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Abstract: While tested with noisy signals, it has been observed deterioration in the performance of automatic
speech recognition systems trained with clean signals. In this paper we propose to introduce new parameters to a
classical MFCC parametrization to overcome this situation. Continuous multiresolution entropy have shown to be
robust to additive noise in applications to different physiological signals. In previous works temporal Shannon and
Tsallis entropies, and their corresponding divergences, have been included in different speech related applications.
Here we extend the continuous multiresolution entropy notion to different divergences. These parameters are intro-
duced as new dimensions at the pre–processing stage of a speech recognizer and we compare the results obtained
with the temporal measures. These new parametrizations are tested with speech signals corrupted with babble and
white noise. Their performance are compared with the classical mel cepstra parametrization. Results suggest that
information measures, specially those related to multiresolution divergences, provide valuable information that
could be considered as an extra component in a pre–processing stage.
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1 Introduction
Considerable efforts has been made concerning Au-
tomatic Speech Recognition (ASR) over the past two
decades. However, important performance deteriora-
tions are observed when ASR systems, trained with
clean speech signals, recorded with high quality audio
systems, are tested with signals registered with sim-
ple home microphones or noisy signals. This is the
scope of “robust” speech recognition, which aim is to
obtain ASR systems that can be used in real environ-
ments, with noise, reverberation, home quality audio
systems, etc [1].

There are several pre-processing methods to im-
prove the ASR system’s performance, in which it is
often supposed that both, signal and noise, are gen-
erated by linear systems and that noise can be easily
modeled. In practice none of them is a real assumption
and the robustness problem of ASR systems is still
“open”, specially for low signal-to-noise ratio (SNR).

Entropy notions have been used to characterize
the complexity degree of different physiological sig-

1This work is supported by A.N.P.C.yT., under Projects PICT
#11-12700 and PICT #11-25984. CAID 12–72. CONICET.

nals. The application of these quantitative measures
provides information about the underlying dynamics
of non linear systems and helps to gain a better under-
standing of them.

Shannon and Tsallis entropies and their corre-
sponding divergences have been included in the pre–
processing stage of an ASR system [2]. This dimen-
sion is computed by means of the evaluation of a tem-
poral complexity measure of speech signals. The in-
formation of the temporal evolution of the complexity
degree is concatenated to a classical mel frequency
cepstral coefficients (MFCC) parameterization. For
both, babble and white noise, improvements in the
ASR system performance have been obtained. These
preliminary results suggest that complexity measures
could provide valuable information derived from vo-
cal tract dynamical changes in speech recognition [2].

The multiresolution entropy, proposed by Torres
et al. in [3], is a tool based on the wavelet trans-
form which gives account of the temporal evolution
of the wavelets coefficients’ Shannon entropy. Com-
bined with the continuous wavelet transform (CWT)
[4], the tool known as continuous multiresolution en-
tropy (CME) has shown to be robust to additive white
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Figure 1: Scheme of a pre–processing stage where
temporal information measure have been concate-
nated to standard MFCC speech processing.

noise in the detection of slight changes in the under-
lying nonlinear dynamics of physiological signals [5].
In applications to speech signals corrupted with addi-
tive noise, good results have been obtained using self-
organizing map clustering [6]. These previous results
motivate us to explore this tool over the parametriza-
tion of an ASR system in order to improve its robust-
ness.

In this paper we compare temporal information
measures with continuous multiresolution entropy and
its extension to different divergences. These new pa-
rameters, taking into account information about the
changes in the dynamics of speech signal in time do-
main and for different scales, will be concatenated to a
classical MFCC parametrization. We contrast the per-
formance of a classical ASR system front–end with
the ones obtained including the information measures
computed in time and time–scale plane, in the pres-
ence of noise.

2 Materials and Methods
A modification to the classical speech signal pre-
processing stage will be here outlined. First, the tem-
poral computation of entropies and divergences will
be presented. Then, the algorithms based on the mul-
tiresolution information measures will be explained.
At Fig.2 the corresponding block diagram is depicted.

2.1 Information Measures computed in time
In previous works Shannon and Tsallis entropies,
Kullback-Leiber distance and q–divergence have been
used to characterize speech signals in time domain
[2]). The parameters obtained were concatenated to
a classical parametrization for its use in an ASR sys-
tem. This process, depicted in the block diagram of
Fig. 1, is briefly explained in what follows. For major
details concerning this implementation, we remit the
reader to [2].

Let s[k] the discrete evolution of the speech sig-
nal at the time k = 1, . . . ,K. In order to calculate the

different information measures, the probability distri-
butions of s[k] is evaluated. A set of sliding window
W (m,L, ∆) = {s[k], k = l + m∆, l = 1, ..., L},
with m = 0, 1, 2, ...,M , is defined. It depends on
two parameters: width L ∈ N and shift ∆ ∈ N, that
are chosen such that L ≤ K (the signal length) and
(K − L)/∆ = M ∈ Z. This is accomplished in
agreement with the windowing performed to obtain
the MFCC parametrization of speech signal (see Fig.
1). In this case, the windows length is directly related
with maximum speed of significant vocal tract mor-
phology modification [7].

Over each window W (m,L, ∆), a subset of
N disjoint subintervals In is considered. With
pm(In) is denoted the probability that a given s[k] ∈
W (m,L, ∆) belongs to one of such subintervals.
Thus, for each window, a set P [m] of N probabilities
pm(In) is obtained:

P [m] = {pm(In), n = 1, . . . , N}, (1)

The information measures over each window
W (m, L, ∆) can be computed following the seminal
ideas of multiresolution entropies in [3, 4]. Shannon
entropy [8] can be writen as:

Hs[m] = −
N∑

n=1

pm(In) ln (pm(In)) ,

Tsallis entropy or q–entropy [9], with q 6= 1, is com-
puted as:

Hq
s[m] = (q − 1)−1

N∑
n=1

(pm(In)− (pm(In))q).

Having in mind the probability set P [m] men-
tioned above (1), corresponding to one window
W (m,L, ∆), a second set R[m] = {rm(In), n =
1, . . . , N}, where rm(In) corresponds to the proba-
bility at the consecutive window W (m + 1, L,∆), is
considered. Thus, Kullback-Leiber distance [10], the
relative entropy associated with Shannon entropy, cor-
responding to two consecutive windows can be com-
puted as:

Ds[m] =
N∑

n=1

pm(In) ln
(

pm(In)
rm(In)

)
.

In a similar way the q–divergence [2,11], related with
q–entropy, is:

Dq
s[m] =

1
1− q

N∑
n=1

pm(In)

[
1−

(
pm(In)
rm(In)

)q−1
]

.

These information measures, Hs, Hq
s, Ds and Dq

s,
are concatenated to the MFCC parametrization.
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Figure 2: Scheme of the stages of multiresolution
information measures computation concatenated to
MFCC parametrization explained in the text.

2.2 Continuous Multiresolution Entropy
The complexity measures of s[k] in the time–scale
plane are obtained by performing first its “quasi-
continuous” wavelet transform, Ψs(a, b). This leads
to a discretized distribution {d[j, k]} ∈ RJ×K , where
{d[j, k]} = Ψs(a = jδ, b), j = 1, . . . , J ∈ Z,
δ ∈ R+ and b = k is the time–control. For each
fixed j the CWT coefficient’s temporal evolution will
be denoted as dj [k] in what follows.

We consider again a set of rectangular
sliding windows, but now Wj(m,L,∆) =
{dj [k], k = l + m∆, l = 1, ..., L}, with m =
0, 1, 2, ...,M , also depending of L and ∆ chosen as
above. We denote with pj,m(In) the probability that a
given dj [k] ∈ Wj(m,L,∆) belongs to one of the N
disjoint subintervals In considered over each window
Wj(m,L,∆). A set P [j, m] of N probabilities
pj,m(In) is obtained for each window:

P [j, m] = {pj,m(In), n = 1, . . . , N}, (2)

where m represents the time–evolution at the consid-
ered scale j.

At each fixed scale j and for each fixed m, we can
compute the information measures over each window
Wj(m,L,∆) of wavelet coefficients, in a similar way
as the previous section. In this way,

Hd[j,m] = −
N∑

n=1

pj,m(In) ln (pj,m(In)) ,

provides the entropy value corresponding to the
wavelet coefficients on the window Wj(m,L,∆). The
Shannon entropy evolution at the time–control m is a
matrix of elements CME(a = jδ,m) = Hd[j, m],
wich is named as the continuous multiresolution en-
tropy.

The evolution of Tsallis entropy or q–entropy,
q 6= 1, computed over each window of dj [k] is:

Hq
d[j, m] = (q−1)−1

N∑
n=1

(
pj,m(In)−(pj,m(In))q

)
.

CMEq =
(
Hq

d[j, m]
)

is the corresponding continu-
ous multiresolution q-entropy matrix.

2.3 Continuous Multiresolution Divergence
In this section, we extend the ideas of multireso-
lution entropy to the relative information measures.
We use the Kullback-Leiber distance [10] and the q–
divergence [2, 11].

Considering the probability sets P [j,m] and
R[j,m], corresponding to two consecutive window,
the Kullback–Leiber divergence can be computed as:

Dd[j, m] =
N∑

n=1

pj,m(In) ln
(

pj,m(In)
rj,m(In)

)
.

This procedure accomplished for all scales gives the
corresponding continuous multiresolution divergence
matrix CMD =

(
Dd[j, m]

)
.

The relative q–entropy is:

Dq
d[j, m]=

1
1−q

N∑
n=1

pj,m(In)

[
1−

(
pj,m(In)
rj,m(In)

)q−1
]

and the Continuous Multiresolution q–Divergence is
CMDq =

(
Dq

d[j,m]
)

.

2.4 Different CME and CMD–based
parametrization approaches

Once the multiresolution information measures are
obtained, principal component analysis (PCA) is per-
formed in order to keep a relative low dimension for
the final coefficients vector [12]. It is used here in
three different ways, described in what follows for the
CME. This can be easily extended to the other mul-
tiresolution information measures.

Method 1. First PC (PC1): Given CME, we ob-
tain the matrix of principal component as:

Y = QT (CME)∗ , (3)

where (CME)∗ is the statistical normalized matrix
and Q contain the eigenvector of its correlation ma-
trix.

The row of Y corresponding to the maximum
eigenvalue of σCME is its principal component and
we denote it as y1. This vector evolves with the time–
control m and it will be concatenated to the classical
MFCC to obtain our new parametrization.
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Figure 3: Fist column shows processing corresponding to clean speech signal and second column processing corresponding
to noisy signal. (a) Labeled speech signal. (b) Scalogram corresponding to the signal displayed in (a). (c) q–divergence
(q = 0.5) of temporal signal showed in (a). (d) Component y(1)

1 of method PCSD using CMDq (q = 0.2) in scalogram
(b). (e) Component y(2)

1 of previous method. (f) The same signal shown in (a) with additive background conversation noise
(10 dB SNR). (g) Scalogram corresponding to the signal displayed in (f). (h) q–divergence (q = 0.5) of temporal signal
showed in (f). (i) Component y(1)

1 of method PCSD applied over scalogram (g) using CMDq (q = 0.2). (j) Component y(2)
1

corresponding to the previous PCSD method.

Method 2. First and second PC (PC12): Now we
consider the two first components y1 and y2 of Y.
Both vectors are concatenated to the MFCC to gener-
ate the new parametrization vector.

Method 3. Scale dependent PC (PCSD):
Here we consider two submatrices from CME:
U(1) = {CME∗[jδ,m], = 1, ..., J/2} and U(2) =
{CME∗[jδ,m], j = 1 + J/2, ..., J}. Applying (3)
to each of them, with the corresponding matrix Q(i)

for i = 1, 2, we obtain the principal component matri-
ces Y(i). From them we obtain y(1)

1 and y(2)
1 , which

are concatenated to the classic MFCC parametriza-
tion.

As an example, we show in Fig. 3 the behavior of
q–divergence, computed in time domain and in time–

scale plane, while applied to a speech signal with and
without noise. In (a) a part of the labeled speech sig-
nal of sentence: “¿Cómo se llama el mar que baña
Valencia?” (What is the name of the sea that border
Valencia?) is shown. Fig. 3(b) shows the scalogram
(|d[j, k]|2) corresponding to the signal showed in (a),
obtained with the Daubechies wavelet of order 16. In
Fig. 3(c) the temporal q–divergence, with q = 0.5,
of clean speech signal is shown. Fig. 3(d) and 3(e)
depict the components y(1)

1 and y(2)
1 , corresponding

to method PCSD used with CMDq, for q = 0.2.
Figs. 3(f–j) show results obtained for the same signal
but corrupted with additive background conversation
noise at 10dB SNR. It can be observed from Figs. 3(e)
and 3(j) that higher values in component y(1)

1 are co-
incident for clean and noisy signal, in contrast with the
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temporal measure. In component y(2)
1 of Figs. 3(i) ap-

pears more peaks than in Figs. 3(d), which are related
with noise. This is associated with the fact that this
measure was computed from the upper half of scalo-
gram of Fig. 3(g), where, comparing with Fig. 3(b),
it can be observed the structures related with noise in
this part. This suggests that an appropriate inclusion
of this tool to represent dynamical changes of vocal
tract could improve the ASR system performance in
the presence of noise, making it more robust.

2.5 Automatic speech recognition system:
In order to compare the classical parametrization with
the alternatives presented here, we build a state of the
art ASR system [13] for Spanish speech corpus.

A 3 state semi-continuous HMMs (SCHMMs)
have been used for context–independent phonemes
and silences. Observations probability density func-
tions have been modeled with Gaussian mixtures. A
complete model was built for all the phrases and
four reestimations have been accomplished using the
Baum-Welch algorithm. Parameters tying was accom-
plished using a pool of 200 Gaussians for each model
state [14]. Finally the remaining reestimations have
been computed in order to complete the total of six-
teen. For language modeling, backing-off smoothed
bigrammars have been estimated with transcriptions
of the training database [15].

For the reference system, each phrase has been
normalized in mean, pre-emphasized and Hamming
windowed in segments of 25 ms length, shifted 10 ms.
Each segment have been parameterized with 28 coef-
ficients: 13 MFCC, 1 energy coefficient (E) and their
temporal derivatives (∆ MFCC+∆E) [7].

For the parametrization accomplished with tem-
poral entropies and divergences we have:

• TE method: MFCC |E |H |∆MFCC |∆E |∆H,

• TD method: MFCC |E |D |∆MFCC |∆E |∆D,

where H can be either, Shannon entropy (Hs) or q–
entropy (Hq

s), and D the Kullback–Leiber distance
(Ds) or the q–divergence (Dq

s).
For each of the multiresolution methods the fol-

lowing parametrizations were considered:

• PC1 method: MFCC |E |y1 |∆MFCC |∆E |∆y1,

• PC12 method:MFCC |E |y1 |y2 |∆MFCC |∆E |
|∆y1 |∆y2,

• PCSD method: MFCC|E |y(1)
1 |y(2)

1 |∆MFCC|
|∆E |∆y(1)

1 |∆y(2)
1 .

2.6 Database and cross validation tests
A subset of the Albayzin speech corpus [16], con-
sisting of 600 sentences, 200 words vocabulary, re-
lated to Spanish geography, was used. Speech ut-
terances, registered in a recording study, had 3.55
secs. phrase duration average, and they were spo-
ken by 6 males and 6 females from the central area
of Spain (average age 31.8 years). In order to test ro-
bustness of the ASR system, speech signals corrupted
with background conversation and white noise from
the NOISEX-92 database were used [17]. Both noises
have been mixed additively with data at different SNR
levels. Data was re–sampled at 8 kHz and 16 bits of
resolution.

Tests were accomplished using the leave-k-out
cross validation method. Ten models were built and
trained with different partitions on the same subset of
data. For each partition, 80% of sentences have been
randomly selected for system training and the remain-
ing 20% has been used for testing. Recognition has
been evaluated computing the word error rate (WER),
considering as errors the word deletion and substitu-
tions [13]. The percentage of relative error improve-
ment has been computed as:

∆ε% = (εref − ε) /εref ,

where ε is the WER value of the different methods and
εref is the reference WER of baseline front–end.

3 Results and discussion

We present and discuss here the results obtained while
contrasting the recognition obtained with methods
presented in this work and classical front–end. We
also compare the ASR system performance obtained
when information measures, concatenated to MFCC
parametrization, are computed in time and time–scale
domain.

In Fig. 4 are compared the WER obtained with
classical parametrization vs. parametrization with
both, temporal and multiresolution information mea-
sures concatenation, using babble and white noise at
different SNRs. We do not shows WER correspond-
ing to method PC1 because the results obtained were
not satisfactory.

Fig. 4 (a) shows that entropy measures, using sig-
nals corrupted with babble noise, provides good re-
sults, specially for 10 and 15 dB SNRs, where diver-
gences also present a lower WER. A similar perfor-
mance was achieved when temporal information mea-
sures were used with white noise, as can be seen in
Fig. 4 (d).
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Figure 4: Word error rates of ASR system vs. SNR. Comparison between the classical pre–processing (solid line)
and parametrizations with different information measures: Shannon entropy, q–entropy, Kullback-Leiber distance and q–
divergence; computed in: (a) and (d) time domain, (b) and (e) time–scale plane with method PC12, (c) and (f) time–scale
plane with method PCSD. Signals corrupted with babble additive noise were used in (a), (b) and (c) and signals corrupted
with white additive noise in (d), (e) and (f).

When method PC12 is applied to signals cor-
rupted with babble noise (Fig. 4 (b)) the concatena-
tion of q–divergence measure provides a WER lower
than baseline for 5, 10 and 15 dB SNRs. Kullback–
Leiber distance gives good results for the SNRs 5 and
0 dB in this case. When white noise is used, 4 (e), this
divergence presents the best result, especially for low
SNRs.

Fig. 4 (c) shows that method PCSD with bab-
ble noise presents good results when divergences were
concatenated to the classical parametrization. When
white noise was used (Fig. 4 (f)) all the information
measures have better performance than baseline for 5,
10 and 15 dB SNRs.

These results suggest that method PCSD offers
the best performance, specially in combination with
relative information measures. This could be related
to the characteristics of y(1)

1 and y(2)
1 already observed

in Fig. 3, where the structures belonging to speech
signal are mainly at the lowest scales (y(1)

1 ). In pres-
ence of noise the structures at the higher scales are
highly modified, suggesting that babble noise infor-

mation is more concentrated at these scales.
Finally, in Fig. 4also the WER curves obtained

using the q–divergence computed in time, methods
PC12 and PCSD, and baseline are compared. We
can appreciate that method PCSD has the best perfor-
mance of parametrization proposed for both, babble
and white noise, specially in the range of 5 to 25 dB.

In order to evaluate the statistical significance of
these results, we have estimated the probability that
a given recognizer is better than the reference system
(Pr(ε < εref )). To perform this test we assumed the
statistical independence of the recognition errors for
each word and we approximated the binomial distri-
bution of the errors by means of a Gaussian distribu-
tion. This is possible because we have a high number
of words (11077 words, if we take into account all the
test partitions).

Table 1 shows the relative errors ∆ε% obtained
with each method using signal corrupted with babble
noise at differents SNR. In Table 2 the results cor-
responding to additive white noise are presented. A
positive value means that the results provide lower er-
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ror than the baseline. We have marked in bold fonts
those results with higher statistical significance than
99.99%. It can be observed that for babble noise,
method PCSD with the Kullback and the parametric
divergence provides Pr(ε < εref ) > 99.99%, for
SNR between 5 and 15 dB. For white noise it is ob-
tained for 0 to 15 dB, for the same methods.

4 Conclusions

In this work different information measures, com-
puted in time and time–scale plane were included in
the parametrization of an ASR system. Methods pre-
sented here were tested with speech signals corrupted
with babble and white noise. Performance of these ap-
proaches were compared between them and with clas-
sical MFCC parametrization.

Method PCSD provided shows the most impor-
tant improvements of the recognition rates over the
baseline. This behavior was observed both in babble
and white noise, specially for 15, 10 and 5 dB SNRs
and for the relative informations.

These results suggest that the CME related mea-
sures gives valuable information to the ASR system in
order to perform the recognition, even in the presence
of additive noise. This information allows to the ASR
system to track dynamical changes of the system. Be-
cause of that they would be considered to be included
as an extra component in the pre–processing stage.
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Table 1: Relative error improvement (∆ε%) of the different measures compared with the classical front–end for
speech signal corrupted with babble noise. Bold numbers indicate Pr(ε < εref ) > 99.99%.

SNRdB ∞ 50 25 15 10 5 0
TE 0.89 1.48 6.46 17.98 14.83 1.52 -4.35
TEq=0.5 2.55 3.79 6.84 20.75 13.46 2.18 -2.77
TD 0.96 1.66 4.31 17.19 4.13 -6.73 -8.56
TDq=0.5 8.04 10.71 14.11 24.31 8.16 -4.53 -4.96

PC1 1.00 -2.31 -57.24 -59.67 -51.04 -30.82 -18.19
CME PC12 -7.14 -7.29 -68.55 -61.25 -48.52 -28.74 -17.74

PCSD -6.28 -3.57 -5.81 20.63 -4.46 -17.60 -16.97
PC1 -0.62 -2.09 -59.42 -59.10 -48.23 -29.11 -16.52

CMEq=0.2 PC12 -7.46 -13.59 -68.37 -58.34 -44.13 -25.87 -16.72
PCSD -2.20 0.78 -2.28 24.27 -0.23 -14.65 -15.97

PC1 -5.71 -2.71 -6.01 -16.62 -24.08 -10.99 -29.16
CMD PC12 -10.77 -11,10 -15.07 -10.83 -7.50 21.77 13,74

PCSD -14.67 -9.99 -14.78 40.86 94.52 29.07 17.60
PC1 -2.70 -1.87 -4.50 -13.53 -15.40 -5.85 -3.90

CMDq=0.2 PC12 -5.43 -2.58 -12.52 14.63 18.01 15.76 0.16
PCSD -5.43 -7.76 -1.11 44.75 41.39 26.18 -1.02

Table 2: Relative error improvement (∆ε%) of the different measures compared with the classical front–end for
speech signal corrupted with white noise. Bold numbers indicate Pr(ε < εref ) > 99.99%.

SNRdB ∞ 50 25 15 10 5 0
TE 0.89 -1.88 1.20 8.60 13.02 2.25 -1.26
TEq=0.1 2.55 1.48 7.19 7.30 12.29 3.13 -2.00
TD 0.96 -2.01 5.90 -7.43 8.99 -5.45 -4.07
TDq=0.5 8.04 7.23 12.83 21.25 18.38 -1.91 -2.44

PC1 1.00 -1.26 -47.16 -45.17 -30.91 -14.89 -7.44
CME PC12 -7.14 -9.78 -55.35 -39.67 -19.17 -6.18 -5.10

PCSD -6.28 -5.15 10.61 40.68 32.51 9.55 -2.39
PC1 -0.62 -1.91 -52.48 -46.62 -27.69 -14.65 -6.91

CMEq=0.2 PC12 -7.46 -18.01 -59.04 -43.70 -15.51 -4.31 -4.87
PCSD -2.20 -1.68 18.02 30.21 31.00 11.77 -1.25

PC1 -5.71 -4.30 7.58 -4.23 16.31 6.94 4.62
CMD PC12 -10.77 -12.37 2.29 27.57 47.07 38.50 8.58

PCSD -14.67 -13.65 3.92 39.16 60.27 47.60 14.92
PC1 -2.70 -1.85 -7.56 -9.95 -9.98 -4.87 -0.60

CMDq=0.2 PC12 -5.43 -8.66 -1.69 -2.68 10.55 8.78 -0.47
PCSD -5.43 -10.65 7.22 30.02 36.76 24.51 3.13
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