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Universidad Nacional de Entre Ŕıos, Facultad de Ingenieŕıa,
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Abstract. Considerable advances in automatic speech recognition have
been made through application of hidden Markov models and devel-
opment of different speech signal parametrization techniques. However,
deterioration in the speech recognizers performance have been observed
when systems trained with clean signals are tested with noisy signals.
In this paper we present the extension of the continuous multiresolu-
tion entropy to different divergences and we introduce these information
measures as new dimensions to the front–end stage of an ASR system.
These new parameters take into account information about the changes
in the dynamics of speech signal for different scales and is concatenated
to a MFCC classic parametrization. Proposed methods are tested with
speech signals corrupted with babble and white noise and compared with
a classical mel cepstra parametrization. Results suggest that multireso-
lution information measures provide valuable information to the speech
recognition system and could be included as an extra component in the
pre–processing stage.

1 Introduction

Automatic speech recognition (ASR) has been an active field in the passed two
decades, where Hidden Markov (HMM) have lead to high performance levels in
the area of acoustic and language modeling and different techniques have been
applied in the field of speech signal analysis [1]. In those experiments where
production and perception features of human speech, such as linear predictive

1 This work is supported by A.N.P.C.yT., under Project PICT No 11-12700.
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2 Maŕıa E. Torres et al.

coding (LPC) [1], cepstral and mel frequency cepstral coefficients (MFCC) [2]
were taken into account in the model, the best results have been obtained [3].

An important performance deterioration is observed when the ASR system is
trained with clean speech signals or speech recorded with high quality audio sys-
tems and then it is tested with signals registered with simple home microphones
or with added noise [4, 5]. This is the scope of “robust” speech recognition, which
aim is to obtain ASR systems that can be used in real enviroments, with noise,
reverberation, lost in the transmition channels, home quality audio system, etc.
Robust speech recognition investigation is oriented in two main areas: techniques
based on transformation of speech signal in the feature space (pre-processing)
and adaptation of models to noise or particular enviroment conditions [6].

There are several pre-processing methods to improve the ASR system’s per-
formance [4], where often it is supposed that both signal and noise are generated
by linear systems and that noise have special features allowing to be easily mod-
eled. In practice none of them is a real assumption and the robustness problem
of ASR systems is still “open”, specially for low signal-to-noise ratio (SNR).

Entropy notions have been used to characterize the complexity degree of dif-
ferent physiological signals [7–9]. The application of these quantitative measures
provides information about the dynamics of the underlying non linear systems
and helps to gain a better understanding of them. Recently, Shannon and Tsallis
entropies and their corresponding divergences have been included in an ASR sys-
tem, providing information of the temporal evolution of the complexity degree
of speech signals, improving its performance [10]. Their use has been extended
over different time–scale distributions [11] and spectral entropy has been used
in speech processing for relatively simple tasks like segmentation and silence
detection [12, 13].

The multiresolution entropy, proposed by Torres et al. in [14], is a tool based
on the wavelet transform which gives account of the temporal evolution of the
wavelets coefficients’ Shannon entropy. Later it has been used with Tsallis en-
tropy [15]. Combined with the continuous wavelet transform (CWT) [16], the
tool known as continuous multiresolution entropy (CME) has shown to be ro-
bust to additive white noise, in the detection of slight changes in the underlying
nonlinear dynamics corresponding to physiological signals [17–19]. Good results
have also been obtained in applications to speech signals corrupted with additive
noise in experiments of self-organizing map clustering [20]. This motivates us to
explore this tool over the parametrization of an ASR system in order to test its
robustness.

In this paper we present the extension of the continuous multiresolution en-
tropy to different divergences and we propose to compare the results obtained
when these information measures are introduced as new dimensions to the front–
end stage of an ASR system. These new parameters, taking into account infor-
mation about the changes in the dynamics of speech signal for different scales,
provided by different multiresolution entropies or divergences, will be concate-
nated to a MFCC classic parametrization.
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Multiresolution Information Measures 3

2 Materials and methods

In this section we introduce the main characteristics of both, the ASR baseline
system and multiresolution entropy, used in this paper. A modification to the
classical speech signal pre-processing stage will be here outlined.

-s[k]
(1) CWT -d[j,k]

(2) CME -H(j,m)
(3) PCA

y[m]

?

- (4) Windowing -
ŝ[k]

(5) MFCC

classical

parametrization
6

··· + -
new

parametrization

Fig. 1. Schemes of the stages of the proposed method, which are explained in the text.

The block diagram showed in Fig. 1 depicts each stage of the algorithm
here proposed, providing a guide of what follows to the reader. Starting from
the sampled speech signal two branches are open. In one of them the classic
MFCC parametrization are obtained. In the other branch the continuous mul-
tiresolution entropy is computed. In order to calculate the CME, for each scale
of CWT matrix, information measures are evaluated. We will consider different
entropies and divergences: Shannon and Tsallis entropies and their correspond-
ing divergences (or relative entropies) and the Jensen-Shannon divergence. PCA
is applied to extract the temporal components of higher variance. The obtained
values are concatenated as new dimensions in the MFCC parametrization. The
performance of this new approach will be compared to the classical front–end in
the presence of different noisy conditions.

2.1 Continuous Multiresolution Entropy

Given s(t), a continuous signal, its complexity measures are obtained in the time–
scale plane by performing first its continuous wavelet transform [21]. Since in
practice s(t) is a discretized signal, i.e. s(t) = s[k] if t ∈ [k, k+1] for k = 1, . . . ,K,
to numerically compute the CWT a piecewise constant interpolation is used [22],
which translates it as:

Ψs(a, b) =
∑

k

∫ k+1

k

s[k] ψ̄a,b(t)dt. (1)

We denote as {d[j, k]} ∈ RJ×K the discretized distribution in the time–scale
plane, obtained with d[j, k] = Ψs(a = jδ, t = k), with j = 1, . . . , J , J ∈ Z,
δ ∈ R+ and b = k. That corresponds to the so named “quasi-continuous” wavelet
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4 Maŕıa E. Torres et al.

transform. For each fixed j the CWT coefficient’s temporal evolution will be
named as dj [k] in what follows.

Let us consider W = {W (m,L,∆),m = 0, 1, 2, ...,M}, a set of rectangular
sliding windows which depends on two parameters, width L ∈ N and shift∆ ∈ N,
and with:

Wj(m,L,∆) = {dj [k], k = l +m∆, l = 1, ..., L} , m = 0, 1, 2, ...,M, (2)

where L and ∆ are chosen such that L ≤ K (the signal length) and (K−L)/∆ =
M ∈ Z. The selection of these values is accomplished in agreement with the
windowing performed to obtain the MFCC parametrization of speech signal (see
Fig. 1). In this case, the windows length is directly related with maximum speed
of significant vocal tract morphology modification [2].

An equipartition d0
j = min

k
{dj [k]} < d1 < · · · < dN−1 < dN = max

k
{dj [k]}

is considered over each window Wj(m,L,∆), providing a subset of N disjoint

subintervals: In =
{[
dn−1, dn

)
, n = 1, ..., N

}
, such that Wj(m,L,∆) =

N⋃
n=1

In.

Let us denote with pj,m(In) the probability that a given dj [k] ∈Wj(m,L,∆)
belongs to the interval In. Therefore, for each window Wj(m,L,∆) a set P [j,m]
of N probabilities pj,m(In) is obtained:

P [j,m] = {pj,m(In), n = 1, . . . , N}. (3)

Observe that here m represents the time–evolution at the considered scale j.
We can compute the information measures over each window Wj(m,L,∆)

following the seminal ideas of multiresolution entropies in [14, 16]. The Shannon
entropy [23] can be writen as:

Hd[j,m] = −
N∑

n=1

pj,m(In) ln (pj,m(In)) m = 0, 1, 2, . . . ,M. (4)

At each fixed scale j and for each fixed m, the entropy value corresponding
to the wavelet coefficients on the window Wj(m,L,∆) is computed. Observe
that {Hd[j,m], m = 0, 1, 2, . . . ,M} represents the Shannon entropy evolution
at the time–control m. This is a matrix that will be denoted as CME, where
CME[a = jδ,m] = Hd[j,m], named as the continuous multiresolution entropy.

The Tsallis entropy or q–entropy depends on a real parameter q 6= 1 [24]. The
evolution of this entropy for dj [k], computed over each window Wj(m,L,∆), is:

Hq
d[j,m] = (q − 1)−1

N∑
n=1

(pj,m(In)− (pj,m(In))q), (5)

and CMEq is the corresponding continuous multiresolution q-entropy matrix,
obtained with CMEq[a = jδ,m] = Hq

d[j,m].
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Multiresolution Information Measures 5

2.2 Continuous Multiresolution Divergence

In this section, we extend the ideas of multiresolution entropy to the relative
information measures. We use the Kullback-Leiber distance [25], the relative en-
tropy associated with Shannon entropy, the q–divergence [10, 26], related with
q–entropy, and the Jensen–Shannon divergence [27], which shares similar prop-
erties than the above mentioned ones.

Having in mind the probability set P [j,m] above mentioned (3), correspond-
ing to one window Wj(m,L,∆), we consider now also a second set R[j,m] =
{rj,m(In), n = 1, . . . , N}, where rj,m(In) corresponds to the probability at the
next window Wj(m+ 1, L,∆). In this way, the Kullback–Leiber divergence cor-
responding to two consecutive windows can be computed as:

Dd[j,m] =
N∑

n=1

pj,m(In) ln
(
pj,m(In)
rj,m(In)

)
. (6)

This procedure, accomplished for all scales, gives the corresponding continuous
multiresolution divergence CMD, where CMD[a = jδ,m] = Dd[j,m].

In similar way the relative q–entropy is computed as:

Dq
d[j,m] =

1
1− q

N∑
n=1

pj,m(In)

[
1−

(
pj,m(In)
rj,m(In)

)q−1
]

(7)

and the Continuous Multiresolution q–Divergence CMDq is obtained, being
CMDq[a = jδ,m] = Dq

d[j,m].
Finally, the corresponding Jensen–Shannon divergence reads as:

DJS
d[j,m] = Hd(πP P [j,m]+πRR[j,m])− (πP Hd(P [j,m]) + πR Hd(R[j,m])) ,

(8)
where Hd(·) is the Shannon entropy and π represents the weight assigned to each
distribution. We obtain the CMDJS as above.

As an example, we show in Fig. 2 the behavior of one of this multiresolution
divergences while applied to a speech signal with and without noise. In Fig. 2(a)
a part of the labeled speech signal of sentence: “¿Cómo se llama el mar que
baña Valencia?” (What is the name of the sea that border Valencia?) is shown.
Fig. 2(b) shows the scalogram (|d[j, k]|2) corresponding to the signal showed in
(a), obtained with the Daubechies wavelet of order 16. In Fig. 2(c) the corre-
sponding CMDq is shown, for q = 0.2. Figs. 2(d), 2(e) and 2(f) show results
obtained for the same signal but corrupted with additive background conversa-
tion noise at 10dB SNR. It can be observed at Figs. 2(c) and (f) that in this
case CMDq has higher values in those points labeled as transitions from one
phoneme to another, both in the clean signal and in the corrupted one. This
result suggests that an appropriate inclusion of this tool to the model could
improve the ASR system performance in the presence of noise, making it more
robust.
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6 Maŕıa E. Torres et al.
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Fig. 2. (a) Labeled speech signal. (b) Scalogram corresponding to the signal displayed
in (a). (c) CMDq (q = 0.2) of scalogram showed in (b). (d) The same signal shown in
(a) with additive babble noise (10 dB SNR). (e) Scalogram corresponding to the signal
displayed in (d). (f) CMDq (q = 0.2) of scalogram displayed in (e).

2.3 Different CME–based parametrization approaches

While working with HMMs it is important to limit the number of free parameters
to be estimated, for this reason, once the multiresolution information measures
are obtained, principal component analysis (PCA) is performed in order to keep
a relative low dimension for the final coefficients vector. PCA is a statistical
method used for data analysis, feature extraction and compression [28]. It is
used here in three different ways, described in what follows for the CME. This
can be easily extended to the other multiresolution information measures.

Method 1. First PC (PC1): Given CME, we obtain the matrix of principal
component as:

Y = QT CME∗, (9)

where CME∗ is the statistical normalized matrix. Q is the eigenvector matrix
of the correlation matrix of data σCME = UUT , with U = CME∗.

The row of Y corresponding to the maximum eigenvalue of σCME is the
principal component and we denote it as y1[m]. This value evolves with the
time–control m and it will be concatenated to the classical MFCC to obtain our
new parametrization.
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Multiresolution Information Measures 7

Method 2. First and second PC (PC12): In method 1 we obtained vector y1[m]
from (9). Here we also obtain the second component of Y, y2[m], which is asso-
ciated with the major eigenvalue that follows to the biggest one. Both elements,
y1[m] and y2[m], are concatenated to the MFCC to generate the new parame-
trization vector.

The motivation of this method arises from the characteristics of noisy CMD
showed in Fig. 2(b). Comparing this with the corresponding to clean signal
(Fig. 2(a)) can be observed new structures, which are related with noise. These
structures appear almost separately from the corresponding to signal. Therefore,
it could be supposed that taking into account two PCs would provide information
about both components, signal and noise, increasing the information provided
to the model.

Method 3. Scale dependent PC (PCSD): For this case, we consider two sub-
matrices from CME to apply PCA: U(1) = {CME∗[jδ,m], j = 1, ..., J/2} and
U(2) = {CME∗[jδ,m], j = 1 + J/2, ..., J}. From both we have two correlation
matrices on which we compute their corresponding eigenvalues, the columns of
Q(1) and Q(2), respectively. Applying (9) with each halves of subdivided matrix
CME we compute Y(1) and Y(2), the corresponding principal component ma-
trices. From each of them we obtain y(1)

1 [m] and y(2)
1 [m], which are concatenated

to the classic MFCC parametrization.
Under the same assumption made in Method 2, it is observed from 2(b)

that the structures related with noise appear mainly at high scales, while the
corresponding to signal are in lower scales. Therefore, this two components would
give us information about signal and noise relatively in a separated way. These
three procedures are accomplished alike over the other information measures.

2.4 Automatic speech recognition experiments

In this section we describe the automatic speech recognition system, the speech
database and the cross validation tests used in the experiments.

Automatic speech recognition system: In order to compare the classical parame-
trization with the alternative one proposed here, we build a state of the art ASR
system for Spanish speech corpus [29]. In what follows we briefly describe its
characteristics and the procedure to obtain such reference system.

A 3 state semi-continuous HMMs (SCHMMs) have been used for context–
independent phonemes and silences [1]. Observations’ probability density func-
tions have been modeled with Gaussian mixtures. A complete model was built
for all the phrases and four reestimations have been accomplished using the
Baum-Welch algorithm [30]. Parameters tying was accomplished using a pool of
200 Gaussians for each model state. Tied mixtures reduces the total effective
amount of parameters from 855000 to 26200. This stage is necessary in order to
improve the estimation robustness because of the reduced training set used [31].
Finally, the remaining reestimations have been computed in order to complete
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8 Maŕıa E. Torres et al.

the total of sixteen. For language modeling, backing-off smoothed bigrams [30]
have been estimated with transcriptions of the training database.

For the reference system, each phrase has been normalized in mean, pre-
emphasized and Hamming windowed in segments of 25 ms length, shifted 10 ms.
Each segment have been parameterized with 28 coefficients: 13 MFCC, 1 energy
coefficient (E) and their temporal derivatives (∆ MFCC+∆E) [2].

For each of the methods explained in Section 2.3 new coefficients were con-
catenated to the classical front–end, which incorporates information about dy-
namic changes of speech signal in the time–scale plane. Therefore, the following
parametrizations were considered:

– PC1 method: 12 MFCC, in order to maintain the number of coefficients of
the reference front–ends, 1 energy coefficient and the coefficient obtained
from PCA over each segment, y1, and its respective temporal derivatives.
Thus, our approximation stay: MFCC+E+y1 +∆MFCC+∆E+∆y1.

– PC12 method: 11 MFCC, the energy coefficient and both information mea-
sure coefficients, with its corresponding derivatives. This is: MFCC+E+y1 +
y2 +∆MFCC+∆E+∆y1 +∆y2.

– PCSD method: 11 MFCC, energy coefficient, the two values corresponding
to information measures at both, low and high scales and their temporal
derivatives: MFCC+E+y(1)

1 + y
(2)
1 +∆MFCC+∆E+∆y(1)

1 +∆y
(2)
1 .

Database and cross validation tests: A subset of the Albayzin speech corpus
[32] was used for the experiments. This subset consists of 600 sentences, with
a vocabulary of 200 words, concerning Spanish geography. Speech utterances,
registered in a recording study, had 3.55 secs. phrase duration average, and they
were spoken by 6 males and 6 females from the central area of Spain (average
age 31.8 years). Data was re–sampled at 8 kHz and 16 bits of resolution.

In order to test robustness of the ASR system, speech signals corrupted with
white and babble noise from the NOISEX-92 database were used [33]. White
noise has been digitalized from an high–quality analog noise generator. The
source of babble noise was background conversation of 100 persons talking in a
bar. Both noises have been re–sampled at 8 kHz and have been mixed additively
with data at different SNR levels.

Tests were accomplished using the leave-k-out cross validation method [34].
Ten models have been build and trained, using different partitions on the same
subset of speech data. For each partition, 80% of sentences have been randomly
selected for system training and the remaining 20% has been used for testing.

Recognition has been evaluated computing the word error rate (WER), con-
sidering as errors the word deletion and substitutions [29]. The percentage of
relative error improvement of the different measures compared with the baseline
front–end has been computed as:

∆ε% =
εref − ε

εref
, (10)

where ε is the WER value and εref is the reference WER.
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Multiresolution Information Measures 9

3 Results and Discussion

As explained in previous section, the methods proposed in this work have been
included in an ASR system trained with clean speech and tested with speech
signals corrupted with both babble and white noise. We present and discuss here
the results obtained while comparing the recognition with the one obtained with
a classical front–end.

In Fig. 3 we compare the WER obtained with classical parametrization and
with the methods proposed here for different SNR and babble noise. Fig. 3(a)
shows the WER percentage obtained with the methods PC1, PC12 and PCSD,
when Shannon entropy is concatenated to the MFCC vector. In Fig. 3(b) q–
entropy is used. A previous work [10] suggests q = 0.2 as an optimal value for
this type of experiments. Figs. 3(c), 3(d) and 3(e) show the WER obtained with
Kullback-Leiber distance, q–divergence and Jensen–Shannon divergence respec-
tively. It suggests that the methods PC12 and PCSD had a better performance
than baseline in the cases (c), (d) and (e). In the case of Kullback-Leiber distance
(c) we can observe that, when the parametrization of method PCSD is applied,
its WER is under the one of baseline for SNR equal and less than 15 dB.

Fig. 4 shows the WER obtained with classical parametrization vs. the meth-
ods proposed in this work for white noise at different SNRs, in similar way as
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Fig. 3. Word error rate of ASR system vs. SNR using signals corrupted with babble
additive noise. Comparison between the classical pre–processing (solid line) and the
proposed methods: PC1, PC12, PCSD, computed with (a) Shannon entropy, (b) q–
entropy, with q = 0.2, (c) Kullback-Leiber distance, (d) q–divergence, with q = 0.2,
and (e) Jensen–Shannon divergence.
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Fig. 4. Word error rate of ASR system vs. SNR using signals corrupted with white
additive noise. Comparison between the classical pre–processing (solid line) and the
proposed methods: PC1, PC12, PCSD, computed with (a) Shannon entropy, (b) q–
entropy, with q = 0.2, (c) Kullback-Leiber distance, (d) q–divergence, with q = 0.2,
and (e) Jensen–Shannon divergence.

the previous figure. In this case, the method PCSD displays an error rate lower
than the one obtained for the classical parametrization, in particular for 5, 10
and 15 dB SNRs. We can appreciate that Kullback-Leiber distance (c) displays
the best performance, especially for low SNRs (less than 10 dB for method PC1

and less than 15 dB for the other methods). For high SNRs the recognition rates
are near the baseline.

Comparing Figs. 3 and 4, (d) and(e), we observe that the system’s perfor-
mance was similar for the three proposed methods. Nevertheless, given that bab-
ble noise is less stationary than white noise, and recalling that we are computing
the relative entropies between consecutive temporal windows, it is not surprising
that the relative measures behave better than the Shannon and Tsallis entropies
when babble noise is added to the signal.

These results suggest that method PCSD offers the best performance in com-
bination with relative information measures. This could be related to the charac-
teristics of CMDq already observed in Fig. 2, where the structures belonging to
speech signal are mainly at the lowest scales. In presence of noise the structures
at the higher scales are highly modified, suggesting that babble noise information
is more concentrated at these scales.

From the point of view of PCA, in method PC1, when we only take into
account one global principal component, the raw signal information and the
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noise information are simultaneously included, and provided in the vector of
coefficients and the system cannot discriminate between them. In method PC12,
when first and second principal components are used, we could expect that the
information not provided by the first PC could appear in the second one, giving
additional information, but it is still not well established which one corresponds
to the speech signal. This ambiguity appears to be solved by the third method
here proposed.

4 Conclusions

In this this work we have introduced information measures, computed in time–
scale plane, in the parametrization of an ASR system. Methods proposed here
were tested with speech signals corrupted with babble and white noise. Perfor-
mance of these approaches was compared with classical MFCC parametrization.
Method PCSD provided an increase on recognition rates over the baseline. This
behavior was observed both in babble and white noise, specially for 15, 10 and
5 dB SNRs and for the relative informations.

The results obtained not only overcome the baseline but also those reached
in our previous work [10], where similar information measures were used, but
only in time domain.

These results suggest that this CME related measures give valuable informa-
tion to the ASR system in order to perform the recognition. Because of that they
would be consided to be included as an extra component in the pre–processing
stage.

References

1. L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition (Prentice-Hall,
Englewood Cliffs, New Jersey, 1993).

2. J. Deller, J. Proakis, and J. Hansen, Discrete Time Processing of Speech Signals
(Macmillan Publishing, New York, 1993).

3. M. Cooke and D. P. Ellis, Speech Comunication 35, 141 (2001).
4. J. C. Junqua and J. P. Haton, Robustness in Automatic Speech Recognition: Fun-

damentals and Applications (Kluwer Academic Publishers, Boston, 1996).
5. O. Viiki, editor, Noise Robust ASR, Speech communication, Special Issue, 34, 1–2,

2001.
6. Noise Reduction in Speech Applications, edited by G. M. Davis (CRC Press, USA,

2002).
7. P. Saparin, A. Witt, J. Kurths, and B. Anishchenko, J. Chaos, Solitons and Fractals

4, 1907 (1994).
8. J. S. Richman and J. R. Moorman, Am J Physiol Heart Circ Physiol 278, 2039–

(2000).
9. X.-S. Zhang, R. J. Roy, and E. W. Jensen, IEEE Transactions on Biomedical

Engineering 48, 1424 (2001).
10. H. L. Rufiner, M. E. Torres, L. Gamero, and D. H. Milone, Physica A 332, 496

(2004).

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
M

. E
. T

or
re

s,
 H

. L
. R

uf
in

er
, D

. H
. M

ilo
ne

 &
 A

. S
. C

he
rn

iz
; "

M
ul

tir
es

ol
ut

io
n 

In
fo

rm
at

io
n 

M
ea

su
re

s 
ap

pl
ie

d 
to

 S
pe

ec
h 

R
ec

og
ni

tio
n"

7t
h 

A
rg

en
tin

e 
Sy

m
po

si
um

 o
n 

C
om

pu
tin

g 
T

ec
hn

ol
og

y.
 2

00
6.
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