model the feedback connection shown in Fig. 9 through

>> Am=Am+Bm*Cm;

and we are ready to obtain the regulator Σc with the final list of commands

>> nAt=length(At); nBt=size(Bt,2);

>> nAm=length(Am); nBm=size(Bm,2);

>> Ahat=[At zeros(nAt,nAm); zeros(nAm,nAt) Am];

>> Bhat=[Bt;zeros(nAm,nBt)];

>> Hhat=[zeros(nAt,nBm);Bm];

>> Chat=[Ct -Cm];

>> [Ac,Bc,Cc,Dc]=hud(Ahat,Bhat,Chat,Hhat);
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The routine hud solves Problem 2, i.e., it checks if the conditions (7)-(9) are
satisfied, and, if so, it computes the measurable signal decoupling compen-
sator by assuming Vm as the resolving controlled invariant. Thus the final
result Σc ≡ (Ac, Bc, Cc, Dc) is obtained. The eigenvalues of Ac are [−14.7907,
−9.7907, −12, −6, 0, 0], hence an eigenvalue at the origin (the internal model)
has been obtained for every feedback loop, while the invariant zeros of Σc are
equal to the poles of Σ, thus reproducing the classical pole-zero cancellation
layout of the SISO case.

Fig. 14 shows the overall tracking error y− ym for the complete system-model
layout (see Fig. 12). From an inspection of the four plots, it is evident that
the proposed H2-pseudo optimal solution guarantees an excellent transient
response with almost perfect row-by-row decoupling.

7 The Matlab toolbox “GA”

The first edition of our book on controlled and conditioned invariants [5]
enclosed a diskette with some Matlab routines for analysis and synthesis of LTI
systems. The algorithms that were used at that time have been improved in
the meanwhile, so a quick review of the corresponding computational processes
seems to be in order.

A The basic operations on subspaces

The subspaces are numerically expressed through orthonomal basis matri-
ces. Operations on subspaces are performed by using standard routines whose
workings are briefly recalled in this section. The overall numerical robust-
ness is held up by the first routine, ima, where the crucial decision on linear
independence of vectors is taken.

• Q=ima(A,[fl]) performs the orthonormalization of a set of vectors given
as colums of the matrix A and returns them as the columns of matrix
Q. The flag fl refers to the possible re-ordering of vectors during the or-
thonormalization process: if it is absent or fl= 1 re-ordering is allowed, if
fl= 0 it is not.

• Q=ortco(A) computes the orthogonal complement of imA as

X=ima([A,eye(na)],0); Q=X(:,nA+1:mA);

• Q=sums(A,B) computes the sum of imA and imB as

Q=ima([A,B]);

• Q=ints(A,B) computes the intersection of imA and imB as

Q=ortco(sums(ortco(A),ortco(B)));

• Q=invt(A,X) computes the subspaceA−1 X , inverse transform of X = imX
with respect to the linear transformation expressed by matrix A. It uses
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Q=ortco(A’*ortco(X));

• Q=ker(A) computes the nullspace of matrix A through

Q = ortco(A’);

B The specific tools of the geometric approach

The following routines miinco and mainco implement exactly the algorithms
that were proposed by Basile and Marro in their first paper on the geometric
approach [3]. These algorithms have been proved adequate to build up a com-
plete toolbox. An alternative computational option is described in [28], but
apparently had no sequel.

• Q=miinco(A,C,X) computes a basis matrix Q of the minimum (A, C)-
conditioned invariant containing X . The subspaces C and X are defined as
C = imC and X = imX . It operates through the sequence of subspaces

S1 = X
Si = X +A (Si−1 ∩ C) i = 2, 3, ...

(24)

with stop condition Si+1 = Si.
• Q=mainco(A,B,X) computes a basis matrix Q of the maximum (A,B)-

controlled invariant contained in X . It utilizes the duality expressed by

Q = ortco(miinco(A’,ortco(B),ortco(X)));

• [V,F]=vstar(A,B,C[,D]) or [V,F]=vstar(sys) provides as V a basis
matrix of V⋆, the maximum output nulling subspace of the LTI system
sys=ss(A,B,C,D) and as F a corresponding friend , i.e., a state feedback
matrix such that (A+BF )V∗⊆V∗.

- Computation of V∗: IfD is absent orD=O, the routine uses V=mainco(A,B,ker(C)),
while, if if D 6=O the computation is referred to the extended system

A1 =

[
A O
C O

]
, B1 =

[
B
D

]
, C1 =

[
O I

]
(25)

and matrix V is derived through

V1=mainco(A1,B1,ker(C1)); V=V1(1:nA,:);

- Computation of F : Recall that for any (A,B)-controlled invariant V = imV
there exist (possibly non-unique) matrices X and U such that 4

AV = V X +B U (26)

Hence X and U can be determines as

4 See [5], Property 4.1.4.
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136 Giovanni Marro

[
X
U

]
=
[
V B

]#
AV (27)

(recall that the symbol # denotes the pseudoinverse). Then compute

F = −U V # (28)

In fact, equation (26) can also be written as

(A−BUV #)V = V X or V #(A+BF )V = X (29)

that proves that V is an (A+BF )-invariant with internal dynamics ex-
pressed by matrixX . If the system is not left invertible, i.e., if V∗ ∩B 6= {0},
the matrices on the left of (27) and (28) are non-unique, In fact, in this case
the internal dynamics of R∗ =V∗ ∩S∗ is completely assignable through a
suitable choice of F 5.

• [S,G]=sstar(A,B,C[,D]) or [S,G]=sstar(sys) provides as S a basis
matrix of S⋆, the maximum input containing subspace of the LTI sys-
tem sys=ss(A,B,C,D), and as G an output injection matrix such that
(A+GC)S∗ ⊆S∗. By duality, the computation is simply done through
the statements

[V,F] = vstar(A’,C’,B’,D’)); S=ortco(V); G=F’;

• [z,X]=gazero(A,B,C[,D]) or [z,X]=gazero(sys) gives as z the column
vector of the invariant zeros and as X the matrix of the invariant zero
structure of the LTI system sys=ss(A,B,C,D)6. Let us recall that the
invariant zeros are the unassignable eigenvalues of V∗. If the considered
system is not left invertible, i.e., if R∗ =V∗ ∩B 6= {0}, there are in V∗ nR
assignable eigenvalues and nV −nR unassignable eigenvalues. Consider
the change of basis defined by transformation T = [T1, T2, T3] with imT1 =
R∗, im[T1 T2] = V∗, then

T−1(A+BF )T =




A′

11 A
′
12 A

′
13

0 A′
22 A

′
23

0 0 A′
33



 , T−1B =




B′

1

O
B′

3





where F denotes any friend of V∗. The invariant zeros are the eigenvalues of
matrix A′

22 and the invariant zero structure is represented by A′
22 itself. It

can be proven that the pair (A′
11, B

′
1) is always reachable and (A′

33, B
′
3) is

reachable or stabilizable if the considered system is so. Another procedure,
more strictly related to the above computational hints, is the following:

a) determine R∗ =V∗ ∩S∗ and denote by R and V the basis matrices
obtained for R∗ and V∗, and by nR, nV their numbers of columns;

5 This can be done by using the routine effesta.
6 To check whether a given controlled invariant V = imV is internally stabilizable,

the command z=gazero(A,B,ortco(V)’) can be used.
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b) use V=ima([R,V],0]) to obtain a suitably ordered basis of V∗;

c) use (27) and denote by X22 the (nV − nR)× (nV − nR) submatrix
extracted from the bottom/right corner of X . The invariant zeros are the
eigenvalues of X22 and the invariant zero structure is represented by X22

itself.

• F=effesta(A,B,V) for any (A,B)-controlled invariant V = imV a state
feedback matrix F is given such that (A+BF )V ⊆V and the eigenval-
ues of (A+BF )|R∗ are assigned in interactive mode. The computational
procedure, similar to that of gazero, is

a) determine R∗ =V∗ ∩S∗ and denote by R and V the basis matrices
obtained for R∗ and V∗, and by nR the number of columns of R;

b) use V=ima([R,V],0]) to obtain a suitably ordered basis of V∗;

c) use (27) and

K = ker

[
X
U

]
(30)

and denote by A1 the nR×nR submatrix extracted from the top/left
corner of the matrix on the left of (27) and by B1 the matrix consisting of
the first nR rows of K.
d) since (A1, B1) is a controllable pair, it is possible to define a matrix F
such that M :=A1 +BF has arbitrary eigenvalues, defined in interactive
mode;
e) replace the nR×nR submatrix at the top/left corner of the matrix on
the left of (27) with M and use (28).

• [V,F]=vstarg(A,B,C,D[,-1) or [V,F]=vstarg(sys) computes a basis
matrix V of the maximum output nulling controlled invariant subspace
of the LTI system sys=ss(A,B,C,D[,-1]). The optional fifth argument
“-1” is to refer to a discrete-time system. The computational procedure is
strongly related to that of gazero: When matrix X22 has been determined
at step d of the algorithm, use the utility subsplit 7 to derive the subspace
Ws of the stable modes of X22. Through a suitable change of basis relating
to V (the basis matrix of V∗), make Ws to be the image of the first nWs

columns of X22 and assume as the first output matrix the first nR+nWs

columns of the new V . The friend F is computed like in vstar.

• [V,F,X]=vstargh2(A,B,C,D]) or [V,F,X]=vstargh2(sys) computes the
maximum internally stabilizable controlled invariant minimizing the out-
put ℓ2 norm of continuous-time LTI system sys=ss(A,B,C,D). Matrix F
is a friend of V and matrix X is used to compute the cost as shown be-
low. The algorithm is based on a generalization of the geometric approach

7 The routine [As,Au]=subsplit(A[,-1]) computes basis matrices As, Au of the
subspaces of stable and unstable modes of a real square matrix A by using the
Schur form.
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138 Giovanni Marro

applied to the Hamiltonian system described in Sect. 4. The quadruple
(A,B,C,D) is assumed to be left invertible and stabilizable. Let us refer
to the the Hamiltonian system

˙̂x(t) = Â x̂(t) + B̂ u(t)

0 = Ĉ x̂(t) + D̂ u(t)
x̂ =

[
x
p

]
(31)

with

Â =

[
A 0

−CT C −AT

]
, B̂ =

[
B

−CTD

]

Ĉ =
[
DTC BT

]
, D̂ = DTD.

(32)

that extends (11,12) for quadruples. By using vstarg, compute matrices V̂ ,

F̂ and partition them as in (13), i.e., V̂ T =
[
V1 P1

]
and F̂ =

[
F1 F2

]
. Let

us assume V =V1. It is a basis matrix of the subspace of the admissible tra-
jectories of system (31) relative to x, that are expressible as x(t) =V α(t),
with α(t) satisfying the differential equation

α̇(t) = V # (A+BF )V α(t) , α(0) = α0 (33)

where F is defined as F = (F1 +F2 P1 V
#
1 ), while X =V T

1 P1 is the matrix
of the cost, that is computable as c(0,∞) =αT

0 X α0.

• r=reldeg(A,B,C[,D]) or r=reldeg(sys) provides the relative degree of
the LTI system sys=ss(A,B,C,D). Let us momentarily assume that D=O
and that the system is right-invertible, i.e., V∗ +S∗ =X , where X denotes
the whole space. In this case the relative degree is the minimum value of
i in the sequence (24) such that V∗ +Si =X . If the system is not right-
invertible but left invertible, compute the relative degree referring to the
dual system (AT , CT , BT , DT ). If the system is neither right nor left in-
vertible, use squaring down provided by the routine extendf . If D 6=O, the
relative degree is computed for the auxiliary system (25) and lowered by
one.

• r=rhomin(A,B,C[,D]) or r=rhomin(sys) provides the minimum delay of
the LTI system sys=ss(A,B,C,D). When D=O the minimum delay is
computed as the minimum values of i such that C Ai B 6=O. When D 6=O
the minimum delay is computed referring to the auxiliary system (25) and
lowered by one.

• [Am,Bm,Cm,Dm,Fs,Us]=extendf(A,B,C,D) given an LTI system described
by the quadruple (A,B,C,D) that is non-left invertible (i.e., typically
with more inputs than outputs) computes Fs and Us such that the new
system sysm=ss(Am,Bm,Cm,Dm) is left invertible and, besides the zeros
of (A,B,C,D) has a number of new zeros equal to dimR∗, defined in
interactive mode.

The new system is defined by Am =A+B Fs; Bm =B Us ; Cm =C +DFs ;
Dm =DUs. When a state feedback matrix Fm referred to (Am, Bm, Cm, Dm)

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



Multivariable Feedback with Geometric Tools 139

 










+
+
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Fig. 15. Squaring down of a non-left invertible system.

has been derived, the solution referred to (A,B,C,D) is recovered by us-
ing F=Us*Fm+Fs. This procedure is called squaring down and is used to
deal with non-left invertible systems when sythesizing controllers with
computational processes that require left invertibility 8. If D=O, Fs

is computed as Fs=effesta(A,B,Rv), where Rv denotes a basis ma-
trix of R∗ =V∗ ∩S∗ 9, while Bm is defined as Bm =B U , where U is
a basis matrix of (B−1 V∗)⊥, computable with the Matlab command
Bm=B*ortco(invt(B,vstar(A,B,C))). If D 6=O, the above procedure is
still valid if used for the triple (A1, B1, C1) defined in (25).

• [Ac,Bc,Cc,Dc]=hud(A,B,C,H[,D,G]) computes a feedforward decoupling
compensator solving Problem 2. The first four matrices in the call list
are those appearing in equations (5), while D and G refer to possible
feedthroughs from u and h to y. First, assume that these feedthrough
terms are absent. Assume for the system is left invertible, since, if not, a
prelimunary squaring down can be used. First, condition (7) in Corollary
(2) is checked and, if it is satisfied, a basis matrix V of the (A,B)-controlled
invariant Vm defined in (9) is computed. Then use (27) and set Ac =X ,
Cc = −U . Owing to the left-invertibility assumption, the projections of H
on Vm and imB are unique, so that matrices Bc and Dc can be derived as

[
Bc

−Dc

]
=
[
V B

]#
H

If the matrices D and G are present and nonzero, substitute the quadruple
(A,B,C,H) with (A1, B1, C1, H1) defined by

A1 =

[
A O
C O

]
B1 =

[
B
D

]
C1 =

[
O I

]
H1 =

[
H
G

]
(34)

8 Typical examples are the Matlab routines care and dare to solve the infinite-
horizon LQR problem for continuous and discrete-time systems, respectively.

9 Recall that R∗ 6= {0} if and only if V∗ ∩ imB 6= {0} (see [5], Sect. 4.1.2).
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140 Giovanni Marro

8 Conclusions

This short monograph proposed a new geometric solution to the feedforward
and feedback model following problems. The design strategy is based on the
replacement of the output matrix of the controlled system with an equally
dimensioned matrix ensuring H2-optimality in the standard disturbance de-
coupling problem, while maintaining the same global relative degree, tha same
steady-state gain and the same H2 norm as the original system. The new
matrix is derived by applying the standard geometric approach tools to the
Hamiltonian system instead of the original plant and using some refinements
to adapt the solution of the H2-optimal decoupling problem to the require-
ments of the model following.
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On the optimality of the Karhunen-Loève
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1 Introduction

This paper is dedicated to the memory of Toni Lepschy, man of many interests,
founder of the control group in Padova and above all, an exquisite gentleman.
One of his recurrent research interests during his academic life has been model
reduction. From the very early papers on Padè approximation to the more
recent work, say on L2 approximation by rational functions, one can see a
long thread of contributions to this topic which spans his whole academic
career.

In an attempt to adhere to the spirit of this work, this article will also be
about a class of model reduction problems. It will actually survey a basic and
well-known technique of signal approximation which goes under the names
of Principal Component Analysis (PCA) (discrete time) or Karhunen-Loève
expansion (continuous time). These techniques are important and widely used
in many applications ranging from data compression, source coding, filtering,
data classification and pattern recognition.

Specifically, the problem addressed in this paper is the approximation of
random signals by linear combinations of certain deterministic functions of
time which we call the modes of the signal. We shall first discuss an exact
representation of an arbitrary random signal in terms deterministic functions
of time, which has certain natural properties. The functions of time appearing
in this expansion are the modes of the signal. In general an exact representa-
tion requires “too many” modes (infinitely many in continuous time) and the
key question is the optimal approximation of the signal in terms of a small
number of modes.

This is the signal model reduction problem we shall discuss. A key question,
which to our knowledge is scarcely addressed in the literature, is to make sense
of this approximation problem in a formal way. Which criterion are we seeking
to optimize by this truncation or in what sense is this approximation optimal
and what are the error bounds. We shall provide a simple and natural answer
to these questions.
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144 Optimality of the K-L approximation

2 Discrete-time: Principal Component Analysis

We shall initially discuss the discrete time case since it can basically be treated
by linear algebra and elementary Hilbert space techniques.

Assume {y(1), . . . ,y(t), . . . ,y(T )}, is a random signal defined on a finite
time interval [1, T ]; in other words a finite sequence of random variables which
for convenience we shall write as a T -dimensional (random) column vector
denoted y. Since subtracting the means does not change the construction we
shall describe below, without loss of generality we shall assume that y has
zero mean. Denote by

Σ = Eyy⊤

the covariance matrix of y, which will be assumed to be positive definite and
given to us. Denote also by H(y) the (finite dimensional) Hilbert space linearly
generated by the scalar components of y

H(y) = {
∑

t

αty(t) ; αt ∈ R, t = 1, . . . , T} := Span {y(t) ; t = 1, . . . , T} (1)

with inner product
〈ξ, η〉 := Eξη . (2)

We shall look for a linear expansion of y in terms of a family of determinis-
tic time functions (also written as column vectors), uk = [uk(1) . . . uk(T )]⊤, k =
1, 2, . . .. These are the candidate modes of the signal. Naturally the coefficients
of this expansion will have to be random.

Let the random variables {xk; k = 1, . . . , T} form an orthonormal basis of
H(y). We shall consider expansions of the form

y =

T∑

k=1

αk xkuk, uk ∈ RT (3)

where αk are real numbers. Evidently the candidate modes uk = [uk(1) . . .
uk(T )]⊤ must obey the condition

αk uk := E{yxk}, k = 1, . . . , T.

The expansion (3) is called biorthogonal if the {xk; k = 1, . . . , T} form an
orthonormal basis of H(y) and the modes uk are orthonormal with respect to
the Euclidean inner product in RT ; i.e.

u⊤k uj = δk,j k, j = 1, 2, . . . , T

δk,j being the Kronecker delta.

Proposition 1. The random vector y admits a biorthogonal expansion of the
form (3) if and only if the modes {uk} form a system of normalized eigenvec-
tors for the covariance matrix, Σ, of y.
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Optimality of the K-L approximation 145

In this case, letting λk > 0 denote the eigenvalue of Σ corresponding to
the eigenvector uk, it holds that αk =

√
λk and the random variables xk are

given by the formula

xk =
1√
λk

u⊤k y =
1√
λk

T∑

t=1

uk(t) y(t), k = 1, . . . , T. (4)

Proof. Sufficiency: Assume the uk’s are chosen to be the orthonormal eigen-
vectors of Σ. From

Σuk = λkuk, k = 1, . . . , T

one easily sees that the variables xk defined in (4) are orthonormal with
respect to the inner product (2). In fact,

Exk xj =
1√
λkλj

u′kΣuj = δk,j

and since by construction they belong to H(y), they must form an or-
thonormal basis for this space; i.e. H(y) = H(x) where, in vector notation,
x := [x1, . . . ,xT ]′. Hence y coincides with its orthogonal projection (wide-
sense conditional expectation) onto H(x),

y = E [y | x] =
T∑

k=1

E{yxk}xk .

Since E{yxk} = 1√
λk

E{yy′} uk =
√
λk uk we find a representation of the

form (3) in which αk =
√
λk.

Necessity: Assume y admits a biorthogonal expansion (3). From this the
following expression for the covariance matrix is found

Σ =
∑T

k,j=1 αkαj E[xkxj ]uku
⊤
j

=
∑T

k=1 λkuk E[xk]2u⊤k
:= U diag {λ1, . . . , λT }U ′

where U := [u1, . . . , uT ] is an orthogonal matrix (i.e. a matrix with orthonor-
mal columns). It follows that the columns of U must be the normalized eigen-
vectors of Σ. 2

The vectors uk are usually called the principal components of the sig-
nal,although proper modes would perhaps be a more descriptive denomina-
tion.

The eigenvalues of Σ will be listed in decreasing order; i.e.

λ1 ≥ . . . ≥ λT > 0
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146 Optimality of the K-L approximation

accordingly, this ordering is transmitted to the random coefficients xk and to
the corresponding modes uk. With this convention, taking αk = +

√
λk, the

biorthogonal expansion (3) is unique. It is commonly called the Principal Com-
ponents Analysis (PCA) of the signal y. It is actually just the discrete-time
version of the Karhunen-Loève expansion which will be discussed section 2.

Model approximation

It often happens that the “statistical energy” of the signal

E ‖y‖2 =

T∑

k=1

λkE{xk}2 =

T∑

k=1

λk

is concentrated on a few proper modes. In other words it often happens that
the eigenvalues of index larger than some n < T are (relatively) small, for
example such that

λ1 + . . .+ λn ≫ λn+1 + . . .+ λT

and their contribution to the expansion (3) can be therefore be neglected. The
resulting approximate expansion,

y ≃ ŷn :=

n∑

k=1

√
λk xkuk =

n∑

k=1

(u⊤k y)uk (5)

is universally used in data compression, source coding, data storage and espe-
cially in pattern recognition. In practice the covariance matrix Σ is not known
but can usually be estimated from experimental data. For example from N
independent measurements of the same signal, say {y1, . . . , yN}, one can form
the sample covariance estimate

Σ̂ =
1

N

N∑

k=1

yky
⊤
k

and use this estimate in place of the true Σ.
Note that the approximation error vector ỹn := y − ŷn is orthogonal to

ŷn, so that
Σ = Var y = Var ŷn + Var ỹn := Σ̂n + Σ̃n

and the variance matrix of the approximant ŷn can be expresses as

Σ̂n =
n∑

k=1

λk ukE{x2
k} u′k =

n∑

k=1

λk uk u
′
k.

A very well-known property of the approximation is recalled in the following
proposition.
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Optimality of the K-L approximation 147

Proposition 2. The variance matrix Σ̂n, of ŷn, is the best symmetric positive
semidefinite approximant of rank n, (either in the ℓ2 or Frobenius norm) of
the original variance matrix Σ.

Proof. The statement follows from the well-known optimal approximation
property of the truncated Singular Value Decomposition of a matrix [4]. One
just needs to apply the result to a square root (say the Cholesky factor) of Σ.
2

It is normally claimed and often given for granted in the literature that
the approximation procedure described above does provide an optimal ap-
proximate representation of the signal. However besides the optimality of the
covariance approximation described above, to our best knowledge there is no
satisfactory discussion of what this optimality should be in terms of random
signal approximation nor explicit proof that the truncation (5) is actually
optimal with respect to a criterion of this kind.

Below we shall try to understand what kind of approximation criterion
should be natural and reasonable to use in this context. To begin with, let us
observe that the second member of (5) can be seen as a linear transformation
acting on the random vector y, represented by a certain deterministic matrix
say M , which is symmetric, positive semidefinite and of rank n.

Any M of this kind can be written in factorized form M = WW⊤ where
W is T × n and of full column rank. That M has rank n (≤ T ), implies that
the approximation ŷ := My, generates an n-dimensional subspace of H(y).
In this sense we can say that (5) provides an approximation ŷ := My, of rank
n, of y.

Motivated from the above, let us consider a problem of optimal rank n
approximation of the random vector y, having the following natural formula-
tion.

Problem 1. Find a matrix M ∈ RT×T of rank n, solving the following mini-
mum problem

min
rank ( M )= n

E{‖y −M y‖2} (6)

Note that an equivalent geometric formulation is to look for an optimal n-
dimensional subspace of H(y) onto which y should be projected in order to
minimize the approximation error variance. Let us stress that this is quite
different from the usual least squares approximation problem which amounts
to projecting onto a given subspace.

As for (5), minimizing the square distance in (6) requires that the approx-
imation My should be uncorrelated with the approximation error; namely

y −My ⊥ My (7)

which is equivalent to
MΣ −MΣM⊤ = 0 .
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148 Optimality of the K-L approximation

Introducing a square root Σ1/2 of Σ and defining M̂ := Σ−1/2MΣ1/2, this
condition is seen to be equivalent to

M̂ = M̂ M̂⊤

which just says that M̂ must be symmetric and idempotent (i.e. M̂ = M̂2),
in other words an orthogonal projection from RT onto some n-dimensional
subspace. Hence M must have the following structure

M = Σ1/2Π Σ−1/2, Π = Π2 Π = Π⊤ (8)

where Σ1/2 is any square root of Σ and Π is an orthogonal projection matrix
of rank n.

Theorem 1. The solutions of the signal approximation problem (6) are of the
form

M = W W⊤, W = UnQn

where Un is a T × n matrix whose columns are the first n normalized eigen-
vectors of Σ, ordered according to the descending magnitude ordering of the
corresponding eigenvalues and Qn is an arbitrary n× n orthogonal matrix.

Proof. Let Λ := diag {λ1, . . . , λT } and Σ = UΛU⊤ the spectral decomposi-
tion of Σ in which U is an orthogonal matrix of eigenvectors. We can pick as
a square rot of Σ the matrix Σ1/2 := UΛ1/2.

Now, no matter how Σ1/2 is chosen, the random vector e := Σ−1/2 y has
orthonormal components. Hence using (8) the cost function of our minimum
problem can be rewritten as

E{‖y −M y‖2} = E{‖Σ1/2e−Σ1/2Π Σ−1/2y‖2}
= E{‖Σ1/2(e −Π e )‖2} = E{‖Λ1/2(e−Π e )‖2}
= E (e −Π e )⊤Λ (e−Π e )
= Tr

[
ΛE(e−Π e )(e−Π e )⊤

]

where Tr A :=
∑
akk is the trace of A. Our minimum problem can therefore

be rewritten as
min

rank ( Π ) = n
Tr {ΛΠ⊥}

where Π⊥ := I −Π is the orthogonal projection onto the orthogonal comple-
ment of the subspace Im Π .

Since the eigenvalues are ordered in decreasing order; i.e. {λ1 ≥ . . . ≥ λT },
one sees that the minimum of this function of Π is reached when Π projects
onto the subspace spanned by the first n coordinate axes. In other words,
Πoptimal = diag {In, 0} the minimum being λn+1 + . . .+λT . It is then evident
that

M = UΛ1/2ΠoptimalΛ
−1/2U⊤ = UnU

⊤
n .

Naturally, multiplying Un by any orthogonal n × n matrix does not change
the result. 2
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Optimality of the K-L approximation 149

The theorem may possibly be a novel contribution of this paper; it confirms
in particular that the truncated expansion (5) is optimal in the sense that
it provides the best M and the best approximation subspace for the crite-
rion (6). This characterization can be exploited when dealing with subspace
approximation problems; see e.g. [5].

We should finally remark that, although the paper [3] comes very close, in
mathematical terms, to our problem formulation above, its proof of optimality
rests on rather deep results of linear algebra which do not seem to generalize
so easily to the continuous time case. Our approach is instead completely
elementary and the generalization is straightforward.

3 Continuous time: the Karhunen-Loève expansion

The Karuhnen-Loève expansion is the analog of PCA for continuous time
signals. Although from a conceptual point of view there are no novelties, more
sophisticated mathematics is needed; in particular the spectral decomposition
of the covariance matrix Σ must be replaced by an eigenfunction expansion
of a certain integral operator.

Let us consider a continuous time random signal y := {y(t); t ∈ T }, the
variabile t now ranging on some interval of the real line which we denote T .
As before we assume zero mean (w.l.o.g.). The covariance function

R(t, s) := E {y(t)y(s)} (9)

is assumed to be continuous in both arguments. This condition is equivalent
to mean square continuity of the process. An essential technical assumption
is that ∫

T

∫

T

R(t, s)2 dtds < ∞ (10)

Clearly, when T is a finite interval this condition is automatically satisfied.
Let us now consider the inner product space space C2[T ] of continuous (de-
terministic) signals endowed with the inner product

〈f, g〉 :=

∫

T

f(t) g(t) dt

This space is not complete (i.e. Hilbert) in general. It is immediate to check
that, in force of condition (10), the linear operator ΣR defined by

[ΣR f ](t) :=

∫

T

R(t, s) f(s) ds (11)

maps C2[T ] into itself (inn fact ΣR is a compact operator in force of condition
(10) . The eigenvalues and the corresponding eigenfunctions of an integral
operator of this kind are pairs λ, ϕ with 0 < ‖ϕ‖L2[T ] <∞, which satisfy
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150 Optimality of the K-L approximation

[ΣR ϕ](t) =

∫

T

R(t, s)ϕ(s) ds = λϕ(t) t ∈ T (12)

Although eigenvalues may in general not exist at all, it is well-known that un-
der the compactness condition (10), the operator ΣR does admit eigenvalues.
In fact it behaves virtually like a finite dimensional operator described by a
symmetric positive definite matrix. The following is the central result of the
theory; see e.g. [1, 2] for the complete story.

Theorem 2 (Mercèr). Under the stated assumptions, the following holds:

1. The eigenvalue problem (12) admits solutions and all eigenvalues are real.
2. There is a maximal eigenvalue λ0 given by the formula

λ0 = max
‖ϕ‖

L2[T ]=1
〈ΣRϕ, ϕ〉 = max

‖ϕ‖
L2[T ]=1

∫

T

∫

T

R(t, s)ϕ(t)ϕ(s) dtds (13)

The corresponding eigenfunction, ϕ0(t), is a continuous function and be-
longs to C2[T ].

3. The function R1(t, s) := R(t, s)−λ0ϕ0(t)ϕ0(s) is still a covariance func-
tion (of positive type) satisfying the compactness condition (10). Hence
the eigenvalue problem

[ΣR1 ϕ](t) :=

∫

T

R1(t, s)ϕ(s) ds = λϕ(t) (14)

still has a maximal eigenvalue, λ1, given by

λ1 = max
‖ϕ‖

L2[T ]=1
〈ΣR1ϕ, ϕ〉 = max

‖ϕ‖
L2[T ]=1

∫

T

∫

T

R1(t, s)ϕ(t)ϕ(s) dtds

(15)
and λ1 ≤ λ0.

4. The procedure can be iterated. The eigenvalues of the problem (12) form
a monotone nonincreasing sequence of positive numbers (not necessar-
ily distinct), whose only accumulation point can be 0. The corresponding
eigenfunctions are all continuous an belong to C2[T ]; they can be made
orthonormal so that

∫

T

ϕk(t)ϕj(t) dt = δk,j .

5. The covariance function (9) admits the following expansion

R(t, s) =

∞∑

k=0

λk ϕk(t)ϕk(s), t, s ∈ T × T (16)

the series being pointwise uniformly convergent on T × T .
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Optimality of the K-L approximation 151

By truncating the expansion (16) to the first n+ 1 terms, one can obtain
an approximation of rank n+ 1 of the covariance function R(t, s),

R(t, s) ≃ Rn(t, s) :=

n∑

k=0

λk ϕk(t)ϕk(s), (17)

It is possible to show that this approximation is the best possible in a variety
of ways. For example, the linear operator ΣRn

defined by

[ΣRn
f ](t) :=

∫

T

Rn(t, s) f(s) ds

is the best approximant of rank n + 1 of ΣR, in the sense that it solves the
constrained optimum problem

min
rank ( Σ )= n+1

‖ΣR − Σ‖ (18)

the minimum being exactly λn+1, the first neglected eigenvalue. Here the norm
is the operator norm (defined e.g. in [1])

The following is the continuous time analog of Proposition 1

Proposition 3. If the covariance function of the random process y is a con-
tinuous function saisfying (10), then y admits the biorthogonal expansion

y(t) =
+∞∑

k=0

√
λk ϕk(t) xk (19)

where λk; k = 0, 1, . . . are the eigenvalues of the operator ΣR, ordered in
decreasing magnitude, ϕk; k = 0, 1, . . . the corresponding normalized eigen-
functions and the random variables xk; k = 0, 1, . . . are defined by

xk =
1√
λk

∫

T

ϕk(t) y(t) dt (20)

These random variables form an orthonormal basis for the Hilbert space H(y),
generated by the process y. The expansion converges in quadratic mean, uni-
formly in t ∈ T .

The above is the celebrated Karhunen-Loève expansion of the process y.
In analogy to the discrete time case, the expansion (19) is normally truncated
to a finite number of terms, leading to the approximate description

yn(t) =

n∑

k=0

√
λk ϕk(t) xk (21)

in terms of the first n + 1 modes. The quality of the approximation can be
measured in terms of statistical energy content. Since
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152 Optimality of the K-L approximation

E

∫

T

y(t)2 dt =

∫

T

E y(t)2 dt =
+∞∑

k=0

λk

the energy of yn is just given by the sum above truncated to the first n + 1
terms. One sees that the energy of the approximation error y − yn decreases
with n at the same rate as the residual sum of eigenvalues of the operator ΣR.
In relative terms the energy of the error can be expresed as the ratio

∑+∞
k=n+1 λk
∑+∞

k=0 λk

= 1 −
∑n

k=0 λk∑+∞
k=0 λk

.

In fact, one can show, in perfect analogy to Theorem 1, that the truncated
expansion (21) provides the best approximant of rank n+ 1 of y in the sense
that it minimizes the norm

‖y − ŷ‖2 :=

∫

T

E |y(t) − ŷ(t)|2 dt

where ŷ is a m.s. continuous process with H(ŷ) ⊂ H(y) a subspace of dimen-
sion n+ 1.

Note that in general the expansion in sinusoidal modes provided by a
pathwise Fourier analysis of the signal has worse approximation properties
than the expansion (21).

K-L expansion of stationary processes

When y is a stationary process one has R(t, s) = R(t − s) and it is easy to
check that the condition (10) can hold only when T is a bounded interval.
If the interval T is unbounded, say T = [0, +∞), the process has no K-L
expansion.

On a finite interval, say T = [−a, a], the covariance function can be ex-
panded in Fourier series

Σ(τ) =

+∞∑

k=0

σk cos
kπτ

a

and substituting this expression in the integral equation (12) and taking into
account the orthogonality of the cosine functions, one readily sees that the
eigenvalues of the operator ΣR are simply the Fourier coefficients of R; i.e.
λk = σk, while the normalized eigenfunctions are

ϕk(t) =
1√
a

cos
kπτ

a

Hence the random variables xk are just the (random) Fourier coefficients
of the signal y. In this case the K-L expansion coincides with the Fourier
representation.
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On the reachability properties of
continuous-time positive switched systems

Paolo Santesso and Maria Elena Valcher

Dipartimento di Ingegneria dell’Informazione, Università di Padova, via Gradenigo
6/B, 35131 Padova, Italy
santesso@dei.unipd.it, meme@dei.unipd.it

È difficile cercare di ricordare Toni e quello che ha rappresentato per

me e per tutti noi, qui al DEI di Padova, senza correre il rischio di

essere prolissi, forse un po’ retorici e, cosa che più temo, poco efficaci.

Vorrei ricordare di Toni una cosa sola, che mi ha fatto osservare Gi-

anni Marchesini quando ormai Toni non c’era più, e che mi stupisco di

non aver notato da sola: la porta di Toni era sempre aperta. E non c’è

stata una sola volta in cui io mi sia presentata alla sua soglia e l’abbia

trovata chiusa o lui mi abbia chiesto di tornare più tardi. Chiunque

giungesse alla sua porta, con una richiesta, una storia da raccontare,

una curiosità da soddisfare, un consiglio da chiedere, veniva invitato

ad entrare, ad accomodarsi, ed aveva la sua attenzione.

Vedere quella porta chiusa per tanto tempo è stato il modo in cui ho

preso coscienza, giorno dopo giorno, del gran vuoto che aveva lasciato.

M.E.V.

1 Introduction

Modeling of physical phenomena typically comes as the result of a pondered
balance among different, and often conflicting, needs. The first natural goal
one pursues, when describing a physical system, is accuracy, which is gener-
ally ensured by resorting to computationally demanding solutions. As a con-
sequence, this requirement is often weakened in order to achieve feasible solu-
tions, which are more suitable to real-time implementation. Under this point
of view, the case often occurs that a complex nonlinear model, which provides
a good description of the real system dynamics, can be efficiently replaced by
a family of simpler and possibly linear models, each of them appropriate for
describing the system evolution under specific working conditions.

This simple fact stimulated, in the last ten-fifteen years, a long stream of
research concerned with the analysis and design of “switched systems”, by
this meaning systems whose describing equations change, according to some
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156 Paolo Santesso and Maria Elena Valcher

switching law, within a (possibly infinite) family of mathematical models. In
particular, switched linear systems consist of a family of (linear) subsystems
and a switching law, specifying when and how the switching among the various
subsystems takes place. Research efforts in this area were first oriented to the
investigation of stability and stabilizability issues [5, 6, 15], and it was only a
few years later that structural properties, like reachability, controllability and
observability, were initially addressed [4, 13, 14, 16, 17].

On the other hand, the positivity requirement is often introduced in the
system models whenever the physical nature of the describing variables con-
strains them to take only positive (or at least nonnegative) values. Positive
linear systems have received considerable attention, as they naturally arise in
various fields such as bioengineering (compartmental models), economic mod-
elling, behavioral science, and stochastic processes (Markov chains), where the
state variables represent quantities, like pressures, population levels, concen-
trations, etc., that have no meaning unless nonnegative [3].

In this perspective, switched positive systems are mathematical models
which keep into account two different needs: the need for a system model
which is obtained as a family of simple subsystems, each of them accurate
enough to capture the system laws under specific operating conditions, and
the need to introduce the nonnegativity constraint the physical variables are
subject to. This is the case when trying to describe certain physiological and
pharmacokinetic processes. For instance, the insulin-sugar metabolism is cap-
tured by two different compartmental models: one valid in steady-state and
the other (more complex) describing the evolution under perturbed conditions,
following an oral assumption or an intravenous injection.

Of course, the need for this class of systems in specific research contexts
has stimulated an interest in theoretical issues related to them. Specifically,
structural properties of continuous-time positive switched systems have been
recently investigated in [8, 9]. While controllability analysis is quite immedi-
ate, the study of reachability has required a certain number of preliminary
steps. In particular, necessary conditions for reachability have been investi-
gated in [8] (monomial reachability) and in [9] (pattern reachability), while
detailed results regarding the dominant modes of the exponential matrix of a
Metzler matrix have been presented in [10]. As it will be clear from this paper,
they represent a necessary first step toward the complete problem solution.

The aim of this contribution is to define reachability properties for contin-
uous-time positive switched systems, and to provide some characterizations
of these properties. Monomial reachability is investigated in section 3, while
pattern reachability is addressed in section 4. Some necessary and/or sufficient
conditions for reachability are derived in section 5, while in section 6, by
making use of the asymptotic exponential cone of a Metzler matrix, further
sufficient conditions for reachability, rather easy to check, are provided.

Before proceeding, we introduce some notation. For every k ∈ N, we set
〈k〉 := {1, 2, . . . , k}. In the sequel, the (i, j)th entry of a matrix A is denoted
by [A]i,j . If A is block partitioned, we denote its (i, j)th block by block(i,j)[A].
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Reachability properties of continuous-time positive switched systems 157

Given a matrix A ∈ Rq×r , by the nonzero pattern ofA we mean the set of index
pairs corresponding to its nonzero entries, namely ZP(A) := {(i, j) : [A]i,j 6=
0}. Conversely, its zero pattern (ZP(A)) is the set of indices corresponding to
its zero entries. The adaptation to the vector case is straightforward.

The symbol R+ denotes the semiring of nonnegative real numbers. A ma-
trix A+ with entries in R+ is a nonnegative matrix (A+ ≥ 0); if A+ ≥ 0 and
at least one entry is positive, A+ is a positive matrix (A+ > 0), while if all
its entries are positive it is a strictly positive matrix (A+ ≫ 0). The same no-
tation is adopted for nonnegative, positive and strictly positive vectors. The
spectral radius ρ(A+) of a nonnegative matrix A+ is the modulus of its largest
eigenvalue. The Perron-Frobenius Theorem [1, 2, 7] ensures that ρ(A+) is al-
ways an eigenvalue of A+, corresponding to a positive eigenvector. We let ei

denote the ith vector of the canonical basis in Rn (where n is always clear
from the context), whose entries are all zero except for the ith one which is
unitary. If S ⊆ 〈n〉, we let eS denote the vector

∑
i∈S ei.

A Metzler matrix is a real square matrix, whose off-diagonal entries are
nonnegative. If A is an n× n Metzler matrix, then there exist a nonnegative
matrix A+ ∈ Rn×n

+ and a nonnegative number α such that A = A+ − αIn.
As a consequence, the spectrum of A, σ(A), is obtained from the spectrum of
A+ by simple translation. This ensures, in particular, that [12]:
1) λmax(A) = ρ(A+)−α ∈ σ(A) is a real dominant eigenvalue, by this meaning
that λmax(A) > Re(λ), ∀ λ ∈ σ(A), λ 6= λmax(A);
2) there exists a positive eigenvector v1 corresponding to λmax(A).

To every n×n Metzler matrix A we associate [2, 11] a directed graph G(A)
of order n, with vertices indexed by 1, 2, . . . , n. There is an arc (j, i) from j to i
if and only if [A]ij 6= 0. We say that vertex i is accessible from j if there exists a
path (i.e., a sequence of adjacent arcs (j, i1), (i1, i2), . . . , (ik−1, i)) in G(A) from
j to i (equivalently, ∃ k ∈ N such that [Ak]ij 6= 0). Two distinct vertices i and
j are said to communicate if each of them is accessible from the other. Each
vertex is assumed to communicate with itself. The concept of communicating
vertices allows to partition the set of vertices 〈n〉 into communicating classes,
say C1, C2, . . . , Cℓ. The reduced graph R(A) [11] associated with A (with G(A))
is the (acyclic) graph having the classes C1, C2, . . . , Cℓ as vertices. There is an
arc (j, i) from Cj to Ci if and only if block(i,j)[A] 6= 0. With any class Ci we
associate two index sets:

A(Ci) := {j : the class Cj has access to the class Ci}
D(Ci) := {j : the class Cj is accessible from the class Ci}.

Each class Ci is assumed to have access to itself. Any (acyclic) path (i1, i2), (i2,
i3), . . . , (ik−1, ik) in R(A) identifies a chain of classes (Ci1 , Ci2 , . . . , Cik

), having
Ci1 as initial class and Cik

as final class. An n×n Metzler matrix A is reducible
if there exists a permutation matrix P such that

PTAP =

[
A11 A12

0 A22

]
,
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158 Paolo Santesso and Maria Elena Valcher

where A11 and A22 are square (nonvacuous) matrices, otherwise it is irre-
ducible. It follows that 1× 1 matrices are always irreducible. In general, given
a square Metzler matrix A, a permutation matrix P can be found such that

PTAP =





A11 A12 . . . A1ℓ

A22 . . . A2ℓ

. . .
...
Aℓℓ




, (1)

where each Aii is irreducible. (1) is usually known as Frobenius normal form
of A [7]. Clearly, the directed graphs G(A) and G(PTAP ) are isomorphic
and the irreducible matrices A11, A22, . . . , Aℓℓ correspond to the commu-
nicating classes C1, C2, . . . , Cℓ of G(PTAP ) (coinciding with those of G(A),
after a suitable relabelling). When dealing with the graph of a matrix in
Frobenius normal form (1), for every i ∈ 〈ℓ〉, A(Ci) ⊆ {i, i + 1, . . . , ℓ}, while
D(Ci) ⊆ {1, 2, . . . , i} = 〈i〉, so that A(Ci) ∩ D(Ci) = {i}. On the other hand,
if i > j then A(Ci) ∩ D(Cj) = ∅, while if i < j then A(Ci) ∩ D(Cj) 6= ∅ ⇔
i ∈ D(Cj) ⇔ j ∈ A(Ci). If A is irreducible (G(A) has a single communicating
class), then λmax(A) is a simple eigenvalue and the corresponding nonnegative
eigenvector v1 is strictly positive.

Basic definitions and results about cones may be found, for instance, in
[1]. We recall here only those facts that will be used within this paper. A set
K ⊂ Rn is said to be a cone if αK ⊂ K for all α ≥ 0; a cone is convex if it
contains, with any two points, the line segment between them. A convex cone
K is solid if the interior of K is nonempty, and it is pointed if K∩{−K} = {0}.
A closed, pointed, solid convex cone is called a proper cone. A cone K is
said to be polyhedral if it can be expressed as the set of nonnegative linear
combinations of a finite set of generating vectors. This amounts to saying that
a positive integer k and an n×k matrix C can be found, such that K coincides
with the set of nonnegative combinations of the columns of C. In this case,
we adopt the notation K := Cone(C). A proper polyhedral cone K in Rn is
said to be simplicial if it admits n linearly independent generating vectors. In
other words, K := Cone(C) for some nonsingular square matrix C.

2 Switched positive systems: main definitions

A continuous-time positive switched system is described by the equation

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ R+, (2)

where x(t) and u(t) denote the n-dimensional state variable and the m-
dimensional input, respectively, at the time instant t, while σ is a switching
sequence, taking values in a finite set P = {1, 2, . . . , p}.

We assume that the switching sequence is piece-wise continuous, and hence
in every time interval [0, t] there is a finite number of discontinuities, which
correspond to a finite number of switching instants 0 = t0 < t1 < · · · < tk < t.
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Reachability properties of continuous-time positive switched systems 159

Also, we assume that, at the switching times tℓ, σ is right continuous. For each
i ∈ P , the pair (Ai, Bi) represents a continuous-time positive system, which
means that Ai is an n×n Metzler matrix and Bi an n×m nonnegative matrix.
The initial condition x(0) and the input function u(·) are constrained to take
nonnegative values, thus ensuring that x(t) > 0 at every time instant t ∈ R+.

The definition of reachability for positive switched systems may be given
by suitably adjusting the analogous definition given in [4, 13], in order to
introduce the nonnegativity constraint on the state and input variables.

Definition 1. A state xf ∈ Rn
+ is said to be (positively) reachable if there

exist a time instant tf > 0, a switching sequence σ : [0, tf ] → P and an input
u : [0, tf ] → Rm

+ , that lead the state trajectory from x(0) = 0 to x(tf ) = xf .
A positive switched system (2) is said to be (positively) reachable if every

state xf ∈ Rn
+ is (positively) reachable.

In the sequel, the specification “positively” will be omitted. Clearly, among
all positive vectors one may want to reach there is the class of monomial
vectors. For standard positive systems, “monomial reachability” represents a
necessary and sufficient condition for reachability. When dealing with switched
positive systems this is not the case, as we will see in the following. For this
reason, monomial reachability deserves an independent investigation.

Definition 2. A positive switched system (2) is said to be monomially reach-
able if every monomial vector α ei ∈ Rn

+, i = 1, 2, . . . , n, α ∈ R+, is reachable.

In order to investigate monomial reachability and (general) reachability,
we preliminary introduce the expression of the forced state evolution of the
system at an arbitrary time instant t > 0. Given a time interval [0, t] and a
switching sequence σ : [0, t] → P , corresponding to a set of switching instants
{t0, t1, . . . , tk} satisfying 0 = t0 < t1 < · · · < tk < t, the state at the time
instant t, starting from x(0) = 0 and under the action of the soliciting input
u(τ), τ ∈ [0, t], can be expressed as follows [4, 17]:

x(t) = eAik
(t−tk) . . . eAi1 (t2−t1)

∫ t1

t0

eAi0(t1−τ)Bi0u(τ)dτ+

+ eAik
(t−tk) . . . eAi2 (t3−t2)

∫ t2

t1

eAi1(t2−τ)Bi1u(τ)dτ+

+ . . .+

∫ t

tk

eAik
(t−τ)Bik

u(τ)dτ, where iℓ = σ(tℓ), ℓ = 0, 1, . . . , k.

3 Monomial reachability

The first goal we pursued [8] was that of providing a family of equivalent con-
ditions for monomial reachability. They represent the natural starting point
for reachability analysis.
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160 Paolo Santesso and Maria Elena Valcher

Proposition 1. [8] Given a positive switched system (2) the following condi-
tions are equivalent:

i) the system is monomially reachable;
ii) ∀ i ∈ 〈n〉, there exist k ∈ Z+ and indices i1, i2, . . . , ik−1, ik, j ∈ P , such

that eAik eAik−1 . . . eAi1 eAjBj has an i-monomial column;
iii) ∀ i ∈ 〈n〉, there exist indices j ∈ P and r ∈ 〈m〉 such that Ajei = αiei,

and Bjer = βiei, for some αi ≥ 0 and βi > 0.

Remark. i) It is worthwhile to remark that condition iii) in the previ-
ous proposition necessarily constrains the matrix Aj to be reducible. Con-
sequently, all subsystems (Ai, Bi) with Ai irreducible, play no role in the
monomial reachability.
ii) As it clearly follows from the previous Proposition, when dealing with
single-input systems, condition iii) must be verified for n distinct indices j in
P . As a consequence, a necessary condition for a positive switched system to
be monomially reachable (and henceforth reachable) is that p ≥ n.
iii) Unfortunately, except for the case of 2-dimensional systems, none of the
equivalent conditions of Proposition 1 is in general also sufficient for reacha-
bility. The interested reader is referred to [8] for the details.

4 Pattern reachability

The concept of monomial reachability naturally extends to the broader con-
cept of “pattern reachability”.

Definition 3. A positive switched system (2) is said to be pattern reachable if
for every nonempty set S ⊆ 〈n〉 there exists a vector xf ∈ Rn

+, with ZP(xf ) =
S, which is reachable.

Even if pattern reachability, like monomial reachability, represents only
a necessary condition for reachability, the study of this property enlightens
certain features which will be useful for the characterization of reachability.

Lemma 1. Given a positive switched system (2), a subset S ⊆ 〈n〉, an integer
k ∈ Z+ and indices i0, i1, . . . , ik ∈ P, there exists a vector xf ∈ Rn

+, with

ZP(xf ) = S, which can be reached by applying (a suitable nonnegative input
and) a switching sequence σ, ordinately taking the values i0, i1, . . . , ik, if and
only if the cone generated by the columns of the continuous-time reachability
matrix associated with the switching sequence (i0, i1, . . . , ik), i.e.

R(i0, i1, . . . , ik) =
[
eAikBik

eAik eAik−1Bik−1
. . . eAik . . . eAi0Bi0

]
,

includes a vector v with ZP(v) = S (equivalently, there is a selection of the
columns in R(i0, i1, . . . , ik) which sums up to a vector w with ZP(w) = S).
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Reachability properties of continuous-time positive switched systems 161

Proof. Assume S ⊆ 〈n〉 and let xf ∈ Rn
+ be any vector with ZP(xf ) = S.

By resorting to equation (3), with x(t) = xf , it is clear that for xf to be
reachable it is necessary and sufficient that there exists a finite number of
nonzero matrix products in (3) of the following type

eAik
(t−tk) . . . eAil

(tl+1−tl)

∫ tl

tl−1

eAil−1
(tl−τ)Bil−1

u(τ)dτ (3)

which sum up to xf . We may easily observe that, when our interest is only in
nonzero patterns, the role of the nonnegative input u(t) in every time interval
[tl−1, tl) is just that of “selecting” the columns of Bil−1

. So, if we restrict our
attention to input functions u(t) whose entries are either zero or unitary in
each time interval [tl−1, tl) (we denote by ul−1 the vector value the function
u(t) takes in that interval) the class of all nonzero patterns attainable by
means of arbitrary inputs coincides with the class of all nonzero patterns
attainable by means of piece-wise constant binary inputs.

Even more, due to the fact that the integral operator does not change the
zero pattern properties and that the zero pattern of the exponential matrix
is invariant, as t ranges over {t ∈ R+, t > 0} (see Lemma A.1, point ii)),
it follows that there exists a positive vector xf with ZP(xf ) = S which can
be reached by means of a switching sequence σ, ordinately taking the values
i0, i1, . . . , ik, if and only if there is a finite number of matrix products like
eAik . . . eAil eAil−1Bil−1

ul−1 which sum up to a vector w with ZP(w) = S.

Proposition 2. A positive switched system (2) is pattern reachable if and only
if for every S ⊆ 〈n〉 there exist k < |S| and indices i0, i1, . . . , ik ∈ P such that
the cone generated by the columns of the reachability matrix R(i0, i1, . . . , ik)
contains a vector v with ZP(v) = S.

Proof. By Lemma 1, it is clear that the positive switched system (2) is
pattern reachable if and only if for every S ⊆ 〈n〉 there exist k and in-
dices i0, i1, . . . , ik ∈ P such that the cone generated by the columns of
R(i0, i1, . . . , ik) contains a vector v with ZP(v) = S. So, we only need to
verify the upper bound on the index k in the “only if” part, namely to verify
that, under the pattern reachability assumption, the index k in the proposi-
tion’s statement may be chosen smaller than |S|.

We prove this result by induction on the cardinality s of the set S. If s = 1,
then S = {i}, for some index i ∈ 〈n〉, and we are dealing with monomial
reachability. As we have seen in Proposition 1 iii), monomial reachability
ensures the existence of indices j ∈ P and r ∈ 〈m〉, such that ZP(Ajei) =
{i} as well as ZP(Bjer) = {i}. Consequently, ZP(eAjBjer) = {i}, and this
ensures, by Lemma 1, that we need a constant switching sequence (namely,
σ(t) = j for every t ≥ 0) in order to reach vectors with a single positive entry.

We assume, now, by induction, that given any subset S′ of 〈n〉, with
|S′| < s, there exists a vector v′ ≥ 0, with |ZP(v′)| = S′, that belongs to
the reachability cone of a switching sequence taking no more than |S′| val-
ues (equivalently, commuting no more than |S′| − 1 times). We aim to prove
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162 Paolo Santesso and Maria Elena Valcher

that the result extends to all subsets S of 〈n〉, with |S| = s. Indeed, consider
the smallest nonnegative index k for which indices i0, i1, . . . , ik in P , and a
positive vector v, with ZP(v) = S, can be found, such that

v = eAik eAik−1 . . . eAi0Bi0 ū0 + · · · + eAik eAik−1Bik−1
ūk−1 + eAikBik

ūk, (4)

for suitable nonnegative vectors ūi ≥ 0. Since each of these terms is left
multiplied by eAik , it follows that v can be expressed as v = eAikBk, with

Bk := eAik−1 . . . eAi1 eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1 +Bik

ūk.

By Lemma A.3, then, S = ZP(v) = ZP(eAikBk) implies S ⊇ S′ := ZP(Bk).
Clearly, it cannot be S = S′, otherwise condition

Bk ∈ Cone(R(i0, i1, . . . , ik−1)), with ZP(Bk) = S,

would contradict the minimality assumption on the index k. So, it must be
S ⊃ S′. By the inductive assumption, there exists a vector v′, with |ZP(v′)| =
|S′| < |S| = s, that can be reached by resorting to a switching sequence
(j0, j1, . . . , jl) with l + 1 ≤ |S′| ≤ s− 1, i.e.

v′ = eAjl . . . eAj1 eAj0Bj0u0 + · · · + eAjlBjl
ul

for suitable ui ≥ 0. Since S = ZP(eAikBk) = ZP(eAik (v′ + Bik
0)), we have

found a switching sequence (j0, j1, . . . , jl, ik) taking no more than s values
that allows to reach the pattern S.

We are, now, in a position to provide the final characterization of pattern
reachability. Even though the result could be easily given for multiple input
systems, for the sake of simplicity we state it for single input systems.

Proposition 3. A single-input positive switched system (2) is pattern reach-
able if and only if for every set S ⊆ 〈n〉 there exist an integer ℓ ≤ |S|, indices
j1, j2, . . . , jℓ, and a subset sequence S0 ⊆ S1 ⊂ S2 ⊂ · · · ⊂ Sℓ = S, such that

ZP(eAjh eSh−1
) = Sh, ∀ h ∈ 〈ℓ〉 (5)

∅ 6= ZP(Bj1) ⊆ S1. (6)

Proof. If system (2) is pattern reachable, then, by Proposition 2, for every
S ⊆ 〈n〉 there exist k < |S|, indices i0, i1, . . . , ik ∈ P , and a positive vector v,
with ZP(v) = S, such that

v = eAik eAik−1 . . . eAi1 eAi0Bi0u0 + · · · + eAik eAik−1Bik−1
uk−1 + eAikBik

uk,

where, w.l.o.g., the scalars u0, u1, . . . , uk take values in {0, 1}, and k is the
smallest such index. Set ℓ := min{d ≥ 1 : uk−d+1 = 1}, and jh := ik−ℓ+h for
h = 1, 2, . . . , ℓ. Then:

v=eAjℓ eAjℓ−1 . . . eAj1

[
eAik−ℓ . . .eAi0Bi0u0+. . .+eAik−ℓBik−ℓ

uk−ℓ+Bj1uk−ℓ+1

]
.

Set B0 := eAik−ℓ . . . eAi1 eAi0Bi0u0 + · · · + eAik−ℓBik−ℓ
uk−ℓ + Bj1uk−ℓ+1 and

Bh := eAjhBh−1, h = 1, 2, . . . , ℓ.Notice that Bℓ = v. Set, finally, Sh := ZP(Bh).
By recursively applying Lemma A.3, we can prove that
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Reachability properties of continuous-time positive switched systems 163

S = ZP(v) = ZP(Bℓ) ⊇ ZP(Bℓ−1) · · · ⊇ ZP(B1) ⊇ ZP(Bj1).

On the other hand, all the inequalities Sh ⊇ Sh−1, h = 2, 3, . . . , ℓ, must be
strict, otherwise the sequence could be shortened. Therefore ℓ ≤ |S| and (5)
holds. Finally, condition S1 ⊇ S0 = ZP(B0) ⊇ ZP(Bj1) ensures that (6) holds.

Assume, now, that (5)-(6) hold. We prove that the system is pattern reach-
able by induction on s := |S|. To this end, consider, first the case s = 1, namely
S = {i} for some i ∈ 〈n〉. If so, ℓ = 1 and there exists an index j1 and sets
S0 = S1 = S such that ZP(eAj1ei) = {i}, and ∅ 6= ZP(eBj1 ) = {i}. So, by
Proposition 1, the system is monomially reachable.

Suppose, now, that for every set S′ of cardinality smaller than s, there
exists a reachable vector v′ with ZP(v′) = S′. Consider an arbitrary set S of
cardinality s and let ℓ, j1, . . . , jℓ,S0,S1, . . . ,Sℓ be the corresponding indices
and sets as they appear in the proposition’s statement. Consider the (possibly
empty) set S′ = S0 \ ZP(Bj1) whose cardinality is smaller than s. By the
inductive assumption, there exist indices i0, i1, . . . , ik in P such that the cone
generated by the columns of the reachability matrix R(i0, i1, . . . , ik) includes
a vector v′ with ZP(v′) = S′ (if S′ = ∅, simply choose v′ = 0). Let u be a
binary vector such that ZP(R(i0, i1, . . . , ik)u) = S′. Then, the vector

v = eAjℓ eAjℓ−1 . . . eAj1 [R(i0, i1, . . . , ik)u+Bj1 ]

satisfies ZP(v) = S. This ensures that a vector with nonzero pattern S is
reachable through the switching sequence (i0, i1, . . . , ik, j1, j2, . . . , jℓ).

5 Necessary and/or sufficient conditions for reachability

As a result of the pattern reachability analysis, given a single-input switched
system (2), switching among p positive subsystems (Ai, bi), i ∈ P , a positive
vector v, with ZP(v) = S, is reachable only if there is an index j = j(S) ∈ P
such that ZP(eAj(S)eS) = S. Consequently, a necessary condition for reacha-
bility is that, for every S ⊆ 〈n〉, the set IS := {i ∈ 〈p〉 : ZP(eAieS) = S} 6= ∅.
Note that, if S = 〈n〉, IS = P , and the previous condition is trivially satisfied.

In this section we focus on the derivation of necessary and/or sufficient
conditions for reachability, by restricting our attention to single-input systems
and, occasionally, on single-input systems of size n which commute among
p = n subsystems. As we have seen, this represents the minimum number
of subsystems among which a single-input positive switched system has to
commute in order to be reachable. The first result of the section is a sufficient
condition for reachability.

Proposition 4. Consider a positive switched system (2), switching among p
single-input subsystems (Ai, bi), i ∈ P. If ∀S ⊆ 〈n〉, ∃ j(S) ∈ IS such that

ZP(eAj(S)eS) = S and ZP(bj(S)) ⊆ S, with |ZP(bj(S))| = 1,

then the switched system is reachable.
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164 Paolo Santesso and Maria Elena Valcher

Proof. Given any positive vector v ∈ Rn
+, set r := |ZP(v)|. Set, now, Sr :=

ZP(v), and let j(Sr) be an index which makes the Proposition assumption
satisfied, and hence ZP(eAj(Sr )eSr

) = Sr, and {ir} := ZP(bj(Sr)) ⊆ Sr. For
each h ∈ 〈r − 1〉, we may recursively define sets Sh and indices ih, as

Sh := Sh+1 \ {ih+1}, {ih} := ZP(bj(Sh)).

Notice that, by the way the sets Sh are defined, |Sh| = h. Moreover, when
h 6= q we have j(Sh) 6= j(Sq). Now, we show that by suitably choosing a final
time instant tr > 0, the values of the switching instants ti, i = 0, 1, . . . , r − 1,
with 0 = t0 < . . . < tr−1 < tr, and positive input values ūi in every time
interval [ti−1, ti), we may ensure that

v= eAj(Sr )(tr−tr−1)e
Aj(Sr−1)(tr−1−tr−2)

. . . eAj(S2)(t2−t1)

Z t1

t0

eAj(S1)(t1−τ)d τ bj(S1)ū1

+ . . .+

Z tr

tr−1

eAj(Sr)(tr−τ)d τ bj(Sr)ūr (7)

By the previous considerations, every term in (7) has a nonzero pattern
included in S. Moreover, by Lemma A.2, it is easy to conclude that, since
every exponential matrix can be made as close as we want to the identity
matrix and since bj(Sℓ) is an iℓ-monomial vector, then each positive term

eAj(Sr )(tr−tr−1)eAj(Sr−1)(tr−1−tr−2). . . e
Aj(Sℓ+1)(tℓ+1−tℓ)

∫ tℓ

tℓ−1

eAj(Sℓ)(tℓ−τ)d τ bj(Sℓ)

(8)
can be made as close as we want to the monomial vector eiℓ

(and, of course,
its nonzero pattern is included in S), by suitably choosing the time intervals
between two consecutive switching instants sufficiently small. If we assume
that the switching time instants are given, in order to ensure that the afor-
mentioned terms are desired approximations of selected monomial vectors, the
only values we have to choose are the constant values ūℓ, and the problem we
have to solve can be seen as that of solving an algebraic equation of the fol-
lowing type: Aū = v̄, where v̄ ∈ Rr

+ is the (strictly positive) vector consisting
of the nonzero entries of v, A ∈ Rr×r

+ is the positive matrix whose columns
are those terms (8) (approximating the monomial vectors) which pertain to
the indices in S, and ū is the vector containing the associated input vectors
ūℓ. By Lemma A.4, this linear equation admits a positive solution, and hence
the vector v ∈ Rn

+ is reachable.

Remark. It is worthwhile noticing that, when the previous sufficient condition
holds, all states in Rn

+ are reached by resorting to a suitable switching sequence
(i1, i2, . . . , ik) and by applying a nonnegative input which is surely nonzero
during the last switching interval (when the system has commuted to the
ikth subsystem). Of course, this is not the general case, and a state may be
reached even by eventually leaving the system freely evolve (meaning that no
soliciting input is applied during the last part of the time interval), meanwhile
commuting from one subsystem to another. Consequently, the above condition
is only sufficient for reachability, as shown in the following example.
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Reachability properties of continuous-time positive switched systems 165

Example 1. Consider the positive switched system (2), switching among the
following three subsystems

(A1, B1) =

(


1 1 0
0 1 0
0 1 1



 ,




1
0
0




)

(A2, B2) =

(


1 0 0
1 1 1
1 0 1



 ,




0
1
0




)

(A3, B3) =

(


1 1 0
0 1 0
0 0 1



 ,




0
0
1




)
.

Note that the hypothesis of Proposition 4 is fulfilled ∀S 6= {1, 2}. Therefore,
in order to show that the switched system is reachable, we only need to prove
that every vector v with ZP(v) = {1, 2} is reachable. Observe now that

eA3t =




et t et 0
0 et 0
0 0 et



 .

Hence, given v =




v1
v2
0



, with v1, v2 6= 0, set t = v1

v2
+ 1, t1 = 1, t0 = 0.

Introduce the piece-wise constant input function and the switching sequence:

u(t) =






v2

(e−1)e
v1
v2

, for 0 ≤ t < t1;

0, for t1 ≤ t < t;
σ(t) =

{
2, for 0 ≤ t < t1;

3, for t1 ≤ t < t.

By referring to equation (3), we get

x(t) = eA3(t−t1)

∫ t1

t0

eA2(t1−τ)B2u(τ)dτ+

∫ t

t1

eA3(t−τ)B3u(τ)dτ

= e
A3

v1
v2

∫ 1

0




0

e1−τ

0



 dτ
v2

(e− 1)e
v1
v2

+ 0 =
v2 (e− 1)

(e− 1)e
v1
v2





v1

v2
e

v1
v2

e
v1
v2

0



 = v.

As a consequence, the switched system is reachable.

Aiming to provide an equivalent condition for reachability, we first intro-
duce a technical lemma which allows us to use, when dealing with single-input
systems, only piece-wise constant input signals.

Lemma 2. Consider an n-dimensional monomially reachable positive switched
system (2), switching among n single-input subsystems (Ai, bi), i ∈ 〈n〉, with1

Aiei = αiei, bi = βiei, ∃ αi ≥ 0 and βi > 0. (9)

1 Notice that this assumption is by no means restrictive, since, by Proposition 1,
we can always reduce ourselves to this case by means of a simple relabeling.
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166 Paolo Santesso and Maria Elena Valcher

Given t > 0, v ∈ Rn
+, k ∈ N, time instants 0 = t0 < t1 < . . . < tk < t and

indices i0, i1, . . . , ik ∈ 〈n〉, if there exists a nonnegative input u(·) such that:

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1 (t2−t1)

∫ t1

t0

eAi0(t1−τ)bi0u(τ)dτ

+ . . .+

∫ t

tk

eAik
(t−τ)bik

u(τ)dτ, (10)

then there exists a piece-wise constant input u(·), taking some suitable constant
value ui ≥ 0 in every time interval [ti, ti+1), such that

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1(t2−t1)

∫ t1

t0

eAi0 (t1−τ)bi0dτ · u0

+ . . .+

∫ t

tk

eAik
(t−τ)bik

dτ · uk. (11)

Proof. By the assumption (9), eAitbi = eαitβiei, ∀t ∈ R+. Consequently,
∫ ti+1

ti

eAi(ti+1−τ)biu(τ)dτ =

∫ ti+1

ti

eαi(ti+1−τ)βieiu(τ)dτ

=

[∫ ti+1

ti

eαi(ti+1−τ)u(τ)dτ

]
· βiei, (12)

where the term inside the square brackets is a nonnegative number. But then,
a nonnegative coefficient ui can always be found such that

∫ ti+1

ti

eαi(ti+1−τ)u(τ)dτ =

∫ ti+1

ti

eαi(ti+1−τ)dτ · ui. (13)

This immediately implies the lemma statement.

From the previous lemma, we get the following Proposition.

Proposition 5. Consider an n-dimensional positive switched system (2),
switching among n single-input systems (Ai, bi), i ∈ 〈n〉, and suppose that
for every index i ∈ 〈n〉 the pair (Ai, bi) satisfies (9). The system is reachable
if and only if for every positive vector v ∈ Rn

+ there exist k ∈ N, strictly
positive intervals τ1, . . . , τk and switching values i0, i1, . . . , ik ∈ 〈n〉, such that

v ∈ Cone[eAik
τkbik

|eAik
τkeAik−1

τk−1bik−1
| . . . |eAik

τk . . . eAi1τ1eAi0τ0bi0 ]

= Cone[eik
|eAik

τkeik−1
| . . . |eAik

τk . . . eAi1τ1ei0 ].

Proof. By the assumption on the n subsystems (Ai, bi), the identity

Cone[eAik
τkbik

|eAik
τkeAik−1

τk−1bik−1
| . . . |eAik

τk . . . eAi1τ1eAi0τ0bi0 ] =

Cone[eik
|eAik

τkeik−1
| . . . |eAik

τk . . . eAi1τ1ei0 ]

immediately follows. So, in the sequel, we only refer to the latter expression.
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Reachability properties of continuous-time positive switched systems 167

[Necessity] If the system is reachable, then ∀ v ∈ Rn
+ there exist parameters

t, tj , ij (endowed with suitable properties) and an input u(·) ∈ R+ such that:

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1 (t2−t1)

∫ t1

t0

eAi0(t1−τ)bi0u(τ)dτ

+ . . .+

∫ t

tk

eAik
(t−τ)bik

u(τ)dτ. (14)

But then, by Lemma 2, this means that there exist suitable uj ≥ 0 such that

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1 (t2−t1)

∫ t1

t0

eAi0(t1−τ)bi0dτ · u0

+ . . .+

∫ t

tk

eAik
(t−τ)bik

dτ · uk = eAik
τkeAik−1

τk−1 . . . eAi1τ1ei0ci0 +. . .+ eik
cik
,

where tk+1 := t, τj := tj+1 − tj and cij
=
∫ tj+1

tj
eαij

(tj+1−τ)βij
dτ · uj. Hence,

v ∈ Cone[eik
|eAik

τkeik−1
| . . . |eAik

τk . . . eAi1τ1ei0 ]. (15)

[Sufficiency] Conversely, suppose that for every positive vector v we can
find k ∈ N, intervals τ1, . . . , τk > 0 and switching values i0, i1, . . . , ik ∈
〈n〉, such that (15) holds. Let cij

, j = 0, 1, . . . , k, be nonnegative coeffi-

cients such that v = eAik
τkeAik−1

τk−1 . . . eAi1τ1ei0ci0 + . . .+ eik
cik
. Set, now,

t0 := 0, t1 := 1 and tj+1 := tj + τj for every j ∈ 〈k〉. Then, by assuming

uj :=
cij∫ tj+1

tj

eαij
(tj+1−τ)dτβij

, we get

eAik
(tk+1−tk)eAik−1

(tk−tk−1) . . . eAi1(t2−t1)

∫ t1

t0

eAi0(t1−τ)bi0 u0 dτ + . . .+

+

∫ tk+1

tk

eAik
(t−τ)bik

uk dτ = eAik
τkeAik−1

τk−1 . . . eAi1τ1ei0ci0 +. . .+eik
cik

= v

thus proving that v is reachable.

Proposition 6. Given an n-dimensional positive switched system (2), com-
muting among n single-input subsystems (Ai, bi), i = 1, 2, . . . , n, the following
facts are equivalent:

i) the switched system (2) is reachable;
ii) for every proper subset S ⊂ 〈n〉 we have:

iia) if |S| = 1, then ∃ j(S) ∈ IS such that (ZP(eAj(S)eS) = S and)
ZP(bj(S)) = S;

iib) if |S| > 1, then IS 6= ∅, and either
1. ∃ j(S) ∈ IS such that2 ZP(bj(S)) ⊂ S, or

2 Note that condition iia) together with the fact that we are switching among n
subsystems ensure that ZP(bj(S)) 6= ∅.
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168 Paolo Santesso and Maria Elena Valcher

2. ∀ v ∈ Rn
+, with ZP(v) = S, there exist m ∈ N, τ1, . . . , τm > 0 and

i1, . . . , im ∈ IS , such that v can be obtained as the nonnegative com-
bination of no more than |S| − 1 columns of eAimτm . . . eAi1τ1PS ,
where PS is the selection matrix which selects all the columns cor-
responding to the indices 3 appearing in S.

Proof. i) ⇒ ii) Suppose, first, that system (2) is reachable. Since condition iia)
is equivalent to monomial reachability, its necessity has already been proved,
and we may assume, as usual, that each pair (Ai, bi) satisfies (9).

Now, let S be any subset of 〈n〉 with cardinality |S| > 1, and let v be any
positive vector with nonzero pattern ZP(v) = S. By the reachability assump-
tion and by Proposition 5, there exist k ∈ N, positive intervals τ0, τ1, . . . , τk,
switching values i0, i1, . . . , ik ∈ 〈n〉 (with ij 6= ij+1 w.l.o.g.), and nonnegative
coefficients cij

, j = 0, 1, . . . , k, such that

v=eAik
τk . . . eAi1τ1eAi0τ0bi0ci0 + ..+ eAik

τkeAik−1
τk−1bik−1

cik−1
+ eAik

τkbik
cik

=eAik
τk

[
eAik−1

τk−1 . . . eAi1τ1eAi0τ0bi0ci0 + . . .+ bik
cik

] . (16)

Clearly, by Lemma A.3, ZP(eAik eS) = S. So, the set IS is nonempty. If there
exist j(S) ∈ IS such that ZP(bj(S)) ⊂ S we fall in case 1. of iib). Suppose,

now, that ∀ j(S) ∈ IS ,ZP(bj(S)) 6⊂ S. Consequently, in (16), cik
= 0, and

hence (16) becomes v = eAik
τkBk, with

Bk := eAik−1
τk−1 . . . eAi1τ1eAi0τ0bi0ci0 + eAik−1

τk−1bik−1
cik−1

. (17)

From Lemma A.3, Sk := ZP(Bk) ⊆ S. Now, either Sk ( S or Sk = S.

1. If Sk ( S, then v lies on a face of Cone(eAji
τkPS), ∃ τk > 0, namely it can

be obtained by combining no more than |S| − 1 columns of eAji
τkPS .

2. If Sk = S then ZP(eAik−1eS) = S, which, in turn, implies that ik−1 ∈ IS .
But since ZP(bik−1

) 6⊂ S (and hence cik−1
= 0), it follows that we can iter-

ate this reasoning until we find some index ℓ such that ik, ik−1, . . . , iℓ ∈ IS ,
iℓ−1 6∈ IS and v = eAik

τk . . . eAiℓ
τℓBℓ, for some suitable Bℓ with ZP(Bℓ) =

Sℓ ( S. Consequently, again, v can be obtained by combining no more
than |S| − 1 columns of eAik

τk . . . eAiℓ
τℓPS .

In both cases we fall in case 2. of iib).
ii) ⇒ i) Let us see, now, whether condition iia) and iib) are also sufficient

for reachability. We prove this fact by induction on the cardinality of the
nonzero pattern |S| = |ZP(v)| of any vector v ∈ Rn

+. If |S| = 1, condition iia),
corresponding to monomial reachability, ensures that v is reachable.

3 Notice that since ZP(eAih eS) = S for h = 1, 2, . . . ,m, the polyhedral cone
Cone(eAim

τm . . . eAi1
τ1PS) is generated by |S| linearly independent vectors whose

nonzero pattern is included in S . Indeed, Cone(P T
S e

Aim
τm . . . eAi1

τ1PS) is a

simplicial cone in R
|S|
+ and it coincides with Cone(eÃim

τm . . . eÃi1
τ1), Ãih

=

P T
S Aih

PS .
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Reachability properties of continuous-time positive switched systems 169

Suppose now that, under the assumptions ii), every positive vector w, with
|ZP(w)| < s, is reachable. Let v be a positive vector with |S| = |ZP(v)| = s.
If for the set S the case 1. applies, it has been already proved in Proposition
4 that v is reachable. Suppose now that only case 2. holds. Then ∃m >
0, ∃ i1, . . . , im ∈ IS , ∃ τ1, . . . , τm > 0 such that v is obtained by combining
no more than r − 1 columns of eAimτm . . . eAi1τ1PS and hence ∃w ≥ 0, with
ZP(w) ( S (and therefore |ZP(w)| < r), such that v = eAimτm . . . eAi1τ1w.
Since vector w is reachable for hypothesis, also v is. Indeed, upon reaching
w, we switch ordinately to the subsystems i1, i2, . . . , im and leave the system
freely evolve at each stage for a lapse of time equal to τi.

6 The asymptotic exponential cone and a sufficient
condition for reachability

Not every condition provided in Proposition 6 can be easily verified. Specif-
ically, there is no obvious way of testing whether indices i1, . . . , im and pos-
itive time intervals τ1, . . . , τm can be found, such that a given vector v > 0,
with ZP(v) = S, can be obtained by combining less than |S| columns of
eAimτm . . . eAi1τ1PS .

As a first step toward the general problem solution, in this section we
explore the restrictive case when m = 1. In other words, we are interested
in investigating when a positive vector v, with S := ZP(v) of cardinality
s, can be expressed as the positive combination of at most s − 1 columns of
eAj(S)τPS , for some suitable j(S) ∈ IS and τ > 0 (as usual, PS is the selection
matrix that singles out the columns indexed on S). Notice, though, that this
is equivalent to investigating when the restriction of v to its positive entries
(which is a strictly positive vector, say vS , of size s) belongs to the boundary
of the simplicial cone, Cone[PT

S e
Aj(S)τPS ]. Thus, our problem may be restated

in a just apparently restrictive, but in fact absolutely general, formulation, by
assuming S = 〈n〉 and IS = P (and, consequently, vS = v).

Problem Statement: search for conditions ensuring that every strictly
positive vector v ∈ Rn

+ can be obtained as

v = eAj(S)τu, ∃ τ > 0, and u ∈ Rn
+ with ZP(u) 6= ∅. (18)

To solve this problem, we introduce a new concept which turns out to be
very meaningful for our investigation.

Definition 4. Given an n × n Metzler matrix A, we define its asymptotic
exponential cone, Cone∞

(
eAt
)
, as the polyhedral cone generated by the (nor-

malized) vectors v∞j , i.e. the asymptotic directions of the columns of eAt, i.e.

v∞j := lim
t→∞

eAtej

‖eAtej‖
, j = 1, 2, . . . , n.
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170 Paolo Santesso and Maria Elena Valcher

It is not hard to prove that Cone∞
(
eAt
)

always exists, it is a polyhedral
convex cone in Rn

+, and it is never the empty set. Moreover, except for the
case of a diagonal matrix A (in which case Cone(eAt) = Cone∞(eAt) = Rn

+

for every t ≥ 0), we have for every 0 < t1 < t2 < +∞:

Rn
+ = Cone(eA·0) ) Cone(eAt1) ) Cone(eAt2) ) Cone∞(eAt). (19)

Notice, also, that while Cone(eAt) is a simplicial cone for every t ≥ 0,
Cone∞(eAt) is typically not, since it is not solid.

We aim to provide a characterization of the boundary of Cone(eAτ ), as τ
varies over the positive real numbers. This allows us to obtain the solution of
the Problem Statement, and, finally, a new sufficient condition for reachability.

Lemma 3. [10] Given an n×n Metzler matrix A and a strictly positive vector
v ∈ Rn

+, the following facts are equivalent:

i) there exists τ > 0 such that v belongs to ∂Cone(eAτ );
ii) v 6∈ Cone∞(eAt).

As an immediate corollary of Lemma 3, we get.

Corollary 1. Given an n×n Metzler matrix A, the following are equivalent:

i) ∀ v ≫ 0 there exists τ > 0 such that v belongs to ∂Cone(eAτ );
ii) Cone∞(eAt) ⊆ ∂Rn

+;
iii) there exists some index r ∈ 〈n〉 such that r ∈ ZP(v∞j ) for every j ∈ 〈n〉.

By resorting to Proposition 6 and Corollary 1, we get the following suffi-
cient condition for reachability.

Proposition 7. Consider an n-dimensional positive switched system (2),
commuting among n single-input subsystems (Ai, bi), i = 1, 2, . . . , n, and sup-
pose that, for every proper subset S ⊂ 〈n〉, |IS | = 1, namely there exists a
unique index j(S) ∈ 〈n〉 such that ZP(eAj(S)eS) = S. Then the system is
reachable if and only if the following two conditions hold:

a) the system is monomially reachable;
b) for every S, with r := |S| > 1, either ZP(bj(S)) ⊆ S or

Cone∞
(
PT
S eAj(S)tPS

)
⊆ ∂Rr

+, where PS is the selection matrix which se-
lects all the columns corresponding to the indices belonging to S.

Proof. [Sufficiency] Notice, first, that if Cone∞
(
PT
S eAj(S)tPS

)
⊆ ∂Rr

+, then,
by Corollary 1, for every strictly positive vector vS ∈ Rr

+ there exists τ >
0 such that vS ∈ ∂Cone

(
PT
S eAj(S)τPS

)
. So, as a consequence of condition

ZP(eAj(S)eS) = S, for every positive vector v ∈ Rn
+, with ZP(v) = S, there

exists τ > 0 such that v = eAj(S)τPSuS , with ZP(uS) 6= ∅. Consequently,
assumptions a) and b) imply conditions iia) and iib) of Proposition 6, and
reachability follows.
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Reachability properties of continuous-time positive switched systems 171

[Necessity] By comparing the proposition statement with the result of
Proposition 6, it remains to prove that if the system is reachable and for
every S ⊂ 〈n〉 there is a single index j(S) such that ZP(eAj(S)eS) = S, then
condition ∅ 6= ZP(bj(S)) 6⊆ S implies Cone∞

(
PT
S eAj(S)tPS

)
⊆ ∂Rr

+. Indeed,

let v > 0 with ZP(v) = S. By referring to the same notation employed in the
proof of Proposition 6, we have that v = eAj(S)τkBk, with τk > 0 and

Bk := eAik−1
τk−1 . . . eAi1τ1eAi0τ0bi0ci0 + . . .+ eAik−1

τk−1bik−1
cik−1

, (20)

for suitable indices iℓ (with iℓ 6= iℓ+1), positive time intervals τℓ and non-
negative coefficients cℓ. From Lemma A.3, it follows that Sk := ZP(Bk) ⊆ S,
and the uniqueness of j(S) ensures that Sk ( S. So, v = eAj(S)τkPSuS ,
∃ uS ≥ 0, with ZP(uS) 6= ∅. But since this must be true for every vector
v ∈ VS := {v : ZP(v) = S}, then every vS ∈ Rr

+, with vS ≫ 0, must lie on
the boundary of Cone(PT

S e
Aj(S)τPS) for some τ = τ(vS ) > 0. By Corollary 1,

then, it must be Cone∞
(
PT
S eAj(S)tPS

)
⊆ ∂Rn

+.

Of course, at this point, we have derived a sufficient condition for reach-
ability which is based on the structure of the cones Cone∞

(
PT
S eAj(S)tPS

)
.

Since Corollary 1 relates the structure of any asymptotic exponential cone
to the zero patterns of its generating vectors v∞j , we want to further ex-
plore this technical issue, thus finally deriving a graph based condition
which allows to check, for every set S and every index j(S) ∈ IS , when
Cone∞

(
PT
S eAj(S)tPS

)
⊆ ∂Rn

+.

Lemma 4. [10] Given an n × n Metzler matrix A, for every j ∈ 〈n〉 the
jth generating vector v∞j of Cone∞(eAt) is a positive eigenvector of A. As a

consequence, Cone∞(eAt) is A-invariant and therefore eAt-invariant ∀ t ≥ 0.

Note that, by the previous result, the asymptotic exponential cone of a
Metzler matrix is a polyhedral cone whose generators are all positive eigenvec-
tors of A. If A is an irreducible matrix, it admits only one positive eigenvector
of unitary norm, which is strictly positive and corresponds to the dominant
eigenvalue [1]. Therefore Cone∞(eAt) collapses into a one dimensional cone
(a ray) which lies in the interior of the positive orthant. So, condition ii) in
Corollary 1 cannot be fulfilled, unless A is a reducible matrix.

At this point, we want to analyze when either one of the equivalent con-
ditions in Corollary 1 is verified. Before proceeding, we recall a result of [10],
describing the dominant mode in the expression of every single entry of the
exponential eAt of a Metzler matrix A ∈ Rn×n. To this end, we introduce the
following notation: given an index i ∈ 〈n〉, we let C(i) be the index of the irre-
ducibility class the vertex i belongs to (w.r.t. the directed graph G(A)). If we
assume that A is in Frobenius normal form (1) and that Akk is the diagonal
block corresponding to Ck, we set λmax(Ck) := λmax(Akk). Then [10], at every
time instant t > 0
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172 Paolo Santesso and Maria Elena Valcher

eAt =: A(t) =





A11(t) A12(t) . . . A1ℓ(t)
A22(t) . . . A2ℓ(t)

. . .
...

Aℓℓ(t)




, (21)

where Aii(t) is strictly positive for every i, while for i 6= j

Aij(t) =

{
≫ 0, if i ∈ D(Cj) (⇔ j ∈ A(Ci));

0, otherwise.

It is worthwhile noticing that, as a consequence of the previous result, if the
rth entry of some asymptotic vector v∞j is zero (namely, r ∈ ZP(v∞j )), then
(1) C(r) ⊆ ZP(v∞j ); (2)for every other index i ∈ 〈n〉 such that C(i) = C(j) we
have C(r) ⊆ ZP(v∞i ).

For any positive vector v, we let blockk[v] denote the kth block of v, where
the block-partition of the vector corresponds to the one adopted for the matrix
A. We recall the following result from [10].

Theorem 1. Let A ∈ Rn×n be a Metzler matrix in Frobenius normal form
(1). For any pair of indices (i, j) in 〈ℓ〉 × 〈ℓ〉, we have:

• if A(Ci) ∩ D(Cj) = ∅, then blockij [eAt] = 0;

• if A(Ci) ∩ D(Cj) 6= ∅, then blockij [eAt] ∼ eλ∗

i,jt t
mi,j

mi,j !
, where

λ∗i,j := max{λmax(Akk) : k ∈ A(Ci) ∩ D(Cj)},

and mi,j + 1 is the maximum number of classes Ck with λmax(Akk) = λ∗i,j
that lie in a single chain from Cj to Ci in the reduced graph R(A).

We finally get the desired technical result.

Proposition 8. Let A be an n× n Metzler matrix in Frobenius normal form
(1). The following facts are equivalent:

i) Cone∞(eAt) ⊆ ∂Rn
+;

ii) ∃ k ∈ 〈ℓ〉 such that

a) ∃ k̂ ∈ D(Ck) \ {k} : λmax(Ck̂) ≥ λmax(Ck);
b) ∀ h ∈ A(Ck), λ∗h := maxp∈D(Ch) λ

∗
p,h ≥ λ∗k,h, where λ∗p,h and λ∗k,h are

defined as in Theorem 1.

Proof. As a preliminary step, we notice that, by Corollary 1 and the previous
remarks, condition i) amounts to saying that there exists k ∈ 〈ℓ〉 such that
blockk[v∞j ] = 0 for every index j ∈ 〈n〉.

In order to evaluate when this condition is verified, we notice that, for
every index j ∈ 〈n〉, if Ch := C(j) does not access Ck, then blockk[eAtej ] = 0
at every time instant t, and hence this is true also asymptotically. On the
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Reachability properties of continuous-time positive switched systems 173

other hand, if the class Ch accesses Ck, then blockk[eAtej ] 6= 0 at every time
instant t. So, blockk[v∞j ] can be zero if and only if the dominant mode of

eAtej appears in a block different from blockk[eAtej ].
So, assuming that Ch = C(j) accesses Ck, two cases may occurr:

• If h = k, then blockk

[
eAtej

]
grows as eλmax(Ck) t. So, a necessary and

sufficient condition for the existence of a block of eAtej which exhibits

a mode which strictly dominates eλmax(Ck) t is that ∃ k̂ ∈ D(Ck), k̂ 6= k,
such that λmax(Ck̂) ≥ λmax(Ck). Indeed, by resorting to Theorem 1, if

λmax(Ck̂) > λmax(Ck), then blockk̂

[
eAtej

]
grows at least as eλmax(C

k̂
) t; if

λmax(Ck̂) = λmax(Ck), then blockk̂

[
eAtej

]
grows at least as t · eλmax(Ck) t.

• If h 6= k, then, by referring to Theorem 1 statement and notation,

blockk

[
eAtej

]
grows as eλ∗

k,ht t
mk,h

mk,h!
. So, a necessary and sufficient condition

for the existence of a block of eAtej which exhibits a mode which strictly
dominates it is that

- either there exists p ∈ D(Ch) such that λ∗p,h > λ∗k,h, or
- λ∗k,h ≤ λ∗p,h ∀ p ∈ D(Ch). In this case, the existence of the class Ck̂, acces-

sible from Ck and such that λmax(Ck̂) ≥ λmax(Ck), automatically ensures

the existence of a mode in eAtej strictly dominating eλ∗

k,ht t
mk,h

mk,h!
.

A Technical Lemmas

Lemma A.1 Let A be a Metzler matrix, then

i) eAt ≥ 0, ∀ t ≥ 0 and if A is irreducible then eAt ≫ 0 for every t > 0;
ii) ZP(eAt) = ZP(eA) for every t > 0;
iii) if ZP(v) = ZP(w), then ZP(eAtv) = ZP(eAtw) for every t ≥ 0.

Lemma A.2 [8] Given an n × n Metzler matrix A, for every ε > 0 there
exists t > 0 such that ∀ i, j ∈ 〈n〉, (1 − ε)In ≤ eAt ≤ In + ε1n1

T
n , namely

(1 − ε) ≤ [eAt]ii ≤ (1 + ε),
0 ≤ [eAt]ij ≤ ε, for i 6= j.

Lemma A.3 [9] Let A be an n × n Metzler matrix, and let v ∈ Rn
+ be a

positive vector. Then

ZP(eAt̄v) = S, ∃t̄ > 0 ⇒
{

ZP(eAteS) = S, ∀t > 0
ZP(v) ⊆ S. (22)

Lemma A.4 Let v ∈ Rn
+ be strictly positive and set vmin := mini=1,2,...,n vi >

0. Let A ∈ Rn×n
+ be a nonsingular square matrix, with strictly positive diagonal

entries, i.e. [A]ii ≫ 0 ∀i ∈ 〈n〉, and off-diagonal entries satisfying

[A]ij ≤ vmin√
n‖A−1‖ ‖v‖ , ∀ i 6= j, (23)
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174 Paolo Santesso and Maria Elena Valcher

where ‖·‖ is the euclidean norm. Then A−1v ≥ 0 or, equivalently, the equation
Ax = v in the indeterminate x has a (uniquely determined) positive solution.

Proof. Since A is nonsingular, the equation Ax = v necessarily has a unique
solution x = A−1v. It only remains to show that x ∈ Rn

+. Note, first, that
‖x‖ = ‖A−1v‖ ≤ ‖A−1‖ ‖v‖. Now, ∀ j ∈ 〈n〉, vj =

∑n
k=1[A]jk xk, and hence

xj =
vj − ([A]j1x1 + . . .+ [A]j j−1xj−1 + [A]j j+1xj+1 + . . .+ [A]jnxn)

[A]jj
.

Consequently, xj ≥ 0 ⇔ (vj − ([A]j1x1 + . . .+ [A]j j−1xj−1 + [A]j j+1xj+1 +
. . . + [A]jnxn)) ≥ 0. Upon setting Amax := max{[A]hk : h 6= k}, and by
resorting to the inequality

∑n
i=1 |xi| ≤

√
n ‖x‖, after some computations one

gets vj − ([A]j1x1 + . . .+[A]j,j−1xj−1 +[A]j,j+1xj+1 + . . .+[A]jnxn) ≥ vmin−
(Amax

∑n
i=1 |xi|) ≥ vmin − (Amax

√
n‖x‖) ≥ vmin − (Amax

√
n‖A−1‖ ‖v‖) ≥ 0,

and hence the claim is proved.
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Stability Tests Revisited

Umberto Viaro
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via delle Scienze 208, I-33100 Udine, Italy
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Summary. Stability–test algorithms consist essentially of a recursion that
generates a sequence of polynomials of descending degree starting from a
polynomial to be tested. The root–locus technique allows us to gain insight
into the operation of these procedures. The paper describes with the aid of
this graphic tool the stability–test procedure originally suggested by Lepschy
et al. [9] and shows how the computations implied by this procedure can be
organized in a table form.

Keywords. Linear systems, stability–test algorithms, root locus, Lepschy
table.

1 Introduction

In consideration of the renewed interest in stability criteria aroused by the
publication of Kharitonov’s theorem on interval polynomials in the late 1970s
[1], Lepschy and coworkers analyzed the structure of recursive stability–test
algorithms for continuous– and discrete–time systems and presented a unifying
frame for the two–term [2], [3], [4], [5] and three–term (or split [6]) forms [7],
[8] of these procedures. A notable result of this analysis was the suggestion
of new algorithms [9], [10] that can be used not only to check the stability
of a linear system but also to construct reduced–order models that preserve
important features, such as stability, of an original high–order system [11],
[12] and to provide alternative model parameterizations [13].

This paper focuses on (a slight variant of) the Lepschy stability–test pro-
cedure [9] that can be considered as the s–domain counterpart of the Jury test
for linear discrete–time systems [14]. The main objective of these procedures
is to determine how many roots of a polynomial lie in a prescribed region
of the complex plane by performing elementary algebraic operations on its
coefficients. The region considered by the Jury test is the unit disk, whereas
the Lepschy test refers to the left half–plane as is the case for the classical

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



176 Umberto Viaro

Routh test [15], although the Routh test can be adapted to find the roots in
different regions [16].

Section 2 briefly recalls the mechanism of stability–test procedures such
as the classical Routh test. Section 3 illustrates the basic step–down recursion
of the Lepschy test with the aid of a root locus [17]. Section 4 shows how to
determine the number of open–left–half–plane (OLHP) roots of a polynomial.
Section 5 provides an alternative perspective on the Lepschy test based on
the root–locus invariance property [18]. The implementation of the test with
the construction of the Lepschy table is illustrated in Section 6.

2 Stability–test algorithms

Essentially, a stability–test procedure consists of a recursion for generating
a sequence of N polynomials of descending degree starting from an original
polynomial pN (s) of degree N to be tested. At each step, the algorithm deter-
mines from the current polynomial pi(s) of degree i ≤ N another polynomial
pi−1(s) of immediately lower degree i−1 together with the value of a charac-
teristic parameter ρi. From the entire sequence of n characteristic parameter
values ρi , i = N,N − 1, N − 2, · · · , 2, 1 , it is possible to evaluate the number
of roots of the original polynomial in a given region of the complex plane.

For instance, according to the familiar Routh test, the polynomial to be
tested is first decomposed into its even and odd parts. Starting from these
parts, the even and odd parts of the polynomials of descending degree are
generated recursively by means of a division algorithm. Specifically, denoting
by qi,i(s) and qi,i−1(s) the even and odd parts of pi(s) = qi,i(s) + qi,i−1(s)
if i is even, or vice versa if i is odd, the odd and even parts qi−1,i−1(s) and
qi−1,1−2(s) of pi−1(s), or vice versa, are

qi−1,i−1(s) = qi,i−1(s), (1)

qi−1,i−2(s) = qi,i(s) − ρi s qi,i−1(s), (2)

where ρi is the ratio between the leading coefficients of qi,i(s) and qi−1,i−1(s) =
qi,i−1(s). Relations (1) and (2) can be merged into the single recursion [19]
(called two–term recursion because it involves two consecutive polynomials in
the sequence)

pi−1(s) = pi(s) − ρi s qi,i−1(s) (3)

on which a simple proof of the Routh test is based [20]. From (1) it follows
that the first subscript may be dropped. Therefore the algorithm can be pre-
sented in its usual three–term form involving one part of three consecutive
polynomials as

qi−2(s) = qi(s) − ρi s qi−1(s). (4)

The entries of the Routh table are precisely the coefficients of qi(s), i =
N,N − 1, . . . , 0.
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Stability Tests Revisited 177

The following sections concentrate on the Lepschy test [9] that can be con-
sidered as the s–domain counterpart of the Jury test because of the symmetry
about the imaginary axis of the root locus in which the basic recursion of the
Lepschy test can be embedded (Section 5). The computational complexity of
the Lepschy test is the same as that of the Routh test and, therefore, the
former represents a viable alternative to the latter at least for testing the sta-
bility of a linear system. However, the properties of the polynomials generated
by the Lepschy test [12] are different from the properties of the polynomials
generated by the Routh test [21].

3 Basic recursion of the Lepschy test

Let us consider a real monic polynomial pi(s) and decompose it into the sum
of its even and odd parts as

pi(s) = qi,i(s) + qi,i−1(s), (5)

where qi,i(s) contains only the even powers of s and qi,i−1(s) only the odd
powers of s if i is even, and vice versa if i is odd. The i roots of (5) belong to
the complete root locus (that is, the root locus corresponding to positive and
negative values of the (real) varying parameter [18]) for

qi,i(s) +K qi,i−1(s) = 0 (6)

that can be associated with the loop function

L(s) := K
qi,i−1(s)

qi,i(s)
. (7)

of a fictitious feedback system. Figure 1 shows the complete root locus whose
departure and arrival points are, respectively, the roots of the even part and
those of the odd part of p4(s) = s4 + 7s3 + 16.99s2 + 16.95s + 5.94. Since
p4(s) is a Hurwitz polynomial, that is, a polynomial whose roots are all in the
OLHP, the roots of its odd part q4,3(s) alternate with those of its even part
q4,4(s) along the imaginary axis according to the Hermite–Biehler theorem
[22].

The left–hand side of (6) is equal to zero only if both its real and imaginary
parts are equal to zero. For s = ω, these real and imaginary parts coincide
with qi,i( ω) and K qi,i−1( ω), or vice versa. Therefore locus branches may
cross the  ω-axis:
(i) at the imaginary roots of qi,i(s) for K = 0,
(ii) at the imaginary roots of qi,i−1(s) and at infinity for K = ±∞, and
(iii) for finite nonzero values of K when qi,i( ω) = 0 and qi,i−1( ω) = 0
simultaneously.

The last case can be ruled out if we assume qi,i−1(s) and qi,i(s) coprime.
It follows that the number of roots with negative real part, as well as the
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Fig. 1. Complete root locus for q4,4(s) + K q4,3(s) = 0, where q4,4(s) and q4,3

are the even and odd parts of p4(s) = s4 + 15.3s3 + 75.5s2 + 126.3s + 31.5 =
(s + 0.3)(s + 3)(s + 5)(s + 7). The complete root locus is the union of the positive
root locus (K > 0), represented by solid lines, and the negative root locus (K <
0), represented by dashed lines. Since p4(s) is a Hurwitz polynomial, the roots of
q4,3(s) = 15.3s3 + 126.3s = 15.3s(s+ 2.8731)(s− 2.8731), denoted by small circles,
alternate along the imaginary axis with the roots of q4,4(s) = s4 + 75.5s2 + 31.5 =
(s + 0.6477)(s − 0.6477)(s + 8.6649)(s − 8.6649), denoted by ×. The symbol +
denotes the roots of the Hurwitz polynomial p3(s) = s3 + 10.6696s2 + 64.8309s +
31.5013 = (s + 0.5298)(s + 5.0699 + 5.8099)(s + 5.0699 − 5.8099) obtained from
p4(s) according to (10) with P = −1; the point P too is represented by a +. From
(11) the value K−1 taken by the varying parameter K in (6) at the point P = −1
turns out to be K−1 = ρ4 = −q4,4(−1)/q4,3(−1) = 0.7627.

number of roots with positive real part, may change only when the sign of K
changes.

Any point P of the real axis belongs to the complete root locus (6) for the
(real) value

KP := − qi,i(P )

qi,i−1(P )
(8)

of the varying parameter K because the coefficients of qi,i(s) and qi,i−1(s) are
real. In other words, it is always possible to find a linear combination

ℓPi
(s) := qi,i(s) +KP qi,i−1(s), (9)

with KP real, that admits s− P , with P real, as a factor.
The step–down recursion of the Lepschy test determines pi−1(s) by choos-

ing a real point P and factoring out s− P from ℓPi
(s) according to

qi,i(s) +KP qi,i−1(s) = (s− P ) pi−1(s). (10)

From the computational point of view, the most convenient choice is P = −1.
The roots of the polynomial p3(s) = s3 + 10.6696s2 + 64.8309s+ 31.5013 =

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



Stability Tests Revisited 179

(s+0.5298)(s+5.0699+ 5.8099)(s+5.0699− 5.8099) obtained from p4(s) =
s4 + 15.3s3 + 75.5s2 + 126.3s+ 31.5 = (s+ 0.3)(s+ 3)(s+ 5)(s+ 7) according
to (10) with P = −1 are denoted, like the point P itself, by the symbol + in
Figure 1.

4 Polynomial root distribution

When the sign of KP in (8) is equal to the sign of the leading coefficient c of
qi,i−1(s), the numbers of OLHP roots of pi(s) coincides with the number of
OLHP roots of ℓPi

(s) in (9) because in this case both the roots of pi(s) and the
roots of ℓPi

(s) belong to the positive root locus of (6) for sgn(KP ) = sgn(c) = 1
and to the negative root locus of (6) for sgn(KP ) = sgn(c) = −1. Instead, when
sgn(KP ) = − sgn(c) , the number of OLHP roots of pi(s) coincides with the
number of OLHP roots of qi(s) − KP qi,i−1(s) and, thus, with the number of
OLHP roots of ℓPi

(−s) .
If the point P lies on the negative real semi–axis, ℓPi

(s) has the same
number of roots in the closed right half–plane as pi−1(s) but one more OLHP
root, that is, P itself. For P = −1 the parameter KP in (8) takes the value

K−1 = ρi := − qi,i(−1)

qi,i−1(−1)
(11)

which is the ratio between the sum of the even–order coefficients of pi(s) and
the sum of its odd–order coefficients for i even, and vice versa for i odd. If the
monic polynomial pi(s) is Hurwitz, all of the coefficients of pi(s) are positive
so that sgn(ρi) = sgn(c) = 1 and pi−1(s) is Hurwitz too. For instance, the
polynomial p3(s), whose roots are denoted by small squares in Figure 1, is
Hurwitz such as p4(s), from which p3(s) is obtained according to (10) with
P = −1.

From the sequence of the N values ρi , i = 1, 2, · · · , N , computed from the
coefficients of the polynomials pi(s) successively generated according to (10)
with P = −1, it is possible to determine how many roots of the original monic
polynomial pN (s) lie in the OLHP. Precisely, the number of OLHP roots of
pN (s) corresponds to the number of positive entries in the sequence [9]

{ σi :=

N∏

j=i

sgn(ρj) , i = 1, 2, · · · , N }, (12)

similar to the sequence used to determine how many roots lie inside the unit
circle in the discrete–time case [14].

In particular, pN(s) is Hurwitz if and only if

σi > 0 , i = 1, 2, · · · , N, (13)

or, equivalently, if and only if
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180 Umberto Viaro

ρi > 0 , i = 1, 2, · · · , N. (14)

Two examples are worked out in Section 6. The critical cases arising when
either ρi = 0 or ρi = ∞ can be dealt with easily as in [9].

5 An alternative perspective

According to the root–locus–invariance property [18], the complete root locus
for the loop function (7) does not change if the numerator and denominator
polynomials of L(s) are replaced by two linear combinations of qi,i(s) and
qi,i−1(s). Therefore the step–down recursion of the Lepschy algorithm can be
analyzed by referring to the complete root locus departing from the roots of
pi(s) = qi,i(s) + qi,i−1(s) and arriving at the roots of

pi(−s) = (−1)iqi,i(s) + (−1)i−1qi,i−1(s) (15)

since this locus coincides with the complete root locus constructed from the
roots of qi,i(s) and qi,i−1(s). This new choice of departure and arrival points
helps us understand why the complete root locus is symmetric about the
imaginary axis. The equation of the complete root locus (6) can therefore be
rewritten as

pi(s) +K ′ pi(−s) = 0, (16)

where K ′ is the new varying parameter, which is equal to zero at the roots of
pi(s) and to ±∞ at the roots of pi(−s). Correspondingly, the basic step–down
recursion of the Lepschy algorithm (10) becomes

pi(s) +K ′
P pi(−s) = (1 +K ′

P ) (s− P )pi−1(s), (17)

where the factor 1 +K ′
P at the left–hand side is to match the leading coeffi-

cients of both sides of (17) and, taking (10), (15), (16) and (17) into account,
the value K ′

P taken by the new current parameter K ′ at the point P is related
to KP via

K ′
P = − pi(P )

pi(−P )
= −(−1)i 1 −KP

1 +KP
. (18)

If pi(s) is a Hurwitz polynomial, as K ′ increases from 0 to ∞, all i branches
of the positive locus for (16) leave the OLHP roots of pi(s), cross the imag-
inary axis and arrive at the i roots of pi(−s) that are the negatives of the
roots of pi(s). Conversely, as K ′ increases from −∞ to 0, all i branches of the
negative locus return to the OLHP roots of pi(s) after crossing the imaginary
axis. Due to the symmetry of the departure and arrival points, the complete
root locus is symmetric about the imaginary axis, where |K ′| = 1. It follows
that the polynomial at the left–hand side of (16) is Hurwitz for −1 < K ′ < 1,
because for these values of K ′ the roots of pi(s) + K ′ pi(−s) are located in
the same half–plane as the roots of pi(s). If the point P belongs to the left
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real semi–axis, the absolute value of K ′
P in (18) is less than 1 and pi−1(s)

in (17) is Hurwitz such as pi(s). Applying this argument to every polyno-
mial successively generated from a given Hurwitz polynomial pN (s) of degree
N according to recursion (17), we conclude that all of the N values of K ′

P

computed in the N steps of the procedure are included in the open interval
(−1, 1).

Figure 2 shows the complete root locus for p4(s) + K ′ p4(−s) = 0, where
p4(s) is the Hurwitz polynomial p4(s) = s4 +15.3s3 +75.5s2 +126.3s+31.5 =
(s + 0.3)(s + 3)(s + 5)(s + 7) already considered in Figure 1. All of the four
locus branches develop in the OLHP for |K ′| < 1, because these branches pass
through the OLHP roots of p4(s) for K ′ = 0 and may cross the imaginary
axis only for |K ′| = 1. At P = −1 the varying parameter K ′ takes the
value K ′

P = 0.1346. The four roots corresponding to K ′
P = 0.1346, including

P itself, are denoted by the symbol + in Figure 2. The next polynomial
p3(s) in the sequence generated according to (17) with P = −1 is obtained
by factoring s + 1 out of p4(s) + 0.1346 p4(−s) = (s + 1)p3(s) ; specifically,
p3(s) = s3 + 10.6696s2 + 64.8309s + 31.5013 = (s + 0.5298)(s + 5.0699 +
5.8099)(s + 5.0699 − 5.8099), as in the example considered at the end of
Section 3.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 2. Complete root locus associated with the basic recursion of the Lepschy test
constructed from the roots of pi(s), denoted by small ×, and pi(−s), denoted by
small circles, instead of the roots of qi,i(s) and qi,i−1(s). In particular, this figure
depicts the complete root locus of p4(s) + K′ p4(−s) = 0, where p4(s) = s4 +
15.3s3 + 75.5s2 + 126.3s + 31.5 = (s + 0.3)(s + 3)(s + 5)(s + 7) is the polynomial
already considered in Figure 1.The arrival points of this locus are the negatives of its
departure points. The imaginary axis may be crossed only for |K′| = 1. According to
(17) (and to (10) as well) with P = −1, the next polynomial p3(s) in the sequence is
p3(s) = s3 + 10.6696s2 + 64.8309s+ 31.5013 = (s+ 0.5298)(s+ 5.0699+ 5.8099)(s+
5.0699 − 5.8099), whose roots are denoted, like P , by the symbol +. From (18) the
value K′

P taken by the varying parameter K′ at the roots of p3(s) turns out to be
K′

P = −p4(−1)/p4(1) = 0.1346.
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182 Umberto Viaro

The Lepschy test can be considered as the s–domain counterpart of the
Jury test, strictly related to the Levinson algorithm [23], whose basic recursion
can be embedded in a locus that is symmetric with respect to the unit cirle
[24], that is, if a point z belongs to this locus, the point 1/z belongs to it too.

6 Implementation of the Lepschy test

Setting P = −1 in (10) and recalling the definition (11) of ρi, the step–down
recursion of the Lepschy test becomes

(s+ 1) pi−1(s) = qi,i(s) + ρi qi,i−1(s). (19)

Table 1. Table form of the Lepschy test for a polynomial pN (s) of even degree N

s0 s1 s2 s3 s4 · ρi

pN(s) aN,0 aN,1 aN,2 aN,3 aN,4 · ρN

↓ 1 ↓ ρN ↓ 1 ↓ ρN

pN−1(s) aN−1,0
−1
→ aN−1,1

−1
→ aN−1,2

−1
→ aN−1,3 · ρN−1

↓ ρN−1 ↓ 1 ↓ ρN−1

pN−2(s) aN−2,0
−1
→ aN−2,1

−1
→ aN−2,2 · ρN−2

↓ 1 ↓ ρN−2 ↓ 1

· · · ·

↓ ρ3 ↓ 1 ↓ ρ3

p2(s) a2,0
−1
→ a2,1

−1
→ a2,2 ρ2

↓ 1 ↓ ρ2

p1(s) a1,0
−1
→ a1,1 ρ1

↓ ρ1

p0(s) a0,0

The computation of the coefficients of the polynomials
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Stability Tests Revisited 183

pi(s) = ai,is
i + ai,i−1s

i−1 + ai,i−2s
i−2 + · · · + ai,1s+ ai,0 (20)

successively generated by means of (19) can be organized as in Table 1 that
refers to a polynomial pN (s) of even degree N .

Each row of Table 1 is formed from the coefficients of a polynomial. Pa-
rameter ρi, necessary to compute the coefficients of the row for pi−1(s), is the
ratio between the sum of the even–order coefficients of pi(s) and the sum of
its odd–order coefficients if i is even, or vice versa if i is odd, that is,

ρi =
ai,i + ai,i−2 + · · ·
ai,i−1 + ai,i−3 + · · · . (21)

Except for ai,0, which depends only on the coefficient ai+1,0 placed above
it, every coefficient ai,j of the row for pi(s) depends both on the coefficient
ai,j−1 at its left and on the coefficient ai+1,j placed above ai,j . Precisely,
coefficient ai,j , j > 0, is obtained by subtracting ai,j−1 from ai+1,j if i + j is
odd and by subtracting ai,j−1 from ρi+1ai+1,j if i+ j is even.

Even if the Routh table for the same polynomial contains a smaller num-
ber of entries, the Routh and Lepschy tests have the same computational
complexity since the computation of the entries of the Routh table requires a
larger number of operations [9].

Table 2. Lepschy table for the Hurwitz polynomial p4(s) = s4 + 3s3 + 5s2 + 3s+ 1

s0 s1 s2 s3 s4 ρi

p4(s) 1 3 5 3 1 ρ4 =
7

6

↓ 1 ↓ ρ4 ↓ 1 ↓ ρ4

p3(s) 1
−1
→

5

2

−1
→

5

2

−1
→ 1 ρ3 = 1

↓ ρ3 ↓ 1 ↓ ρ3

p2(s) 1
−1
→

3

2

−1
→ 1 ρ2 =

4

3

↓ 1 ↓ ρ2

p1(s) 1
−1
→ 1 ρ1 = 1

↓ ρ1

p0(s) 1
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184 Umberto Viaro

Table 2 shows the array for the Hurwitz polynomial p4(s) = s4 + 3s3 +
5s2 + 3s+ 1. According to condition (14), ρi > 0, i = 4, 3, 2, 1.

Table 3 refers instead to the non–Hurwitz polynomial p3(s) = s3 + 2s2 −
2s+ 1. Since, in this case, ρi < 0, i = 3, 2, 1, the elements of the sequence (12)
for p3(s) are σ1 = −1, σ2 = 1 and σ3 = −1, so that only one root of p3(s) is
in the OLHP.

Table 3. Lepschy table for p3(s) = s3 + 2s2 − 2s+ 1

s0 s1 s2 s3 ρi

p3(s) 1 −2 2 1 ρ3 = −
1

3

↓ ρ3 ↓ 1 ↓ ρ3

p2(s) −
1

3

−1
→ −

5

3

−1
→ 1 ρ2 = −

2

5

↓ 1 ↓ ρ2

p1(s) −
1

3

−1
→ 1 ρ1 = −3

↓ ρ1

p0(s) 1

7 Conclusions

The operation of the Lepschy stability–test algorithm has been described by
means of the root–locus technique that shows how the roots of every polyno-
mial recursively generated by this algorithm are related to the roots of the
polynomial obtained in the preceding step. The computations for determining
the resulting sequence of polynomials can be organized in the Lepschy table.
The number of computations needed to form this table is practically the same
as the number of operations required by the Routh test.

Toni managed the methods and tools of this note in an extremely bril-
liant manner. This author misses Toni’s friendship and advice more than His
unparalleled skill.
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An introduction to quantized control
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Summary. The problem of stabilizing a discrete time linear system by a quantized
feedback with memory is solved in the literature using various approaches, all yield-
ing very similar results in term of the rata rate required to obtain the stabilization.
In fact these techniques are all strictly connected. In this contribution we propose a
unified framework which allows to compare various techniques. This framework sug-
gests also an interesting connection between the synthesis of the quantized feedback
problem and the design of the tree-structured vector quantizers.

1 Introduction

The literature devoted to the quantized feedback stabilization problem and
to stabilization under communication constraints can be divided in two cat-
egories. Some literature restricts to memoryless quantized feedback, whose
analysis proved to be quite hard [2, 4, 5, 3]. The remaining literature allows
instead a memory structure in the control. More precisely, in this case the
control consists in two parts, the first which quantizes the state and encodes
the information in a suitable way, the second which decodes the information
and produces the control action. In fact, even though the results proposed
are quite similar, the controller structures proposed in the various papers dif-
fer quite apparently. In this contribution we propose a unified framework by
which we can compare the various methods proposed in the literature. We use
this framework for deriving in an easy way some convergence results already
presented in the literature [8, 12]. Moreover we show an interesting connection
between quantized control synthesis and the design of tree-structured vector
quantizers [6]. All these facts seem to suggest that the proposed framework is
the most natural in the analysis of quantized control strategies.

Consider a linear discrete time system

xt+1 = Axt +But (1)
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188 Fabio Fagnani and Sandro Zampieri

where xt ∈ Rn, ut ∈ R and where A ∈ Rn×n and B ∈ Rn×m. We want
to control this system by a feedback strategy. However we assume that the
sensor, by which the state xt can be determined, is remotely located and that
a digital noiseless communication channel can be used to transmit data from
the sensor to the controller. The noiseless digital channel is modeled by the
identity map on a finite alphabet Ω. The overall scheme is illustrated in Figure
1.

6

6

��

-ut

xt

ωt

ωt

SYSTEM

SENSOR

DECODER

CHANNEL

ENCODER

Fig. 1. Scheme representing the control under communication constraints

Notice that ωt ∈ Ω is the the signal to be transmitted and so, from the
communication point of view, the important parameter is the cardinality of
the alphabet Ω which is denoted by L.

In the literature it is possible to distinguish two ways for introducing quan-
tized controllers with memory, one based on the concept of hybrid automaton
[1, 12], another one based on the concept of tree structured quantizers [8].

A Hybrid automaton quantized controller

A quantized controller in this set up is given by an encoder

{
s′t+1 = f ′(s′t, xt)
ωt = h′(s′t, xt) ,

(2)

where s′t ∈ S, ωt ∈ Ω, f ′ : S × Rn → S, h′ : S × Rn → Ω and where the sets
S and Ω are finite or denumerable. The decoder coincides with the system

{
s′′t+1 = f ′′(s′′t , ωt)
ut = h′′(s′′t , ωt) ,

(3)

where s′′t ∈ S, ωt ∈ Ω, f ′′ : S × Rn → S, h′′ : S × Rn → Ω. Imposing the
compatibility condition
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An introduction to quantized control 189

f ′(s, x) = f ′′(s, h′(s, x))
h′(s, x) = h′′(s, h′(s, x))

∀x ∈ Rn, s ∈ S (4)

and the synchronized initialization s′0 = s′′0 we have that s′t = s′′t for all
t ≥ 0 and so the couple encoder/decoder can be represented by the quantized
controller with memory 





st+1 = f(st, xt)
ut = k(st, xt)
s0 = s∗ ,

(5)

where f(s, x) = f ′(s, x) and k(s, x) = h′′(s, h′(x, s)). The cardinality of S is
a parameter indicating the computational complexity of the control scheme.
This approach covers the quantized control based on the zooming in/zooming
out strategy proposed in [1] adapted to control under communication con-
straints in [4].

B Tree structured quantized controller

Another class of control under communication constraints methods is based
on the encoder

ωt = k′t(xt;ω0, ω1, . . . , ωt−1) (6)

where ωt ∈ Ω, k′ : Rn × Ωt → Ω and where the set Ω is finite. The decoder
is given by

ut = k′′t (ωt;ω0, ω1, . . . , ωt−1) (7)

where k′′ : Ωt+1 → R. Imposing that the map k′′t (·;ω0, ω1, . . . , ωt−1) : Ω →
R is invertible, then the couple encoder/decoder can be represented by the
quantized controller with memory

ut = kt(xt;u0, u1, . . . , ut−1) (8)

where k : Rn × Rt → R. Notice that also in this case ωt is the the signal
to be transmitted and the cardinality L of Ω is the relevant parameter from
the communication point of view. This approach covers the control under
communication constraints as proposed in [8].

C The relation between these quantized control schemes

In fact, the two schemes modeling the control under communication con-
straints are essentially equivalent even though they highlight different aspects
of the problem.

Starting from an encoder/decoder pair (2,3), the synchronization s′t = s′′t
for all t ≥ 0 implies that ωt can be obtained from xt, ωt−1, ωt−2, . . . , ωt−k, s

′′
t−k

for all k and so ωt is a function of xt, ωt−1, ωt−2, . . . , ω0. In the same way it
can be shown that ut can be obtained from ωt, ωt−1, ωt−2, . . . , ωt−k, s

′′
t−k for

all k and so ut is a function of ωt, ωt−1, ωt−2, . . . , ω0.
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190 Fabio Fagnani and Sandro Zampieri

Conversely, is we consider an encoder/decoder pair (6,7), in order to pass
to an an encoder/decoder pair like (2,3) we need to define S := Ω∗ namely the
set of finite strings on the alphabet Ω. In this way it is clear how to construct
the maps f ′, f ′′, h′, h′′ from k′ and k′′. Notice that in this case we need to
impose that S is denumerable.

Despite the equivalence between these two approaches, these seems to be
convenient for solving different problems related to quantized control. The first
approach (5) is more convenient when it is necessary to restrict the controller
complexity [4, 1]. The second approach instead seems to be more flexible when
determining the best way to use the allowed rate to achieve stabilization [8, 12]
or optimal control [7].

D Estimation and control: a separation principle

All the control quantized control strategies proposed in the literature have a
supplementary structure, namely they are based on the preliminary estimation
of the state of the system. Namely the control in the decoder is computed from
the estimate x̂t of the state

ut = Ktx̂t

Notice that x̂t will depend on x0 as well on the sequence of controls u0, . . . , ut−1

so on the feedback matrices Kt. We say that we have a separation principle, if
the quantized state estimator is constructed in such a way that et := xt − x̂t

does not depend on the feedback matrices Kt. In this case the closed loop
system takes the form

xt+1 = Axt +BKtx̂t = (A+BKt)xt −BKtet

The effects of the control strategy and of the estimation process in the closed
loop system is now very easily analyzed. For instance, if et converges to 0 ex-
ponentially, and Kt is an exponentially stabilizing feedback, than xt converges
to 0 exponentially.

Quantized controller based on the separation principle can be obtained
using both in the hybrid automaton strategy and in the tree structured quan-
tization strategy.

In the hybrid automaton strategy the encoder will have the following form
{
s′t+1 = f ′(s′t, xt, ut)
ωt = h′(s′t, xt, ut)

(9)

while the decoder/estimator will have the following form
{
s′′t+1 = f ′′(s′′t , ωt, ut)
x̂t = g′′(s′′t , ωt, ut)

(10)

Notice that, differently for above, the two systems need the knowledge of ut.
This can be obtained by the knowledge of of the matrices Kt and from the
fact that ut = Ktx̂t, since x̂t is known on both sides.
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An introduction to quantized control 191

In the tree structured quantization strategy instead the encoder has the
following form

ωt = k′t(xt;ω0, ω1, . . . , ωt−1, u0, u1, . . . , ut−1) (11)

while the decoder/estimator will have the following form

x̂t = k′′t (ωt;ω0, ω1, . . . , ωt−1, u0, u1, . . . , ut−1) (12)

Also in this case the observation we made above about the knowledge holds
true. The overall scheme is illustrated in Figure 2.

�

�

6

6

��

- -utx̂t

xt

ωt

ωt

SYSTEMut = Ktxt

SENSOR

DECODER

CHANNEL

ENCODER

Fig. 2. Scheme representing the control under communication constraints with the
estimator

We will show in the sequel two examples of quantized controller satysfying
the separation principle.

2 Tree-structured quantized controllers satisfying the
separation principle

In this section we will describe a quantized controller with memory in the
form of a tree-structures quantizer which can be expressed as the connection
of a quantized estimator and a standard state feedback. This approach has
been proposed first by Nair and Evans in [8].

Consider again an encoder/decoder-controller of the form (6,7). With it
we can associate in a natural way a family of partitions of the space Rn

which contain all the relevant information on the control scheme. Indeed, it
is clear that by connecting the system (1) with the quantized controller (6,7)
we obtain a closed loop systems in which the state evolution xt is completely
determined by the initial condition x0. This implies that from the closed loop
system we can obtain a family of maps φt : Rn → Ωt such that
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192 Fabio Fagnani and Sandro Zampieri

(ω0, ω1, . . . , ωt−1) = φt(x0) .

Clearly, the maps φt are quantized and if we denote by It the corresponding
partition of Rn into quantization regions, we clearly have that the quantization
regions of It+1 are obtained by partitioning the quantization regions of It,
equivalently, each quantization region of It is the union of quantization regions
of It+1. A family of partitions of this type is said to be a tree-structured. The
number of quantization subsets νt in It is called the complexity sequence of
the family It. Notice that we always have that νt ≤ Lt for every t.

Given a partition I of Rn, a quantized map q : Rn → A is said to be
adapted to I if q is constant on the sets of I. A family of vector quantizers
qt : Rn → Rn which are adapted to a tree-structured sequence of partitions,
is called tree-structured vector quantizers. Tree-structured vector quantizers
are quite classical in the theory of vector quantization and source coding (see
[6] and they are also related with some wavelet based quantization methods
[10]. There are not many results proposed in the literature on the asymptotic
performances of this class of quantizers (see [9]).

We now show how we can construct quantized control schemes satisfy-
ing the separation principle using these families of quantizers. Suppose we
have tree-structured quantizers qt. Once we choose the family of controls
u0, . . . , ut−1, we have that

xt = Atx0 +At−1Bu0 + · · · +But−1

From the quantizers qt we can construct an estimator of xt by simply defining

x̂t = Atx̂0|t +At−1Bu0 + · · · +But−1

where
x̂0|t := qt(A

−t(xt −At−1Bu0 − · · · −But−1)) = qt(x0)

The estimation error et = xt − x̂t, satisfies

et = At(qt(x0) − x0)) , t ∈ N

and it does not depend on the particular control strategy. If the tree-structured
quantizers are chosen in such a way that

et = At(qt(x0) − x0)

tends to zero as t→ +∞, and if the controls are chosen according to an expo-
nentially stabilizing feedback law ut = Ktx̂t, we will obtain that closed loop
system is exponentially stable. The only point that remains to be proven is
that this control strategy can be represented as in (6,7). This can be seen as
follows. Since the quantizers are tree-structured, we can represent a quanti-
zation region I of qt by a length t string on the alphabet Ω := {1, . . . , L} in
such a way that any quantization subregion I ′ of I will be represented by a

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



An introduction to quantized control 193

length t + 1 string obtained by adding a letter to the string associated with
I. More formally, there exists two maps

ψt : Rn → Ω
φt : Ωt → Rn

such that
qt(x0) = φt(ψ0(x0), . . . , ψt(x0)) (13)

Now we define

ωt = ψt(A
−t(xt −At−1Bu0 − · · · −But−1))

x̂0|t = φt(ω0, . . . , ωt)
x̂t = Atx̂0|t +At−1Bu0 + · · · + But−1

(14)

Notice that the encoder consists in the first equation, while the decoder/
estimator consists of the last two equations.

3 Hybrid automaton quantized controllers satisfying the
separation principle

In this section we will describe a quantized controller with memory in the form
of hybrid automaton which can be expressed as the connection of a quantized
estimator and a standard state feedback. This approach has been proposed
first by Tatikonda in [11, 12].

Let qL : [−1, 1] → R be the uniform quantizer defined as follows. When L
is odd, then

qL(x) := 2k/L if (2k − 1)/L ≤ x ≤ (2k + 1)/L

while when L is even, then

qL(x) := (2k + 1)/L if 2k/L ≤ x ≤ (2k + 2)/L

It is easy to see that that qL has L quantization intervals and that |x−q(x)| ≤
1/L for all x such that |x| ≤ 1.

Let Q := {x ∈ Rn| ||x||∞ ≤ 1}. Fix a n-tuple of integers L1, . . . , Ln and
define the quantizer

q : Q→ Rn : (x1, . . . , xn) 7→ (qL1(x1), . . . , qLn
(xn))

The state estimator works as follows. Its state is given by the estimates x̂t

and the scaling matrix St. It is convenient to split it into two sections. The
first section is {

x̂t+1|t = Ax̂t|t +But

St+1|t = ASt|t
(15)

while the second section is
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194 Fabio Fagnani and Sandro Zampieri

{
x̂t+1|t+1 = St+1|tq(S

−1
t+1|t(xt+1 − x̂t+1|t)) + x̂t+1|t

St+1|t+1 = St+1|tD
−1 (16)

where D := diag{L1, . . . , Ln}, if S−1
t+1|t(xt+1 − x̂t+1|t) ∈ Q, and

{
x̂t+1|t+1 = x̂t+1|t
St+1|t+1 = St+1|tΓ

(17)

otherwise, where Γ is a suitable (expansion) matrix. We impose x0|0 = 0 and
S0|0 = I. By letting x̂t := x̂t|t and St = St|t we obtain the equantions

{
x̂t+1 = AStq(S

−1
t (xt − x̂t)) +Ax̂t +But

St+1 = AStD
−1 (18)

if S−1
t (xt − x̂t) ∈ Q, and

{
x̂t+1 = Ax̂t +But

St+1 = AStΓ
(19)

otherwise. Finally we let ut = Ktx̂t.
Observe that, if we define et = xt − x̂t then

{
et+1 = Aet −AStq(S

−1
t et)

St+1 = AStD
−1

if S−1
t (et) ∈ Q, and {

et+1 = Aet

St+1 = AStΓ

otherwise. This shows that et is independent of ut and so that the separation
principle holds true. Observe moreover that, if Γ is chosen expanding enough,
then the dynamics will consist first in a some number of zooming out steps in
which St+1 = ΓASt. Then after a certain number of steps we will have that
S−1

t (et) ∈ Q. It is easy to verify that, if S−1
t (et) ∈ Q, then S−1

t+1(et+1) ∈ Q.
To obtain convergence it is sufficient to choose Γ, S0 and L1, . . . , Ln in such
a way that St → 0.

We show finally how to adapt the proposed quantized estimator into the
form (9,10). First define L :=

∏
Li and Ω := {0, 1, . . . , L}. We can find

maps η : Rn → Ω and q̄ : Ω → Rn such that η(x) = 0 iff x 6∈ Q and such
that q(x) = q̄ ◦ η(x) for all x ∈ Q. The states of both the encoder and of
the decoder/estimator is given by (x̂t, St) The encoder state updating map
coincides with the maps given by (18,19). The output map is

ωt = η(S−1
t (xt − x̂t))

The state state updating map of the decoder/estimator is given by
{
x̂t+1 = AStq̄(ωt) +Ax̂t +But

St+1 = AStD
−1
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An introduction to quantized control 195

if ωt 6= 0, and {
x̂t+1 = Ax̂t +But

St+1 = AStΓ
(20)

if ωt = 0. The output is trivial since the estimate x̂t is a part of the de-
coder/estimator state.

4 Optimal tree-structure vector quantizers and
quantized LQ optimal control

In this section we introduce a way of defining an optimal family of tree-
structure vector quantizers and we will show that this concept is strictly con-
nected with the quantized linear quadratic optimal control problem.

Given a random vectorX in Rn and two families of matrices P0, P1, . . . , PM−1 ∈
Rd×n and R0, R1, . . . , PM−1 ∈ Rd×l we say that a complexity L family of tree-
structure vector quantizers q0, q1, . . . , qM−1 on Rn is optimal with respect to
X and to P0, P1, . . . , PM−1 and R0, R1, . . . , PM−1 if they minimize the index

E{
M−1∑

t=0

(PtX −Rtqt(X))T (PtX −Rtqt(X))} (21)

over all possible complexity L families of tree-structure vector quantizers.
Consider now the following control problem. Given the discrete time linear

system (1), find the quantized controller

ut = kt(xt;u0, u1, . . . , ut−1) t = 0, 1, . . . ,M − 1

with L quantization regions minimizing the cost function

JM = E{
M−1∑

t=0

(xT
t Qxt + uT

t Rut) + xT
MSxM} (22)

where the expected value is done with respect to the probability density of
the initial condition x0. We assume as usual that Q ∈ Rn×n is positive semi-
definite, while R ∈ Rm×m is positive definite.

Using standard Riccati difference equation arguments, it is possible to find
M ∈ Rn×n and K0,K1, . . . ,KM−1 ∈ R1×n and N0, N1, . . . , NM−1 ∈ R such
that

JM = E{xT
0Mx0 +

M−1∑

t=0

(Ntut −Ktxt)
T (Ntut −Ktxt)}

where the matrices Nt are invertible. Letting

kt(xt;u0, u1, . . . , ut−1) := N−1
t (At−1Bu0 + · · · +But−1)+

+qt(xt −AtBu0 − · · · −But−1)
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196 Fabio Fagnani and Sandro Zampieri

the cost becomes

JM = E{xT
0 Mx0 +

M−1∑

t=0

(Ptx0 −Rtqt(x0))T (Ptx0 −Rtqt(x0))}

where Pt := KtA
t and Rt = Nt. Now choose q0, q1, . . . , qM−1 as an op-

timal family of tree-structure vector quantizers with respect to x0 and to
P0, P1, . . . , PM−1 and R0, R1, . . . , RM−1.

Observe conversely that, once a family of quantized feedback maps kt(xt;
u0, u1, . . . , ut−1), t = 0, 1, . . . ,M−1 is fixed, the sequence of inputs u0, u1, . . . ,
um is uniquely determined from x0. Hence, we can define the family of vector
quantizers

qt : Rn → Rm

x0 7→ qt(x0) = ut −N−1
t (At−1Bu0 − · · · −But−1)

Notice that the family of vector quantizers so defined is tree-structured. Notice
moreover that, the feedback maps kt(xt;u0, u1, . . . , ut−1) minimize the cost
function (22), if and only if the quantizers q̄t minimize the cost function (21).

5 Application to the scalar case

In this section we use a sequence of tree-structured quantizers in the construc-
tion of a quantized control like (8).

We propose here a simple construction of tree-structured sequence of quan-
tizers on R whose performance can be analyzed quite simply. The construction
of the sequence of quantizers qt is based of the construction of the sequence
of partitions It of R which of them having Lt subsets and such that It+1 is a
refinement of It. The construction is recursive. Fix D > 0 and ρ > 1. Define

I0 := {R}

Assume now that we are given the partition It and assume by induction that

It = {I1, . . . , IN , J ′, J ′′}

such that Ii are finite intervals such that ∪Ii = [−Dρt, Dρt] and J ′ =
(−∞,−Dρt], J ′′ = [Dρt,+∞). Then It+1 is obtained by cutting each interval
Ii into L equal pieces and J ′, J ′′ into 2(L− 1) equal finite pieces plus the two
half straight lines (−∞,−Dρt+1] and [Dρt+1,+∞).

From partition It we define the quantizer qt as follows:
For every x ∈ I, with I finite subset in It, we let qt(x) be the center of I,
while when I is not finite simply we let qt(x) = 0.

It is clear that these quantizers are very rough and could be improved
much from the knowledge of the probability density p(x) of X . In any case it
can be obtained the following asymptotic result when p(x) satisfies a certain
condition.
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An introduction to quantized control 197

Lemma 1. Assume that the random variable X has a probability density p(x)
such that

|p(x)| ≤ C|x|−α (23)

where C,α are positive constants such that α > 3. Let q0, q1, . . . , qt, . . . be the
sequence of tree-structured quantizers constructed above. Assume finally that
L2 6= ρ(3−α). Then

E|X − qt(X)|2 ≤ K1L
−2t +K2ρ

(3−α)t

where K1,K2 are suitable positive constants.

Consider the scalar linear discrete time system

xt+1 = axt + ut (24)

where xt, ut ∈ R. Apply the quantized control proposed in the previous section
starting from the tree structured family of quantizers proposed above. Then
we have the following result.

Corollary 1. Assume that probability density of x0 satisfies condition (23)
and consider the quantized estimator (14) with controller ut = −ax̂t. Then

E(x2
t ) ≤ K1

(
a2

L2

)t

+K2(a2ρ(3−α))t

where K1,K2 are suitable positive constants.

It is clear from the corollary that if a < L and a < ρ
α−3

2 , then E(x2
t )

converges to zero. If ρ
α−3

2 < L, then the convergence rate is a2/L2.

6 Zooming quantized controllers

In this section we analyze the performances of the zooming quantized feedback
scheme which is an instance of the quantized control (5). Consider the system
(24) and a quantized controller (5) with S := {Dρh(a/L)k|h, k ∈ N} and

f(s, x) =

{
L−1s if −s ≤ x ≤ s
ρs otherwise

k(s, x) = −asq(x/s)
s0 = D ,

(25)

where q : R → R is a uniform quantized feedback with L quantization intervals
such that |y− q(y)| ≤ 1/L if |y| ≤ 1. In this context the following result holds
true which shows that this quantizer has the same performance as the one
proposed in the previous section in a completely different context. Notice
that the proof of this result is much harder than the one given in the previous
section [12].
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198 Fabio Fagnani and Sandro Zampieri

Proposition 1. Assume that probability density of x0 satisfies condition (23).
Consider the quantized controllers (25). Then

E(x2
t ) ≤ K1

(
a2

L2

)t

+K2(a2ρ(3−α))t

where K1,K2 are suitable positive constants.

7 General lower bounds on the stability rate

Consider the system (1) and assume now that the initial state x0 is described
by the probability density p(x). We want to evaluate the evolution of E[xT

t xt]
and t → ∞. A well-known general inequality of information theory provides
a useful lower bound on E[xT

t xt] based on properties the differential entropy.
Given a random vector X with values in Rn and density function f(x), its

differential entropy is defined as

h(X) := −
∫
f(x) log f(x)dx

If a random vector U is singular namely it assumes a finite number of values
u1, . . . , uN , then we have to consider its entropy defined as

H(U) := −
∑

P[U = ui] log P[U = ui]dx

A joint probability description of X and U is given by the family of unnor-
malized densities

f(x, ui) :=
∂

∂x
P[X ≤ x, U = ui]

In fact for any A ⊂ Rn × Rn, we have that

P[(X,U) ∈ A] =
∑∫

Ai

f(x, ui)dx

where Ai := {x ∈ Rn|(x, ui) ∈ A}. We can now introduce the following hybrid
definitions of entropies

h(X,U) := −
∑∫

f(x, ui) log f(x, ui)dx

h(X |U) := −
∑∫

fX|ui
(x, ui) log fX|ui

(x, ui)dx

where

fX|ui
(x, ui) :=

∂

∂x
P[X ≤ x|U = ui] =

f(x, ui)

P[U = ui]

Through these definitions it is possible to obtain all the classical inequalities
on entropies, obtaining in this way the following result.
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An introduction to quantized control 199

Lemma 2. Let X,U be two random vectors in Rn and assume that U is dis-
crete namely it assumes finitely many values. Then

h(X + U) ≥ h(X) −H(U)

Proof. By using the extensions of the classical inequalities on differential en-
tropies we have that

h(X + U) ≥ h(X + U |U) = h(X |U) =

= h(X,U) − h(U) ≥ h(X) − h(U)

Consider now the system (1) controlled by (5) or by (8). Then we have
that

xt = Atx0 +

t−1∑

i=0

At−1−iBui

which implies that

h(xt) ≥ h(Atx0) −H(

t−1∑

i=0

At−1−iBui)

Notice that
∑t−1

i=0 A
t−1−iBui may assume at most Lt values and so

H(

t−1∑

i=0

At−1−iBui) ≤ t logL

Moreover, assuming that A is invertible, we have that

h(Atx0) = h(x0) + t log |A|

where |A| is the absolute value of the determinant of A. This yields

h(xt) ≥ h(x0) + t log
|A|
L
.

Finally, using the fact that for any random vector X we have that

E[XTX ] ≥ n

2πe
e

2
n h(X)

we obtain that

E[xT
t xt] ≥

n

2πe
e

2
n

h(x0)

( |A|
L

) 2
n

t

This inequality proves that if |A| ≥ L we can not achieve convergence.
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200 Fabio Fagnani and Sandro Zampieri

8 Conclusions

In this paper we gave a brief introduction to the theory of quantized controller
and its relations with the theory of control under communication constraints.
We presented two approaches to this problem which are generally used also
in all most of the literature devoted to this topic. We showed moreover that
both these approaches to quantized control are in fact based on the design of
a quantized state estimator plus a linear state feedback controller.

Finally we highlighted the relation between one quantized control approach
and the theory of tree structure vector quantizer. Through this relation, we
were able to translate the linear quadratic quantized optimal control prob-
lem into an optimal tree structure quantization problem. Moreover, by using
elementary entropy inequalities from information theory we showed a simple
lower bound on the rate which is necessary to stabilize a linear system.
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My memory of Antonio Lepschy is indissolubly tied to the years of

my doctoral studies, when I enjoyed his lessons and, meanwhile, ap-

preciated the noble character and the highest moral standards that

shaped them.

Summary. This contribution is focused on a geometric methodology devised
to achieve optimization, expressed as the minimization of the ℓ2 norm of
the tracking error, of regulation transients caused by instantaneous, wide pa-
rameter variations occurring in discrete-time, linear systems. The regulated
system switching law is assumed to be completely known a priori in a given
time interval. A set of feedback regulators, designed according to the internal
model principle, guarantee closed-loop asymptotic stability and asymptotic
tracking of the reference signal generated by an exosystem, for each regulated
system (i.e., for each pair to-be-controlled system/exosystem). The compen-
sation scheme for optimization of transients consists of feedforward actions
on the regulation loop and switching policies for suitably setting the states of
the feedback regulators and those of the exosystems at the switching times.
The theoretical bases of this approach comprise (i) a geometric interpreta-
tion, specifically aimed at discrete-time stabilizable and detectable systems,
of the multivariable autonomous regulator problem and (ii) a non-recursive
solution, still aimed at discrete-time stabilizable systems, of the finite-horizon
optimal control problem with final state weighted by a generic quadratic func-
tion, based on a characterization of the structural invariant subspaces of the
associated singular Hamiltonian system holding on the sole, fairly general,
assumptions that guarantee the existence of the stabilizing solution of the
corresponding discrete algebraic Riccati equation.
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202 Elena Zattoni

1 Introduction

A wise handling of the transients caused by severe parameter changes occur-
ring in the regulated systems is crucial in a large number of control applica-
tions: e.g., in chemical or petrochemical plants, the processes may be subject
to planned modifications; in numerical control of machine tools, the profiles
to be tracked may be obtained by a set of appropriately switched exosystems;
in flight and underwater vehicle control, the features of the systems involved
may be subject to relevant adjustments during the course of the manoeuvres.
A feedback regulator designed according to the well-known principles set forth
in [1] and [2] attains closed-loop asymptotic stability and asymptotic tracking
of the reference signals for sufficiently small parameter variations. However,
in the presence of drastic changes of the regulated system parameters, control
strategies specifically aimed at cancelling or minimizing the effects of those
changes are required.

A set of sufficient conditions for perfect elimination of regulation tran-
sients in continuous-time linear systems subject to large parameter jumps
was shown in [3]: in particular, that set includes a stabilizability condition
which requires the to-be-controlled systems to be minimum-phase systems.
In the later contribution [4], a sharper stabilizability condition was proved,
where internal stabilizability of a peculiar robust controlled invariant sub-
space was considered. Nonetheless, the requirement of perfect elimination of
regulation transients and the consequent geometric conditions which are suffi-
cient to achieve it turn out to be too restrictive for many applications. Hence,
in this work, the specification of exact elimination of regulation transients
is replaced by a milder one, namely the minimization of the ℓ2 norm of the
tracking error caused by parameter variations. Moreover, any preview of the
switching law available within a certain time interval is exploited, which fur-
ther enhances the achievable performance. In these aspects, this work extends
to switching systems the approach recently developed in other contexts, like
signal rejection in particular (see e.g. [5, 6, 7]).

The theoretical bases for ℓ2-optimization of regulation transients set forth
in this work are twofold. First, some results on the geometric interpretation
of the multivariable autonomous regulator problem, derived from the ear-
lier works [4] and [8], point out the invariant subspaces (hence, the state
trajectories) corresponding to the zero-error, steady-state condition for each
autonomous extended system (i.e., for each pair regulated system/feedback
regulator) of the set of the switched systems. Then, a technique, whose details
were discussed further in [9], provides an analytic, non-recursive solution to a
discrete-time finite-horizon optimal control problem with final state weighted
by a generic quadratic function. This is crucial in defining a global crite-
rion whose minimization leads to the feedforward control actions steering the
state of the regulated system along trajectories that approach, in the optimal
sense, the ideal trajectories on the invariant subspaces. Both the abovemen-
tioned aspects rely on an extensive use of geometric and structural concepts,
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Geometric Methods for Output Regulation 203

in the framework established and shared in some rather recent books like,
e.g., [10, 11, 12, 13, 14].

As mentioned above, discrete-time, stabilizable systems are specifically ad-
dressed. Removing the assumption of controllability which, by converse, was
a standing assumption in [8], is natural when dealing with this kind of sys-
tems, since systems that switch from one configuration to another are likely
to include uncontrollable (stable or pre-stabilized) parts. Moreover, address-
ing discrete-time systems better conforms to the industrial applications that
motivate this work. Further, the discrete-time case is more appealing than the
continuous-time case, since the solution, which, as will be shown, includes both
feedforward controllers and state switching policies, turns out to be directly
implementable as a single digital controller.

Notation: The symbols Z+
0 , Z+, R are used for the sets of nonnegative

integer numbers, positive integer numbers, real numbers, respectively. The
symbols C◦, C⊙, C⊗ are used for the unit circle, the open set inside the unit
circle, the open set outside the unit circle in the complex plane C. Sets, vector
spaces, and subspaces are denoted by capital script letters. The quotient space
of a vector space X over a subspace V ⊆X is denoted by X/V . Matrices and
linear maps are denoted by capital slanted letters. The restriction of a linear
map A to an A-invariant subspace J is denoted by A|J . The spectrum, the
image, and the kernel of A are denoted by σ(A), imA, and kerA, respectively.
The symbols A−1, A†, and A⊤ are used for the inverse, the Moore-Penrose
inverse, and the transpose of A. The symbols I and O are used for an identity
matrix and a zero matrix of appropriate dimensions.

2 Optimization of Regulation Transients: Problem
Formulation

The basic structure of the control scheme for ℓ2-optimization of regulation
transients is that of the multivariable autonomous regulator established in [2],
with a replica of the exosystem eigenstructure for each regulated output. In
addition, feedforward actions on the regulation loop and switching policies
for the state of the feedback regulator and for the state of the exosystem are
considered (see Fig. 1).

The symbol L= {1, 2, . . . , nℓ} denotes a finite index set. {Σ1(ℓ), ℓ∈L} =
{(A1(ℓ), B1(ℓ), C1(ℓ)), ℓ∈L}, with A1(ℓ)∈Rn1×n1 , B1(ℓ)∈Rn1×p, and C1(ℓ)
∈Rq×n1 , denotes the set of the to-be-controlled systems.

The pairs (A1(ℓ), B1(ℓ)) are assumed to be stabilizable for all ℓ∈L.
{Σ2(ℓ), ℓ∈L} = {(A2(ℓ), E2(ℓ)), ℓ∈L}, with A2(ℓ)∈Rn2×n2 , E2(ℓ)∈Rq×n2 ,
and σ(A2(ℓ))⊂C⊗ ∪C◦, denotes the set of the exosystems. In particular, for
any ℓ∈L, the matrices A2(ℓ) and E2(ℓ) should respectively have the structure
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Σ2(ℓ)

Σr(ℓ)
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Fig. 1. Block diagram for ℓ2-optimization of regulation transients.

A2(ℓ) =





J(ℓ) O . . . O

O J(ℓ)
. . .

...
...

. . .
. . . O

O . . . O J(ℓ)





} 1
} 2
...

...
} q

, E2(ℓ) =





e1(ℓ)⊤ O . . . O

O e2(ℓ)⊤
. . .

...
...

. . .
. . . O

O . . . O eq(ℓ)⊤




,

where J(ℓ)∈RnJ×nJ , with ℓ∈L, denote the elementary Jordan block of the
exosystem and ej(ℓ), with j= 1, . . . , q and ℓ∈L, denote given vectors in RnJ ,
in order for the exosystem to produce, for any initial state, indipendent refer-
ence signals for each regulated output of Σ1(ℓ). {Σ(ℓ), ℓ∈L}= {(A(ℓ), B(ℓ),
E(ℓ)), ℓ∈L} denotes the set of the regulated systems , defined as the connec-
tion of Σ1(ℓ) and Σ2(ℓ) such that, with x= [x⊤1 x⊤2 ]⊤, x1 ∈Rn1 , x2 ∈Rn2 ,
u∈Rp, and e∈Rq, the state equations are

xk+1 = A(ℓ)xk +B(ℓ)uk, (1)

ek = E(ℓ)xk, (2)

where

A(ℓ) =

[
A1(ℓ) O
O A2(ℓ)

]
, B(ℓ) =

[
B1(ℓ)
O

]
, E(ℓ) =

[
E1(ℓ) E2(ℓ)

]
, (3)

with E1(ℓ) =−C1(ℓ). The pairs (A(ℓ), E(ℓ)) are assumed to be detectable for
ℓ∈L. {Σr(ℓ), ℓ∈L} = {(N(ℓ),M(ℓ), L(ℓ),K(ℓ)), ℓ∈L}, with N(ℓ)∈Rm×m,
M(ℓ)∈Rm×q, L(ℓ)∈Rp×m, K(ℓ)∈Rp×q, denotes the set of the feedback regu-
lators , designed according to the internal model principle, so that, with z ∈Rm

and vR ∈Rp, the state equations are

zk+1 = N(ℓ)zk +M(ℓ)ek, (4)

vRk
= L(ℓ)zk +K(ℓ)ek. (5)
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Geometric Methods for Output Regulation 205

Moreover, {Σ̂(ℓ), ℓ∈L}= {(Â(ℓ), Ê(ℓ)), ℓ∈L} denotes the set of the autono-
mous extended systems , defined as the connection of Σ(ℓ) and Σr(ℓ) such
that, with x̂= [x⊤1 x⊤2 z⊤]⊤, the state equations are

x̂k+1 = Â(ℓ)x̂k, (6)

ek = Ê(ℓ)x̂k, (7)

where

Â(ℓ) =




A1(ℓ) +B1(ℓ)K(ℓ)E1(ℓ) B1(ℓ)K(ℓ)E2(ℓ) B1(ℓ)L(ℓ)

O A2(ℓ) O
M(ℓ)E1(ℓ) M(ℓ)E2(ℓ) N(ℓ)



 , (8)

and
Ê(ℓ) =

[
E1(ℓ) E2(ℓ) O

]
. (9)

The control time window is defined as the discrete-time interval [kpre, kpost),
where kpre = 0 and kpost ∈Z+ are assumed. The regulated-system switching law
is defined as a sequence ϕ : [0, kpost) → L, such that the set

K = {ki ∈ (0, kpost) : ϕ(ki) 6= ϕ(ki − 1), with ki < ki+1, i = 1, 2, . . . , N − 1}

defines the finite, ordered set of the switching times (consistency of the above
definitions implies that N <kpost). The feedforward control on the to-be-
controlled systems is defined as a sequence v : [0, kpost)→Rp. The feedforward
control on the feedback regulators is defined as a sequence w : [0, kpost)→Rq.
The feedback regulator state switching policy is defined as a sequence ψ :K→
Rm. The exosystem state switching policy is defined as a sequence φ :K→Rn2 .

The overall system outlined so far is subject to the following conditions:

C1.known initial zero-error steady-state condition: i.e., the regulated system
is in a zero-error, steady-state condition at the time kpre = 0 and its state
x0 = xo is known;

C2.consistency of the state of the to-be-controlled system: i.e., in particular,
the state of the to-be-controlled system at the switching times ki ∈K is
computable as

x1ki
=A1(ϕ(ki − 1))x1ki−1

+B1(ϕ(ki − 1))uki−1,

for all ki ∈K.

In this context, the problem of ℓ2-optimization of the regulation transients
with preview is stated as follows.

Problem 1. Given the set of regulated systems {Σ(ℓ), ℓ∈L}, the set of feed-
back regulators {Σr(ℓ), ℓ∈L}, and the regulated system switching law ϕ, find

(i) a feedforward control v on the to-be-controlled systems,
(ii) a feedforward control w on the feedback regulators,
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+

_

















Σ1(ℓ)

Σ2(ℓ)

Σr(ℓ)

Σ(ℓ)

Σ̂(ℓ)

e

u

r

y

Fig. 2. Block diagram for the multivariable autonomous regulator problem.

(iii) a switching policy ψ of the state of the feedback regulators,
(iv) a switching policy φ of the state of the exosystems,

such that

‖e‖ℓ2 =

( ∞∑

k=0

e⊤k ek

)1/2

,

be minimal, on Conditions C1 and C2.

3 Geometric Characterization of the Multivariable
Autonomous Regulator Problem

The solution of Problem 1 that will be discussed in Sect. 4 relies on the geo-
metric interpretation of the multivariable autonomous regulator problem first
presented for continuous-time, controllable and observable systems in [8] and
lately extended to discrete-time, stabilizable and detectable systems in [4].
Some fundamental results shown in the abovementioned works are briefly re-
viewed herein with reference to the generic, ℓ-th autonomous extended system
Σ̂(ℓ), modeled by (6)–(9) and depicted in Fig. 2.

The multivariable autonomous regulator problem is stated in geometric
terms as follows.

Problem 2. Given the regulated system (1)–(3), find a feedback regulator
(4)–(5) such that, for the autonomous extended system (6)–(9), a Â(ℓ)-
invariant subspace L̂(ℓ) exists, which satisfies

(i) L̂(ℓ)⊆ Ê(ℓ), where Ê(ℓ) = ker Ê(ℓ);

(ii) σ(Â(ℓ)|X̂/L̂(ℓ))⊂C⊙, where X̂ denotes the state space of (6)–(9).

The following theorem provides a set of necessary and sufficient conditions
for solvability of Problem 2 functional to the further developments. In order
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to express those conditions, the subspace P̂ ⊆ X̂ is introduced through the
following definition:

P̂ = im P̂ = im




I O
O O
O I



 .

Since Â(ℓ)P̂ = P̂ Ŝ(ℓ) holds with

Ŝ(ℓ) =

[
A1(ℓ) +B1(ℓ)K(ℓ)E1(ℓ) B1(ℓ)L(ℓ)

M(ℓ)E1(ℓ) N(ℓ)

]
,

the subspace P̂ is Â(ℓ)-invariant and σ(Â(ℓ)|P̂ ) =σ(Ŝ(ℓ)): i.e., the internal

eigenvalues of P̂ match the poles of the regulation loop.

Theorem 1. Problem 2 is solvable if and only if, for some regulator (4)–(5),
a Â(ℓ)-invariant subspace Ŵ(ℓ) exists, such that

(i) Ŵ(ℓ)⊆ Ê(ℓ);

(ii)Ŵ(ℓ)⊕ P̂ = X̂ ;

(iii)σ(Â(ℓ)|X̂/Ŵ(ℓ))⊂C⊙.

Proof. If. For some regulator (4)–(5), let a Â(ℓ)-invariant subspace Ŵ(ℓ)⊆X̂ ,
satisfying conditions (i)–(iii), exist. Then, Problem 2 is solvable, since condi-
tions (i)–(ii) of the problem statement are satisfied with L̂(ℓ) = Ŵ(ℓ).

Only if. Let Problem 2 be solvable, so that, for some regulator (4)–(5), a
Â(ℓ)-invariant subspace L̂(ℓ)⊆X̂ , satisfying conditions (i)–(ii) of Problem 2,
exists. Let Ŵ(ℓ)⊆X̂ be the subspace of the non-strictly stable modes of
Â(ℓ). Hence, Ŵ(ℓ) is a Â(ℓ)-invariant subspace, σ(Â(ℓ)|Ŵ(ℓ))⊂C⊗ ∪C◦, and

σ(Â(ℓ)|X̂/Ŵ(ℓ))⊂C⊙. Therefore, condition (iii) directly follows from the def-

inition of Ŵ(ℓ). By definition of P̂ , σ(Â(ℓ)) = σ(A2(ℓ))∪σ(Â(ℓ)|P̂ ), where

σ(A2(ℓ))⊂C⊗ ∪C◦ by assumption and σ(Â(ℓ)|P̂)⊂C⊙ since Problem 2 is
assumed to be solvable for some regulator (4)–(5) and the internal eigenval-
ues of P̂ match the poles of the regulation loop. Therefore, condition (ii) is
implied by σ(Â(ℓ)|Ŵ(ℓ)) =σ(A2(ℓ)) and σ(Â(ℓ)|X̂/Ŵ(ℓ)) =σ(Â(ℓ)|P̂). Finally,

condition (i) is proved by contradiction. In fact, assuming Ŵ(ℓ) 6⊆ L̂(ℓ) would
imply σ(Â(ℓ)|Ŵ(ℓ)) 6⊂C⊗ ∪C◦, due to condition (ii) of Problem 2. Therefore,

Ŵ(ℓ)⊆L̂(ℓ), which implies Ŵ(ℓ)⊆ Ê(ℓ) due to condition (i) of Problem 2.

Remark 1. The subspace Ŵ(ℓ) satisfying the conditions of Theorem 1 is the
minimal Â(ℓ)-invariant subspace satisfying the requirements of Problem 2.
Moreover, a basis matrix Ŵ (ℓ) of Ŵ(ℓ) has the structure:

Ŵ(ℓ) = im Ŵ (ℓ) = im




X1(ℓ)
I

Z(ℓ)



 .

⊓⊔
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kpre = 0 k1 k2 kpost k

Σ̂(ℓ2), Ŵ(ℓ2) Σ̂(ℓ1), Ŵ(ℓ1)Σ̂(ℓ1), Ŵ(ℓ1)
x̂

Fig. 3. Extended system state trajectories with switches occurring at k1 and k2.

In the light of the previous results, switching without transients would
require that the state of the autonomous extended system be instantaneously
forced to belong to the invariant subspace Ŵ(ϕ(ki)) associated to the au-
tonomous extended system Σ̂(ϕ(ki)) at each switching time ki ∈K. However,
while the state of the feedback regulator and that of the exosystem are acces-
sible and may arbitrarily be imposed by means of the state switching policies
ψ and φ, the state of the to-be-controlled system is subject to Condition C2.
This is the structural cause of the tracking error during the transients con-
sequent to switches. Hence, the difference between the actual state and the
corresponding state in a zero-error, steady-state condition must be steered in
such a way that the regulation transients be minimal.

The abovementioned notions are illustrated below with reference to the
case of two switches, respectively occurring at the time k1 and k2 as is shown
in Fig. 3 and Table 1. It is assumed that in [0, k1) the extended autonomous
system is Σ̂(ℓ1) with the associated invariant subspace Ŵ(ℓ1), in [k1 k2) the
extended autonomous system is Σ̂(ℓ2) with the associated invariant subspace
Ŵ(ℓ2), and, finally, in [k2, ∞) the extended autonomous system is Σ̂(ℓ1), with
the associated invariant subspace Ŵ(ℓ1). The control action starts at kpre = 0
and ends at kpost. The curves in Fig. 3 represent the ideal trajectories of the

extended state on the invariant subspaces Ŵ(ℓ1) and Ŵ(ℓ2). Those trajecto-
ries are completely known by virtue of Condition C1. The arrows point out
the differences between the ideal states belonging to the invariant subspaces
Ŵ(ℓ1) and Ŵ(ℓ2) at the switching times k1 and k2. The ideal extended states
at the switching times are also listed in the first couple of rows of Table 1.
The third and fourth row respectively show the exosystem state and the feed-
back regulator state that must be imposed at the time k1 and k2 through the
state switching policies φ and ψ. Finally, the fifth row shows the differences
in the state of the to-be-controlled system. The synthesis of the control input
sequence to be applied to the plant and that of the correction to be applied
to the feedback regulator in order to steer these differences along optimal
trajectories is discussed in the following section.
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Geometric Methods for Output Regulation 209

4 Optimization of Regulation Transients: Problem
Solution

This section is focused on the synthesis of the feedforward actions v and w,
which, along with the state switching policies φ and ψ considered in Sect. 3,
guarantee the minimal ℓ2 norm of the tracking error for a given control time
window [kpre, kpost) and a given regulated system switching law ϕ.

The procedure that will be detailed in this section reduces to the solution
of a sequence of interconnected, finite-horizon optimal control problems of
the type discussed in Appendix. In particular, the non-recursive solution pre-
sented therein is crucial in order to formulate the connection of those problems
through an appropriate definition of the global cost functional.

Since the generalization to an arbitrary number of switches is trivial, the
double switch introduced in Sect. 3 will be considered henceforth. In order to
avoid notation clutter, the subscript “1” previously used to denote the state
variable and the system matrices of the to-be-controlled systems will hence-
forth be omitted. Moreover, the variable x∈Rn1 will be used to denote the
difference between the actual state, corresponding to the optimal trajectory
and the ideal state, corresponding to the ideal, zero-error trajectory.

The following statements define the concatenation of the three subprob-
lems. The propositions providing the expressions for the optimal values of the
cost functionals directly follow from Corollary 4 in Appendix.

Problem 3. Consider the system

xk+1 = A(ℓ1)xk +B(ℓ1)vk,

and the cost functional

J[k2,∞) =

kpost∑

k=k2

x⊤k C(ℓ1)⊤C(ℓ1)xk + x⊤kpost
Z(ℓ1)xkpost

,

where Z(ℓ1) denotes the solution of the symmetric Stein equation

Table 1. Ideal extended states, state switching policies and differences in the to-
be-controlled system states with switches at k1 and k2.

0 k1 k2

Σ̂(ℓ1) x̂Σ̂(ℓ1),0 x̂Σ̂(ℓ1),k1
x̂Σ̂(ℓ1),k2

Σ̂(ℓ2) x̂Σ̂(ℓ2),0 x̂Σ̂(ℓ2),k1
x̂Σ̂(ℓ2),k2

φ – x2
Σ̂(ℓ2),k1

x2
Σ̂(ℓ1),k2

ψ – zΣ̂(ℓ2),k1
zΣ̂(ℓ1),k2

dx1 – x1
Σ̂(ℓ2),k1

−x1
Σ̂(ℓ1),k1

x1
Σ̂(ℓ1),k2

−x1
Σ̂(ℓ2),k2
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210 Elena Zattoni

A(ℓ1)⊤Z(ℓ1)A(ℓ1) − Z(ℓ1) + C(ℓ1)⊤C(ℓ1) = 0,

and xkpost
denotes the state at the time kpost. Find an admissible control

sequence vk, with k ∈ [k2, kpost), such that J[k2,∞) be minimal.

Proposition 1. Refer to Problem 3. Let x̄k2 denote the state at the time k2.
The optimal value of J[k2,∞) is

Jo[k2,∞) = x̄⊤k2
S0x̄k2 + 2σ⊤

0 x̄k2 + ρ0,

where S0, σ0, and ρ0 are defined according to Corollary 4.

Proposition 2. Let x̄k2 =xk2 − dxk2 , where xk2 denotes the state reached at
the end of the time interval [k1, k2] and dxk2 denotes the difference between
the ideal states on the two invariant subspaces at the same time. Then, Jo[k2,∞)

expressed as a function of xk2 is

Jo[k2,∞) = x⊤k2
S1xk2 + 2σ⊤

1 xk2 + ρ1,

where
S1 = S0,
σ1 = −S0dxk2 + σ0,
ρ1 = dx⊤k2

S0dxk2 − 2σ⊤
0 dxk2 + ρ0.

Problem 4. Consider the system

xk+1 = A(ℓ2)xk +B(ℓ2)vk,

and the cost functional

J[k1,∞) =

k2−1∑

k=k1

x⊤k C(ℓ2)⊤C(ℓ2)xk + x⊤k2
S1xk2 + 2σ⊤

1 xk2 + ρ1.

Find an admissible control sequence vk, with k ∈ [k1, k2), such that J[k1,∞)

be minimal.

Proposition 3. Refer to Problem 4. Let x̄k1 denote the state at the time k1.
The optimal value of J[k1,∞) is

Jo[k1,∞) = x̄⊤k1
S2x̄k1 + 2σ⊤

2 x̄k1 + ρ2,

where S2, σ2, and ρ2 are defined according to Corollary 4.

Proposition 4. Let x̄k1 =xk1 − dxk1 , where xk1 denotes the state reached at
the end of the time interval [kpre, k1] and dxk1 denotes the difference between
the ideal states on the two invariant subspaces at the same time. Then, Jo[k1,∞)

expressed as a function of xk1 is

Jo[k1,∞) = x⊤k1
S3xk1 + 2σ⊤

3 xk1 + ρ3,
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Geometric Methods for Output Regulation 211

where
S3 = S2,
σ3 = −S2dxk1 + σ2,
ρ3 = dx⊤k1

S2dxk1 − 2σ⊤
2 dxk1 + ρ2.

Problem 5. Consider the system

xk+1 = A(ℓ1)xk +B(ℓ1)vk,

and the cost functional

J[kpre,∞) =

k1−1∑

k=kpre

x⊤k C(ℓ1)⊤C(ℓ1)xk + x⊤k1
S3xk1 + 2σ⊤

3 xk1 + ρ3.

Find an admissible control sequence vk, with k ∈ [kpre, k1), such that J[kpre,∞)

be minimal.

Proposition 5. Refer to Problem 5. Let xkpre
denote the state at the time

kpre. The optimal value of J[kpre,∞) is

Jo[kpre,∞) = x⊤kpre
S4xkpre

+ 2σ⊤
4 xkpre

+ ρ4,

where S4, σ4, and ρ4 are defined according to Corollary 4. Moreover, due to
Condition C1, xkpre

= 0. Hence,

Jo[kpre,∞) = ρ4,

known.

Consequently, Corollary 2 and Corollary 3 in Appendix provide the state
trajectory and the optimal feedforward action v. The correction on the feed-
back regulator is then derived in order to compensate the effect of feedback
when the input sequence defined to minimize the regulation transients is ap-
plied to the to-be-controlled system: namely, wk =C(ℓ1)xk with k ∈ [kpre, k1)
and k ∈ [k2, kpost), wk =C(ℓ2)xk with k∈ [k1, k2).

5 Conclusions

The methodology, discussed in this contribution, for ℓ2-optimization of the
tracking error caused by a finite sequence of switches of the regulated system
within a given control time window has been derived by combining results
of the geometric approach applied to the multivariable autonomous regula-
tor problem and results of the same approach applied to generalized Riccati
theory. The structural properties of the autonomous regulator point out the
invariant subspaces containing the ideal state trajectories which would corre-
spond to the ideal, zero-error, steady-state conditions. The structural invariant
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212 Elena Zattoni

subspaces of the singular Hamiltonian system associated to the finite-horizon
optimal control problems with final state weighted by a generic quadratic
function leads to the characterization of the actual state trajectories corre-
sponding to the minimum of a global cost functional appropriately defined.
Hence, both the state switching policies for the exosystems and the feedback
regulators and the feedforward actions on the regulation loop are completely
determined.

A Appendix

In this section, the finite-horizon optimal control problem with final state
weighted by a generic quadratic function is solved through a non-recursive
procedure based on the original characterization of a pair of structural invari-
ant subspaces of the associated singular Hamiltonian system. The results hold
on fairly general assumptions: namely, those that guarantee solvability of an
appropriate discrete algebraic Riccati equation as well as solvability of a cor-
responding symmetric Stein equation. An earlier version of these arguments
was presented in [9].

The problem is defined by the discrete, time-invariant, linear system

xk+1 = Axk +Buk, (10)

ek = Cxk +Duk, (11)

with state x∈Rn, input u∈Rp, output e∈Rq, and the cost functional

J =

kf−1∑

k=0

e⊤k ek + Φ(xkf
) with kf ≥ 1 (12)

and
Φ(xkf

) = x⊤kf
Sfxkf

+ 2σ⊤
f xkf

+ ρf , (13)

or, respectively, by
xk+1 = Axk +Buk, (14)

and

J =

kf−1∑

k=0

(
x⊤k Qxk + 2x⊤k Suk + u⊤k Ruk

)
+ Φ(xkf

) with kf ≥ 1 (15)

and the same definition of Φ(xkf
).

The initial state is known: i.e., x0 =xo, with xo given. The constant ρf

in (13) is irrelevant to the problem solution. However, it eases the application
of the results presented in this Appendix to the set of problems considered in
Sect. 4.

The following assumptions are introduced:

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



Geometric Methods for Output Regulation 213

A1. (A,B) stabilizable;

A2. (A,B,C,D) left invertible;

A3. Z(A,B,C,D)∩C◦ = ∅, with Z(A,B,C,D) denoting the set of the in-
variant zeros of (A,B,C,D);

A4.

[
C⊤

D⊤

] [
C D

]
=

[
Q S
S⊤ R

]
≥ 0;

A5. Sf = S⊤
f ≥ 0;

The Lagrange multiplier approach (see e.g. [15]) leads to a two-point
boundary value problem defined by the state equations, the costate equa-
tions, the stationarity conditions and the boundary conditions. The results
proved in the remainder of this section define an alternative, non-recursive
procedure to solve this problem, holding on the general assumptions A1–A5.

The difference equations of the abovementioned, two-point boundary-value
problem can be written as the state-space generalized system




I O O
O −A⊤ O
O −B⊤ O








xk+1

pk+1

uk+1



 =




A O B
Q −I S
S⊤ O R








xk

pk

uk



 , (16)

also called the singular Hamiltonian system. The matrix on the left-hand side
of (16) will be denoted byM , that on the right-hand side will be denoted byN .
The matrix pencil λM −N is assumed to have non-vanishing determinant, i.e.
det (λM −N) 6≡ 0.

The boundary conditions are

x0 = xo, (17)

pkf
= Sfxkf

+ σf . (18)

Assumptions A1–A4 are sufficient to guarantee the existence and unique-
ness of the stabilizing solution of the discrete algebraic Riccati equation

P = −(A⊤PB + S)(R +B⊤PB)−1(B⊤PA+ S⊤) +A⊤PA+Q, (19)

R + B⊤PB > 0, (20)

see e.g. [11]. The stabilizing solution, henceforth denoted as P+, is also positive
semi-definite and is the largest real symmetric solution of (19)–(20). Let

K+ = (R+B⊤P+B)−1(B⊤P+A+ S⊤), (21)

A+ = A−BK+. (22)

The condition σ(A+)⊂C⊙, implied by (21)–(22), is sufficient to guarantee the
existence and uniqueness of the solution W of the symmetric Stein equation

A+WA⊤
+ −W +B(R +B⊤P+B)−1B⊤ = 0, (23)
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see e.g. [12]. Let

K̄+ = (R +B⊤P+B)−1(B⊤ −B⊤P+AWA⊤
+ − S⊤WA⊤

+). (24)

The following lemmas introduce the geometric characterization of the pair
of structural invariant subspaces related to the singular Hamiltonian system.
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Lemma 1. The subspace

V1 = imV1 = im




I
P+

−K+



 , (25)

is a deflating subspace of the matrix pencil λM −N . The spectrum of the
pencil restricted to the subspace V1, denoted by (λM −N)|V1 is equivalent to
λI −A+.

Proof. It is implied by

MV1S = NV1 with S = A+.

In fact, the previous equation, written according to the partition introduced in
(16) and (25), produces the identities listed below, where (19)–(22) have been
taken into account. The row blocks, from the first to the third, are considered
in order.

• 1st row block:
A+ = A−BK+.

• 2nd row block:

−A⊤P+A+ = Q− P+ − SK+,

−A⊤P+A+A⊤P+BK+ = Q− P+ − SK+,

P+ = −(A⊤P+B + S)(R+B⊤P+B)−1(B⊤P+A+ S⊤) +A⊤P+A+Q.

• 3rd row block:

−B⊤P+A+ = S⊤ −RK+,

−B⊤P+A+B⊤P+BK+ = S⊤ −RK+,

(B⊤P+B +R)(R +B⊤P+B)−1(B⊤P+A+ S⊤) = B⊤P+A+ S⊤,

B⊤P+A+ S⊤ = B⊤P+A+ S⊤.

Lemma 2. The subspace

V2 = imV2 = im




WA⊤

+

(P+W − I)A⊤
+

K̄+



 , (26)

is a deflating subspace of the matrix pencil λN −M . The spectrum of the
pencil restricted to the subspace V2, denoted by (λN −M)|V2 , is equivalent to
λI −A⊤

+.
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Proof. It is implied by

NV2S = MV2 with S = A⊤
+.

In fact, the previous equation, written according to the partition introduced
in (16) and (26), produces the identities listed below, where (19)–(24) have
been taken into account. Again, the row blocks are considered in order.

• 1st row block:

AWA⊤
+ +BK̄+ = W,

AWA⊤
+ +B(R+ B⊤P+B)−1B⊤ −BK+WA⊤

+ = W,

A+WA⊤
+ −W +B(R +B⊤P+B)−1B⊤ = 0.

• 2nd row block:

QWA⊤
+ − (P+W − I)A⊤

+ + SK̄+ = −A⊤(P+W − I),

QWA⊤
+ − P+WA⊤

+ −K⊤
+B

⊤ + SK̄+ = −A⊤P+W,

QWA⊤
+ − P+WA⊤

+ −A⊤P+B(R+B⊤P+B)−1B⊤

−S(R+B⊤P+B)−1(B⊤P+A+ S⊤)WA⊤
+ = −A⊤P+W,

Q− P+ − S(R +B⊤P+B)−1(B⊤P+A+ S⊤) = −A⊤P+A+,

P+ = −(A⊤P+B + S)(R+B⊤P+B)−1(B⊤P+A+ S⊤) +A⊤P+A+Q.

• 3rd row block:

S⊤WA⊤
+ +RK̄+ = −B⊤(P+W − I),

S⊤WA⊤
+ +R(R+B⊤P+B)−1B⊤ −R(R+B⊤P+B)−1(B⊤P+A+ S⊤)·

WA⊤
+ = −B⊤P+A+WA⊤

+ +B⊤ −B⊤P+B(R +B⊤P+B)−1B⊤,

S⊤ −R(R+B⊤P+B)−1(B⊤P+A+ S⊤) = −B⊤P+A+,

B⊤P+A+ S⊤ = B⊤P+A+ S⊤.

The following theorem provides the geometric characterization of all the
admissible trajectories of the singular Hamiltonian system.

Theorem 2. A trajectory ξk =
[
x⊤k p⊤k u⊤k

]⊤
, with k ∈ [0, kf ), is admissible

for the singular Hamiltonian system (16) if and only if

ξk = V1A
k
+α+ V2(A⊤

+)kf−k−1β, with k∈ [0, kf ), (27)

where V1, V2 are respectively defined as in (25),(26), and α, β ∈Rn are pa-
rameters.

Proof. If. The trajectory ξk, with k∈ [0, kf ), satisfies

Mξk+1 = Nξk, with k ∈ [0, kf ),
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for any α, β ∈Rn. In fact, by virtue of (16), (25), (26), (27), the previous equa-
tion can also be written as



I

−A⊤P+

−B⊤P+



Ak+1
+ α+




WA⊤

+

−A⊤(P+W − I)A⊤
+

−B⊤(P+W − I)A⊤
+



 (A⊤
+)kf−k−2β =




A−BK+

Q− P+ − SK+

S⊤ −RK+



Ak
+α+




AWA⊤

+ +BK̄+

QWA⊤
+ − (P+W − I)A⊤

+ + SK̄+

S⊤WA⊤
+ +RK̄+



 (A⊤
+)kf−k−1β,

or, equivalently, as



A+ −A+BK+

−A⊤P+A+ −Q+ P+ + SK+

−B⊤P+A+ − S⊤ +RK+



Ak
+α =




−W +AWA⊤

+ +BK̄+

A⊤(P+W − I) +QWA⊤
+ − (P+W − I)A⊤

+ + SK̄+

B⊤(P+W − I) + S⊤WA⊤
+ +RK̄+



 (A⊤
+)kf−k−1β.

The previous equalities hold for any α, β ∈Rn, since each row block of the
matrix on the left is equal to zero due to the respective identities shown in
the proof of Lemma 1 and each row block of the matrix on the right is equal
to zero due to the respective identities shown in the proof of Lemma 2.

Only if. It follows from the structure of (16) (which derives from the
Lagrange-multiplier approach), Lemma 1, and Lemma 2.

The following corollaries provide the solution of the finite-horizon optimal
control problem defined by (10)–(13) through the geometric characterization
of the solutions of the singular Hamiltonian system introduced in Theorem 2.

In the light of Theorem 2, the state and costate trajectories can be written
as
[
xk

pk

]
=

[
I
P+

]
Ak

+α+

[
W

P+W − I

]
(A⊤

+)kf−kβ with k ∈ [0, kf ]. (28)

Hence, Corollary 1 and Remark 2, which follow, provide the criterion to
select the trajectories of the singular Hamiltonian system solving the original,
two-point boundary-value problem.

Corollary 1. Let
[
x⊤o σ⊤

f

]⊤
∈ imΨ , where

Ψ =

[
I W (A⊤

+)kf

(P+ − Sf )A
kf

+ (P+ − Sf )W − I

]
. (29)

A trajectory ξk =
[
x⊤k p⊤k u⊤k

]⊤
, with k∈ [0, kf ), of the singular Hamiltonian

system (16), satisfying the boundary conditions (17),(18), is determined by
[
α
β

]
= Ψ †

[
xo
σf

]
. (30)
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Proof. From (28) it follows that

x0 = α+W (A⊤
+)kfβ, xkf

= A
kf

+ α+Wβ, pkf
= P+A

kf

+ α+ (P+W − I)β.

Hence, (17), (18) can also be written as

α+W (A⊤
+)kfβ = xo, (P+ − Sf )A

kf

+ α+ ((P+ − Sf )W − I)β = σf ,

or, in a more compact form, as
[

I W (A⊤
+)kf

(P+ − Sf )A
kf

+ (P+ − Sf )W − I

] [
α
β

]
=

[
xo
σf

]
,

which, with definition (29), completes the proof.

Remark 2. If
[
x⊤o σ⊤

f

]⊤
6∈ imΨ , the two-point boundary-value problem is not

solvable: i.e., the solution is unbounded and at infinity. Otherwise, the follow-
ing two cases are discriminated. If Ψ is invertible, the trajectory ξk, k∈ [0, kf ),
satisfying the assigned boundary conditions is unique. The Moore-Penrose in-
verse of Ψ matches the inverse and, according to the well-known formula for
the inverse of a partitioned matrix,

Ψ−1 =

[
I +W (A⊤

+)kf∆−1(P+ − Sf )A
kf

+ −W (A⊤
+)kf∆−1

−∆−1(P+ − Sf )A
kf

+ ∆−1

]
,

where ∆= (P+ −Sf )(W −A
kf

+ W (A⊤
+)kf )− I. Conversely, if Ψ is not invert-

ible, the trajectory ξk, k ∈ [0, kf ), satisfying the boundary conditions may be
not unique and the set of all admissible values of α, β ∈Rn is characterized by

[
α
β

]
= Ψ †

[
xo
σf

]
+Ωγ,

where Ω denotes a basis matrix of kerΨ and γ ∈Rν , with ν = dim (kerΨ),
denotes a free parameter vector. ⊓⊔

Let
[
x⊤o σ⊤

f

]⊤
∈ imΨ and let α1, α2, β1, β2 ∈Rn×n be such that

[
α1 α2

β1 β2

]
= Ψ †,

where Ψ † is assumed to be partitioned according to (30). Then, α, β ∈Rn,
determined according to Corollary 1, can be expressed as

α=α1xo+α2σf , β= β1xo+ β2σf . (31)

Consequently, the following statements provide analytic expressions for state
trajectories, control laws, and optimal cost solving the finite-horizon optimal
control problem with final state weighted by a generic quadratic function.
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Corollary 2. An optimal state trajectory xk, with k∈ [0, kf ], for the finite-
horizon optimal control problem defined by (10)–(13), with known initial state
xo, under assumptions A1–A5, is

xk = Xkxo + xk,

where
Xk = Ak

+α1 +W (A⊤
+)kf−kβ1,

xk =
(
Ak

+α2 +W (A⊤
+)kf−kβ2

)
σf ,

with k ∈ [0, kf ].

Proof. It follows from (28) and (31).

Corollary 3. An optimal control law uk, with k∈ [0, kf ), for the finite-
horizon optimal control problem defined by (10)–(13), with known initial state
xo, under assumptions A1–A5, is

uk = Ukxo + uk,

where
Uk = −K+A

k
+α1 + K̄+(A⊤

+)kf−k−1β1,

uk =
(
−K+A

k
+α2 + K̄+(A⊤

+)kf−k−1β2

)
σf ,

with k ∈ [0, kf ).

Proof. In light of Theorem 2, the parametric form of the control law satisfying
(16) is

uk = −K+A
k
+α+ K̄+(A⊤

+)kf−k−1β, with k ∈ [0, kf ).

Hence, the thesis follows by virtue of (31).

Corollary 4. The optimal cost for the finite-horizon optimal control problem
defined by (10)–(13), with known initial state xo, under assumptions A1–A5,
is

Jo = x⊤o Soxo + 2σ⊤
o xo + ρo,

where
So = P+α1 + (P+W − I)(A⊤

+)kf β1,

σo =
1

2

(
X⊤

kf
+ P+α2 + (P+W − I)(A⊤

+)kfβ2

)
σf ,

ρo = σ⊤
f xkf

+ ρf .

with Xkf
and xkf

defined according to Corollary 2.
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Proof. First, note that

Jo =

kf−1∑

k=0

(
x⊤k Qxk + 2x⊤k Suk + u⊤k Ruk

)
+ Φ(xkf

)

=

kf−1∑

k=0

(
x⊤k pk − x⊤k+1pk+1

)
+ x⊤kf

Sfxkf
+ 2σ⊤

f xkf
+ ρf

= x⊤o p0 − x⊤kf
pkf

+ x⊤kf
(Sfxkf

+ σf ) + σ⊤
f xkf

+ ρf

= x⊤o p0 + σ⊤
f xkf

+ ρf .

Moreover, from (28) and (31) it follows that

p0 = P+α+ (P+W − I)(A⊤
+)kfβ

= P0xo + p0,

with

P0 = P+α1 + (P+W − I)(A⊤
+)kf β1,

p0 =
(
P+α2 + (P+W − I)(A⊤

+)kfβ2

)
σf .

Furthermore, from Corollary 2, it follows that

xkf
= Xkf

xo + xkf
,

where
Xkf

= A
kf

+ α1 +Wβ1, xkf
=
(
A

kf

+ α2 +Wβ2

)
σf .

Hence, the optimal cost can be expressed as

Jo = x⊤o (P0xo + p0) + σ⊤
f (Xkf

xo + xkf
) + ρf

= x⊤oP0xo +
(
σ⊤

f Xkf
+ p⊤

0

)
xo + σ⊤

f xkf
+ ρf

= x⊤o Soxo + 2σ⊤
o xo + ρo,

where the definitions of So, σo, ρo have been taken into account.
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