
Proceedings of the 2
nd
 International Workshop on Networked Control Systems 

Rende, Italy, November 23-24, 2006 

51 

 

  
Abstract—  While, during the past decades, many strategies 

for heat exchanger network synthesis and design have been 

developed, much less effort have been dedicated to developing 

online optimal control strategies to tackle their complex and 

distributed dynamics. Since past optimal control design efforts 

predominately revolves around centralized control ideas they 

typically suffer from high computational demands. By con-

trast, this paper proposes an agent based decentralized predic-

tive control approach, where the computational demand is 

distributed between several agents. This paper also explores 

the computational demand associated with the proposed ap-

proach and compares it against a traditional, centralized, pre-

dictive control approach.   

I. INTRODUCTION 

any methods for heat exchanger network (HEN) syn-

thesis have been developed over the past decades, 

which aim to provide HEN designs that yields a rea-

sonable trade-off between capital and operating costs Since 

the mid 1980s several authors have also investigated the 

flexibility of HENs, partly for the purpose of analyzing ex-

isting HENs [1], and partly for the purpose of improving the 

synthesis of new ones [2]-[4]. For example, in Papalexandri 

and Pistikopoulos [2] HEN synthesis and flexibility are 

considered simultaneously using mathematical program-

ming. 

Compared to synthesis of nominal and flexible HENs, 

much less effort has been dedicated to find methods for the 

operation of HENs. Mathisen, Skogestad and Wolff [5] 

investigated bypass selection for control of HENs, without 

considering the utility consumption. In Mathisen, Morari 

and Skogestad [6] method for operation of HENs that 

minimizes utility consumption is proposed. The method is 

based on structural properties of the network; however, the 

variable control configuration may result in poor dynamic 

performance. A method based on repeated steady state op-

timization is suggested by Boyaci et al. [7], but their focus 

is not on the control structure for closed loop implementa-

tion. Aguilera and Marchetti [8] proposed a method for on-

 
Manuscript received January 29, 2006. This work was supported by the 

EPSRC under Grant BS123456. 

L. Giovanini, J Balderud and M. Grimble are with the Industrial Con-

trol Centre, Department of Electrical and Electronic Engineering, Univer-

sity of Strathclyde, Glasgow, UK (e-mail: l.giovanini@eee.strath.ac.uk, 

j.balderud@eee.strath.ac.uk, m.grimble@eee.strath.ac.uk,). 

line optimization and control of HENs. At each sample, the 

optimization problem finds the optimal solution of the HEN 

at steady-state by specifying the optimal values of some 

services.  They also discussed degrees of freedom with re-

spect to optimization of HENs during operation. 

Later, Glemmestad et al. [9] introduced an algorithm for 

optimal operation of HENs. This is normally done in two 

steps: 

1. Obtaining the optimal solution at regular time intervals, 

using steady state data. 

2. Implementing the optimal solution by specifying the op-

timal values for some variables (setpoints). 

They introduce a simple optimization problem where the 

bypass fractions do not explicitly appear. This makes the 

problem less nonlinear. An alternative way of solving the 

optimization problem, which works in some cases, is to use 

structural information only [10], [11]. 

Recently, Giovanini and Marchetti [12] introduced a low-

level control structure capable of efficiently handling con-

straints on the manipulated variables of HENs.  The control 

structure, called flexible-structure control, has the capabil-

ity to modify the closed-loop structure in order to keep 

regulation and can be configured in most distributed control 

systems. This control approach is useful to hold the operat-

ing point close to an optimum when optimal conditions are 

located on the constraints. 

In this paper centralized and decentralized model predic-

tive control (MPC) algorithms will be employed to operate 

and control a HEN.  In the approach presented in this work, 

the transient and the steady-state solutions are optimize 

simultaneously.  In this way, a reconfiguration of the system 

is carried out in order to preserve the controllability of the 

network. 

In the following, it is assumed that the stream data (heat 

capacity flow rates and supply: target temperatures), net-

work structure and heat exchanger areas are given and the 

HEN is sufficiently flexible. To manipulate the network it is 

assumed that utility duties can be adjusted and that a vari-

able bypass is placed across each process-to-process heat 

exchanger. In case of stream splits, we may also assume that 

split fractions can be varied. 

The remaining part of the paper is organized as follows: 

First, the model predictive controls in their centralized and 

decentralized implementations are introduced.  Then, in 

Section 3 the performance of the different algorithms is 
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analyzed. Later, the MPC algorithms are applied to an ex-

ample in Section 4. Finally some conclusions are drawn in 

Section 5. 

II. MODEL PREDICTIVE CONTROL 

Model predictive control (MPC) is formulated as resolving 

an on-line open loop optimal control problem in moving 

horizon style [13].  Using the current state, an input se-

quence is calculated to minimize a performance index while 

satisfying some specified constraints.  Only the first element 

of the sequence is taken as controller output.  At the next 

sampling time, the optimization is resolved with new meas-

urements from the plant. Thus both the control horizon and 

the prediction horizon move or recede ahead by one step at 

next sampling time.  The purpose of taking new measure-

ments at each sampling time is to compensate for unmeas-

ured disturbances and model inaccuracy, both of which 

cause the system output to be different from its prediction.  

At decision instant k, the controller samples the state of the 

system x(k)and then solves an optimization problem of the 

following form to find the control action: 

( )

( )

( )
min ( ), ( )

.

( 1, ) ( , ) ( , ) ( , ) ( )

0 ( ), ( )

U k
J X k U k

st

x k i k Ax k i k Bu k i k x k k x k

G X k U k

+ + = + + + =

≥

 (1) 

where 

{ }
{ }

( ) ( , ) ( , ) ,

( ) ( , ) ( , ) ,

X k x k k x k V k V M

U k u k k u k M k

= + >

= +

�

�

 (2) 

In the preceding formulation, the performance index repre-

sents J(X(k),U(k)) the measure of the difference between 

the predicted behavior and the desired future behavior.  The 

variables x (k+i,k) and u(k+ i ,k) are, respectively, the pre-

dicted state and the predicted control at time k+ i based on 

the information at time k and system model 

( 1) ( ) ( ),

( ) ( ),

x k Ax k Bu k

y k Cx k

+ = +

=
 (3) 

where x∈ R n
, u∈ R m

 and y∈ R p
.  The constraints 

G(X(k ),U(k )) represent physical limits in the system and 

can also be other constraints to ensure the stability or ro-

bustness of the system.  The optimization produces an open-

loop optimal control sequence in which the first control 

value is applied to the system u(k) = u(k ,k).  Then, the 

controller waits until the next control instant and repeats 

this process to find the next control action. 

Typically, MPC is implemented in a centralized fashion.  

The complete system is modeled, and all the control inputs 

are computed in one optimization problem.  Many success-

ful MPC applications have been reported in the last two 

decades [13].  However, solving a single optimization prob-

lem for the entire system typically requires significant com-

putation, which scales poorly with the size of the system.  

To address the computational issue, two research lines have 

being explored: one approach is to reduce the computa-

tional burden by using suboptimal approximations (reduc-

ing the number of decision variables or using approximation 

of the problem) [14] - [18].  More recently Van Antwerp 

and Braatz [19] developed an iterative ellipsoid algorithm 

to allow the quick computation of sub-optimal control 

moves.  It should be pointed out that these approaches still 

take centralized computation and therefore increase the 

computing burden and need high cost computers. 

For large-scale systems, because of the effect of control 

horizon M, the number of optimized control variables U(k) 

at each sampling time are highly dimensional, the computa-

tion is intensive which requires high performance com-

puters or advanced algorithms. To avoid the prohibitively 

high on-line computational demand a distributed scheme 

with inexpensive computers under network environment can 

be employed. 

A. Distributed Model Predictive Control based on Nash 

Optimality 

The main idea of the formulation of distributed model 

predictive control algorithm presented in this work is to 

decompose the optimization problem (1) into a number of 

small-scale optimizations connected via dynamic input cou-

pling [20].  These autonomous subsystems are connected 

via network share the common resources, communicate and 

co-ordinate each other in order to accomplish the whole 

objective. 

Assumed that the behavior of the whole system is de-

scribed by m agents, the cost function J can be rewritten 

as follows 

( ) ( )
1

( ), ( ) ( ), ( ), ( ) 1, , ,
m

l l l n l

l

J X k U k J X k U k U k n mγ ≠
=

= =∑ …  (4) 

where the original cost function has been decomposed into 

m performance indexes related with the local decision vari-

able Ul (k) = [ ul (k )… u l(k+M ) ] l=1,… ,m.  However, the 

outputs each subsystem are still related to the remaining 

decision variables Ul≠ n(k)  n= 1,… ,m.  In this way, the 

optimization (1) can be decomposed into m coupled optimi-

zation problem 
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Fig. 1 Distributed control system architecture. 

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
 &

 J
 B

al
de

ru
d;

 "
C

on
tr

ol
 a

nd
 O

pe
ra

tio
n 

of
 H

ea
t E

xc
ha

ng
er

 N
et

w
or

kd
 u

si
ng

 M
od

el
 P

re
di

ct
iv

e 
C

on
tr

ol
"

In
te

rn
at

io
na

l W
or

ks
ho

p 
on

 N
et

w
or

ke
d 

C
on

tr
ol

 S
ys

te
m

s.
 n

ov
, 2

00
6.



Proceedings of the 2
nd
 International Workshop on Networked Control Systems 

Rende, Italy, November 23-24, 2006 

53 
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n l
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st
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=
≠

≠

=

+ + = + + + =

+ +

≥
∑

…

 
(5) 

where U l≠ n (k)  is assumed given.  Given that the communi-

cation network is reliable and with capacity that allows the 

subproblem to exchange information while they solve their 

local optimization problem, then such distributed problem 

can be solved by means of the Nash optimality concept [21]. 

Definition 1:  A group of control decisions 

U(k)=[U1(k)…Um(k)] is said to be Nash optimal if  

( ) ( ) ( ), ( ), ( )  ( ), ( ), ( )q q q

l l n l l l n lJ X k U k U k J X k U k U k≠ ≠≤  (6) 

If the Nash optimal solution is achieved, each subproblem 

does not change its control decision Ul(k) because it has 

achieved the locally optimal objective under the above con-

ditions; otherwise the local performance index 

J l (X (k),U (k)) will degrade.  Each subsystem optimizes its 

objective function using its own control decision assuming 

that other subsystems’ solutions are known and optimal.  

So, if condition (6) is satisfied, the whole system has ar-

rived to an equilibrium point (attractor) in the coupling de-

cision process (see Figure 2). 

Since the mutual communication and the information ex-

change are adequately taken into account, each subsystem 

solves its local optimization problem provided that the other 

subsystems’ optimal solutions are known. Then, each agent 

compares the newly optimal solution with that obtained in 

the previous iteration and checks if the terminal condition is 

satisfied.  If the algorithm is convergent, all the terminal 

conditions of the m agents will be satisfied, and the whole 

system will arrive at Nash equilibrium at this time. This 

Nash-optimization process will be repeated at next sam-

pling time. 

Algorithm 

Step1:  At sampling time instant k, each subsystem makes 

initial estimation of their decision variables and communi-

cates it to the other agents, let the iterative index q=0; 

( ) ( ) ( ) 1,2,...,q q q

l l lU k u k u k M l m = + = �  

Step 2:  Each agent solves its optimization problem simul-

taneously to obtain its solution  

( )

( )

( )

1

, 1, ,min ( ), ( ), ( )

.
( 1, ) ( , ) ( ) ( , ) ( )

( )

0 ( ), ( ), ( )

l

l l n l
U k

l l

m

n n n
n l

l n l

l n mJ X k U k U k

st
x k i k Ax k i k B u k i x k k x k

B u k i

G X k U k U k

≠

=
≠

≠

=

+ + = + + + =

+ +

≤
∑

…

 

Step 3:  Each agent checks if its terminal iteration condition 

is satisfied 

1
( ) ( )    1,...,
q q

l l lU k U k l mε−

∞
− ≤ =  

If all the conditions are satisfied, then end the iteration and 

go to step 4; otherwise 

1
1;  ( ) ( ) 1,..., ,

q q

l lq q U k U k l m
−= + = =  

all agents exchange this information through communica-

tion and go to step 2. 

Step 4: Computes the instant control law 

[ ] 1
( ) 0 0 ( ) 1,..., ,

q

l lu k I U k l m
−= =�  

Step 5:  Move horizon to the next sampling time, k+1→ k, 

and go to step 1, repeat the process. 

The solutions of this algorithm are Nash equilibrium and 

the global optimality (Paretto optimal) of the solutions will 

depend on the objective function employed.  Two decen-

tralized MPC schemes can be derived from this algorithm, 

depending on the cost function minimized by the optimiza-

tion problem [20].  If the cost function only includes local 

information 

( ) ( )*
( ), ( ), ( ) ( ), ( ), ( )l l l n l l l n lJ X k U k U k J X k U k U k≠ ≠=  (7) 

the resulting MPC algorithm is called communication 

based MPC.  Since the number of interacting agents is fi-

nite and only use local costs, the control law will not be 

global optimal [19].  On the other case, if the cost function 

includes global information 

( ) ( )#

1

( ), ( ), ( ) ( ), ( ), ( ) ,
m

l l n l l l l n l

l

J X k U k U k J X k U k U kγ≠ ≠
=

=∑  (8) 

the resulting MPC algorithm is called cooperation based 

MPC.  This scheme guarantees the global optimality of the 

solution [20], [22]. 

III. APPLICATION EXAMPLE 

The example network used in this work has been previously 

proposed as a benchmark by Aguilera and Marchetti [8] 

(see Figure 3). The nominal stream conditions for this net-

•  •  • 

•  •  • 

1 

Equilibrium point 
u1 

u2 

Iterates 

J2(u1,u2) Individual optimal 

solution 

J1 (u1,u2) 

 

Fig. 2. Trajectories in decision space traced by two subsystems. 
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work are given in Table 1, and the heat-exchanger areas are 

in Table 2. 

A justification for the bypass configuration exhibited in 

Figure 3 is outside the scope of this article. A detailed dis-

cussion is given in Aguilera and Marchetti [8], where the 

configuration is identified as design B. This bypass configu-

ration provides the best dynamical performance but the 

smaller operational region, which leads to a frequent satura-

tion of the manipulated variables. The focus here is on those 

manipulated variables that hit limit constraints when the 

system follows a sequence of setpoint changes, and when it 

must reject a sequence of load disturbances.  A frequent 

saturation of bypass x3 is a consequence of the double by-

pass to the heat exchanger I3; this means that though direct 

bypass gives good control performance for temperature Th2, 

it also reduces the operating space, enhancing the impor-

tance of the constrained problem. 

It can be seen that the operation and control of this HEN 

problem is a complex problem which includes many possi-

bly conflicting process requirements that are difficult to 

satisfy. The traditional QDMC algorithm is computationally 

intensive, which not only increases the computational bur-

den but also is relatively difficult to implement.  By analyz-

ing the dynamic behavior of the network and taking in ac-

count the energy efficiency, it is observed that the best pair-

ing of manipulated and controlled variables is to control: 

• 
1

out

hT  with s1 as primary variable and s3 as secondary 

variable, 

• 
2

out

hT  with x3 as primary variable and s2 and s3 as sec-

ondary variables, 

• 
1

out

cT  with x1 as primary variable and s3 as secondary 

variable, and  

• 
2

out

cT  with x2 as primary variable. 

With the proposed distributed MPC algorithms based on 

Nash optimality (communication and cooperative based 

MPCs), first of all divide the whole system into four agents, 

they are 

• Agent 1: Services S1, S2 and S3, 

• Agent 2: Heat-exchanger I3 and service S3, 

• Agent 3: Heat-exchangers I1 and I3, and service S2, 

• Agent 4: Heat-exchangers I2. 

An interactive dynamic simulator of heat exchanger net-

works has been used to test the above example. The simula-

tor is based on a nonlinear model of shell-and-tubes heat 

exchangers previously reported by Correa and Marchetti 

[23]. The numerical experience reported here repeats the 

disturbance and setpoint change sequence used for testing 

the optimizing and control system presented by Aguilera 

and Marchetti [8]. 

Figure 4 shows the dynamic responses obtained using the 

predictive control schemes for the following scenario: after 

running at the nominal operating point, 
1

in

hT changes from 90 

to 80 °C; 10 min later 
2

in

hT goes from 130 to 140 °C, and 

after another 10 min 
1

in

cT in changes from 30 to 40 °C.  The 

capability of the decentralized MPC schemes for distur-

bance rejection can be evaluated by inspection of Figure 4. 

The worse performance of the communication based MPC 

is observed during the time period between the first and 

second load changes, most notably on temperature
1

out

hT .  

The first fact to be noted in Figure 5 is that under nominal 

steady-state conditions, the energy integration of centralized 

and cooperative MPC schemes is similar.  However, the 

communication based MPC provides a poor integration.  

This is happen due to the characteristics of the algorithm 

and the objective function employed to build this control 

scheme, which can not achieve the optimal solution [24].  

After the first load change occurs, the system transfer con-

trol of h1 to heater flow rate ws3.  Note that the stationary 

condition obtained using the decentralized MPC schemes 

after the first load change yields better heat integration than 

the centralized MPC. This improvement is due to the elimi-

nation of back-off from ws1=0 and x3=0. 

Under nominal steady-state conditions, the bypass x3 is 

completely closed and 
2

out

hT is controlled by the flow rate 

service ws2. S3 is also inactive since no heating service is 

necessary at this point. After the first load change occurs, 

both control variables ws1 and x2 fall rapidly. Under this 

operational condition, the control schemes use the heater 

ws3. The dynamic reaction of the heater to the cool distur-

bance is also stimulated by the bypass x2 when it falls. Af-

ter the initial effect is compensated, the control of 
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Fig. 3 HEN used for testing and comparing the control strategies. 

TABLE I:  STREAM CONDITIONS FOR THE NOMINAL OPERATION POINT 

Stream T in T out w c (Kw/C) 

H1 90 40 50 

H2 130 100 20 

C1 30 80 40 

C2 20 40 40 

S1 15 --- 35 

S2 30 --- 30 

S3 200 --- 10 
 

 

TABLE II: EFFECTIVE HEAT TRANSFER AREAS 

Equipment I1 I2 I3 S1 S2 S3 

UA (kW/°C) 80 50 20 30 20 10 
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2

out

cT through x2, which never saturates, while ws3 takes 

complete control of 
1

out

hT . Furthermore, the cool perturba-

tion also affects the process stream h2, where the cooler s2 

is effectively taken out of operation by the bypass x3.  The 

heat integration of the centralized and cooperative schemes 

after the second load change appears to be quite similar for 

both cases being analyzed. 

Now consider the sequence of set point changes is as fol-

lows: first the target for 
1

out

cT changes from 80 to 70 °C; 10 

min later the set point for 
2

out

cT changes from 40 to 45 °C, 

and after another 10 min 
2

out

hT is taken to 90 from 100 °C.  

As for the case of load changes, the control performance 

can be evaluated observing the temperature evolutions in 

Figure 6.  The capability of decentralized MPC schemes for 

setpoint tracking can be evaluated by inspection of Figure 

6.  The worse performance is observed in the communica-

tion based MPC during the time period after the third set-

point change, most notably on temperature
2

out

hT .  The reason 

for this behavior is a change of the variable in charge of 

controlling
2

out

hT  and the effect of interactions had not com-

pletely take into account by the control scheme.  In this 

case, the control is transferred from x3 to ws2, and the com-

munication based MPC only consider the local cost.  Simi-

lar remarks about the energy integration can be made. 

Finally, we analyze the effect of the decentralization 

scheme on the computational and communication time for 

each sample. The decentralized MPC schemes are less de-

manding than the centralized MPC scheme.  It should be 

pointed out that in a networking environment where control 

schemes are deployed, cooperative and communication 

based MPC make more efficient use of the resources. Ob-

serving the Figure 8 closely, centralized MPC is always 

computing and communicating for all time of the simula-

tion, this is due to the fact that it is always getting new data 

and is always computing control actions to mitigate the ef-

fect of interactions and disturbance in a centralized fashion. 

But the decentralized scheme, only use less in communica-

tion, mostly at times when there is a significant disturbance 

or interaction. The communication based MPC computa-

tional time can be reduced significantly by modifying the 

terminating criterion ε  of each agent. 
To summary, it can be seen that for relatively small struc-

tured systems like this example, the centralized MPC is still 

a strong contender in terms of control performance and 

cost.  But for large-scale systems, the optimization grows in 

proportion to the cube of the state dimension. This poor 

scalability makes centralized MPC unattractive for large-
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Fig. 7.  Steady-state results for setpoint changes. 
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Fig. 5.  Steady-state results for disturbance changes. 
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scale systems. 

IV. CONCLUSION 

In this study a distributed model predictive control 

method based on Nash optimality is developed. The MPC is 

implemented in distributed scheme with the inexpensive 

agents within the network environment.  These agents can 

co-operate and communicate each other to achieve the ob-

jective of the whole system.  Coupling effects among the 

agents are fully taken into account in this scheme, which is 

superior to other traditional decentralized control methods.  

The main advantage of this scheme is that the on-line opti-

mization of a large-scale system can be converted to that of 

several small-scale systems, thus can significantly reduce 

the computational complexity while keeping satisfactory 

performance.  Furthermore, the design parameters for each 

agent such as prediction horizon, control horizon, weighting 

matrix and sample time, etc. can all be designed and tuned 

separately, which provides more flexibility for the analysis 

and applications.  The second part of this study is to inves-

tigate the convergence, stability and performance of the 

distributed control scheme. These will provide users better 

understanding to the developed algorithm and sensible 

guidance in applications. 
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Fig. 8.  Computation time for different control schemes. 
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