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ABSTRACT 

The research presented in this paper aims to 
demonstrate the application of predictive control to an 
integrated wastewater system with the use of the wiener 
modeling approach. This allows the controlled process, 
dissolved oxygen, to be considered to be composed of 
two parts: the linear dynamics, and a static nonlinearity, 
thus allowing control other than common approaches 
such as gain-scheduling, or switching, for series of 
linear controllers. The paper discusses various 
approaches to the modelling required for control 
purposes, and the use of wiener modelling for the 
specific application of integrated waste water control. 
This paper demonstrates this application and compares 
with that of another nonlinear approach, fuzzy gain-
scheduled control.  
 
 
INTRODUCTION 

Linear predictive control methods have been shown to 
be applicable for limited control of the wastewater 
treatment process. For the most part, linear approaches 
have considered only the control of the treatment plants, 
and not further systems. The linear methodology has 
been extended in some instances to the nonlinear 
integrated system by the use of fuzzy gain-scheduling or 
switching methods. The method presented in this paper 
shows an alternative approach to modeling the 
nonlinear system.  
 
The Wiener or Hammerstein approaches to the 
modeling of a process is to define two components: the 
static nonlinearity, and the linear dynamics. The two 
approaches are defined by the position of the static 
nonlinearity: preceding the linear dynamic block (in 
wiener modeling) or following the linear dynamics (in 
Hammerstein modeling). This approach can be used 
across industry, as shown in pH control by (Kalafatis et 
al, 1995), and the distillation column control 
demonstrated in (Bloemen et al, 2001).  
 
The aim of integrated wastewater control is to maintain 
river quality, with respect to changes in sewer quality 
and also the processes within the treatment plant. 

Integrated control of the dissolved oxygen, and 
ammonia, processes are demonstrated in (O’ Brien,  
2005a, 2005b) with the use of fuzzy control. Integrated 
control was shown for dissolved oxygen in (Rauch et al, 
1998) in respect to combined sewer overflow reduction. 
The approach in this paper therefore does not consider 
optimisation of the combined sewer overflows, but 
instead concentrates on the treatment plant processes. 
 
This paper aims to demonstrate the advantage of 
implementing model based control with the use of a 
wiener model of the process dynamics. The objectives 
of the wastewater control are detailed in the next 
section. Various approaches are discussed within the 
topic of modelling for control purposes, in the second 
section. The use of wiener modelling is detailed in the 
penultimate section, whilst the paper concludes with an  
application to a nonlinear integrated wastewater 
treatment model, with the intention of controlling the 
concentration of dissolved oxygen in the river.  
 
WASTEWATER TREATMENT CONTROL 

There are many advantages in the use of predictive 
control for water quality regulation, in meeting 
requirements for the both the effluent, and also 
compliance for the integrated system. This control 
approach can also be of advantage for the plant 
operator, because of the intuitive aspect of the 
predictive approach and the possibility of its use with 
existing plant sensors, actuators and control loops.  
 
In particular the use of fuzzy methods in predictive 
control can allow for operator cooperation in the design. 
The intuitive nature of model predictive control can be 
seen in the ease of tuning, the possibility of 
multivariable control, and the simplicity of constraint 
handling. These aspects result in a control methodology 
well suited to the regulated water treatment industry. 
 
The existing control technologies in the wastewater 
industry have concentrated mostly on low-level control 
strategies within the treatment plant, such as 
Proportional-Integral (PI) control. Some advanced 
control methodologies of neural networking and fuzzy 
logic have been applied in tuning PID controllers by 
(Rodrigo et al, 1999) in the control of an activated 
sludge process. The method of model predictive control 
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has, however, been applied within the area of 
wastewater treatment, concentrating on the optimisation 
of the treatment plant itself, for example (Alex et al, 
2002). 
 
Further research (Lindberg, 1996) has demonstrated the 
application of dissolved oxygen control  in an activated 
sludge process,  with knowledge of the process transfer 
function in the design of a nonlinear controller. A 
similar approach is used in this paper, where the process 
dynamics are instead determined by a wiener model 
approach for the process, and the control is 
implemented on the nonlinear integrated system. 
 
The objective of the control demonstrated is to maintain 
dissolved oxygen levels in the receiving waters in the 
presence of combined sewer overflows. This predictive 
approach has been applied by (Grochowski et al, 2004) 
in which softly switched predictive control is used to 
alternate between appropriate controllers, involving the 
use of a series of linear controllers appropriate to certain 
linear ranges of operation. The wiener model designed 
here however models the nonlinear behaviour of the 
system within one model, allowing for the use of a 
single controller over the operating range.  
 
MODELS FOR CONTROL 

Mathematical models, abstractions of real life systems, 
are of great importance in the understanding of system 
behavior. From a control engineering point of view it is 
of great interest how to choose system inputs, such that 
desired control objectives are met. The intended 
application of a model, in our case control, will impose 
restrictions on its structure and complexity. There is a 
trade-off, since models that can be analyzed and dealt 
with within a control scheme are often inaccurate, and 
models that reflect system behavior more accurately are 
often too complex to analyze and deal with within a 
control scheme. 
 
Models that relate observed variables (inputs and 
outputs) by means of a state-space description are 
common in systems and control theory. According to 
such a model, at each time instant, the state variables 
summarize all of the information needed in order to 
predict together with the future inputs, the future 
evolution of the system in time. The dynamics of a large 
class of nonlinear dynamical systems may be cast by a 
set of nonlinear first order differential equations 
together with a nonlinear algebraic output equation as 
follows: 
 

0( , , ) (0)
( , , )

x f x u d x x
y h x u d
= =
=

&
 (1)

 
with the state x∈ X⊆Rn, the manipulated input 
u ∈U ⊆Rm, and the output y∈ Y⊆Rp. 

It is clear that systems as described by (1) are more 
general than their linear time invariant (LTI) 
counterparts 
 

0(0)u dx Ax B u B d x x
y Cx Du
= + + =
= +

&
 (2)

 
However a large part of the control literature is devoted 
to linear systems and many linear system theoretic 
properties and control problems have been satisfactory 
dealt with in the literature (Sontag 1998). There are two 
main reasons for studying linear systems for the purpose 
of control. Firstly, linear systems are parametrized, and 
system properties can be revealed easily by analysis of 
its representation (A, B, C, D). Furthermore, for linear 
systems the available analysis tools enable strong results 
on system and control theoretic properties such as 
stability, controllability, observability, optimality, 
robustness etc. Secondly, low order approximations are 
in many cases sufficient to characterize the local 
behavior of the nonlinear system. This means that often 
analysis based on linearizations reveals properties of the 
system locally, and designs based on linearizations 
often work locally for the original system (Sontag 
1998).  
 
This “linearization principle” restricts the applicability 
of the linear model since desirable and expected 
behavior of the system can only be guaranteed for 
operating conditions that are close to the point of 
linearization. This fact, together with the problem of 
characterizing system properties, for which the analysis 
based on its linearization fails, motivated researchers to 
study nonlinear models, with the intention to derive 
stronger results, (Nijmeijer and van der Schaft, 1990), 
(Sepulchre, 1997).  Much research effort is directed 
towards that goal, and since it is not just a matter of 
extending the linear theory, new concepts are needed. 
 
Instead of studying the general nonlinear model (1) to 
enlarge the applicability compared to the linear model 
we will follow another approach based on the 
linearization principle mentioned above. The idea 
behind the approach is simple and several researchers 
and application oriented engineers have come up with 
similar ideas, confer (Murray-Smith and Johansen, 
1997), (Takagi and Sugeno, 1985). 
 
The basic idea is to linearise (1) at several specific 
operating conditions.  The operating conditions are 
chosen in such a way that the corresponding linear 
models reflect the qualitatively different behavior in 
these operating regimes.  The operating regimes cover 
the full operating space.  To mimic the behavior of the 
general nonlinear model, the different linear models 
obtained for different operating conditions are 
scheduled in the operating-space, as behavior changes 
qualitatively under varying operating conditions.  
Scheduling in this case means forming convex 
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combinations of locally valid linear models.  In this way 
a more global model is obtained that approximately 
reflects the behavior of the general model for the full 
range of operation. The resulting model is represented 
by a finite number Nm of linear models {Ai , Bi , a i , C i , 
D i , c i}  i = 1,… , Nm together with corresponding 
scheduling functions {wi ( x, u, d )}as follows 
 

{ }
{ }

1

1

( , , )

( , , )

m

m

N
i u di

N
i ii

ix w u x d Ax B u B d a

y w u x d Cx Du c
=

=

= + +

= + +

∑
∑

& +
 (3)

 
with 
 

1
( , , ) 1, 1, , , ( , )

( , , ) 0

mN
i mi

i

w x u d i N x u X U

w x u d
=

= = ∀ ∈ ×

≥
∑ K

 (4)

 
These nonlinear models frequently occur in literature 
and although of an equivalent mathematical structure 
they are given different names such as fuzzy models 
(Sugeno and Kang, 1988; Wang and Mendel, 1992), 
Hammerstein-Wiener models (Fruzzetti, Palazoglu and 
Mac Donald, 1997; Norquay, Palazoglu and Romagnoli, 
1998; Lussón Cervantes, Agamennoni and Figueroa, 
2003), multiple-models (Murray-Smith and Johansen, 
1997) or local model networks (Johansen and Foss, 
1993).  The model structure has several desirable 
attributes that we would like to exploit. First of all, the 
model class is rich since a large class of nonlinear 
systems can be approximated arbitrarily close with the 
proposed model structure (Wang and Mendel, 1992; 
Johansen and Foss, 1993).  Secondly, the model is 
interpretable on the basis of regime decomposition 
(Sugeno and Kang, 1988; Johansen and Foss, 1993). 
Also the model has an a priori fixed structure, which 
shows similarities with linear systems. The obtained 
model is called a Polytopic linear model (PLM) since 
the model consists of a set of representations of linear 
models that define a polytope in the models parameter-
space. 
 
As previously mentioned, representing a system with an 
accurate mathematical description of its dynamical 
properties that is also simple to use for the intended 
application at hand, results in conflicting demands. On 
one hand, general nonlinear models can be very 
accurate but as a result of their complexity difficult to 
build from first principles and data. Furthermore, these 
models are difficult to analyze and to apply in model 
based control schemes. On the other hand LTI systems 
are well understood, but are at most locally valid in 
representing an actual system, i.e. incorrect conclusions 
may be drawn from it, resulting in an unsuccessful 
control strategy. In the ideal situation, one would like to 
build a model that is as accurate as the most detailed 
mathematical model and as simple as a LTI system in 
the sense as described before. This situation is sketched 
in Figure 1. 

 

high      Complexity        low  

high 
 
 
 

Accuracy
 
 
 

low 
LTI Models 

General Nonlinear 
Models Ideal models for 

control 

Polytopic Linear 
Models 

 
Figure 1. Compromise between the conflicting 

demands, accuracy and complexity. 
 
The ideal model as indicated in this figure does of 
course not exist. The choices for a general nonlinear 
model or a LTI model to represent the system for the 
intended application in mind are just two possibilities 
out of numerous possible compromises between 
complexity and accuracy. The PLM is an alternative 
compromise between these two conflicting demands 
that lies within the shaded region in Figure 1. The 
intended application of the model, in our case control, 
imposes demands on the model to be selected. The 
choice for a fixed and flexible model structure that 
locally shows similarities with LTI systems hopefully 
enlarges the possibility to develop systems and control 
theory, and model building methodologies. This 
hypothesis motivates to explore the suitability of the 
PLM as a candidate model structure for model based 
control application. Suitability involves interpretability, 
representation capacity, and the analysis and controller 
synthesis abilities as explored in this thesis. As a 
consequence, it is to be expected that as a result of 
further research, the distance between the ideal model 
and the PLM will decrease further in the future. This 
will probably increase the number of applications for 
which the PLM is the minimizer of the distance between 
the ideal model and a member of the set of all candidate 
model structures. 
 
WIENER MODELLING 

When the gain of the system changes with operating 
point while the dynamics remain constant, the PLM (1) 
reduces to a Wiener model. This model is defined as 
being composed of two components: the static 
nonlinearity, and the linear dynamics, which are both 
determined from step tests on the system. The static 
nonlinearity of the system results from the variance of 
the system steady state gain over the nonlinear range. 
The linear dynamics, in this case, can be approximated 
effectively with a simple linear transfer function.  
 
In this application, the static nonlinearity can be 
modeled as a simple function as follows: 
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)().(),(()( kukdkufkv =  (5)

where C is the steady state gain of the system, whilst the 
linear dynamics modeled by a transfer function can be 
defined equivalently by a state space function: 
 

)|(.)|()|(
)|(.)|()1|(

kkvDkkCxkky
kkvBkkAxkkx

+=
+=+

 (6)

 
The wiener model can then be written in the form of an 
input-dependant state space system, where the states of 
the model are defined by the above models of (5) and 
(6) 
 

)|().,()|()|(
)|().,()|()1|(

kkuduDkkCxkky
kkuduBkkAxkkx

+=
+=+

 (7)

 
where is the vector )|( kku [ ])|()|( 21 kkukku  and 

 and are dependant on equation (5). 
This allows the model to be updated at each sampling 
instant, allowing a In order to incorporate integral 
action within the controller, the model as shown in the 
above equation is considered to be defined with respect 
to input increments: 

),( duB ),( duD

 

( )

( ) [ ]

( ) ( )| 1 ( | ) ( |0

| ( ) ( | )

Inc inc

inc

A B u B u )x k k x k k u k kI I

y k k C D u x k k

⎡ ⎤ ⎡ ⎤+ = + ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

(8)

 
where xinc

  is defined as an adjusted state vector: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
)1|(

)|(
kku

kkx
xinc  (9)

 
In more concise notation, the model can be seen as: 
 

( )
( )
| 1 . ( | ) . ( | )

| . ( | )
Inc inc

inc

x k k A x k k B u k k

y k k C x k k

+ = + ∆

=

% %

%
 (10)

 
where A~  , B~  and C~  are defined by equation (9). The 
function of an appropriate nonlinear controller consists 
of the following steps, at each sample instant: 
 

1. the estimation of the system states according to 
the above state space model, in this case using 
the kalman approach 

2. The prediction of future behaviour, found by 
iterating the above model over the prediction 
horizon, and using the states calculated by the 
kalman estimator 

3. The calculation of the optimal control for the 
plant, according to a user-specified cost 
function 

4. The application of the first element of this 
control and the return to Step 1 at the next 
sample instant. 

The state estimation is found using the approach of an 
extended kalman filter, where the state space equations 
are updated at each sampling instant. The kalman gain 
is determined from these state space equations, and thus 
is also updated. The predictions are found using the 
predictive approach as demonstrated by Krauss et al 
(1994), and the control actions are calculated to 
minimize a user-specified cost function.  
 
APPLICATION 

The process under study was that of an integrated 
wastewater system, composed of a sewer network, a 
treatment plant and the receiving waters. The process 
model used to describe this system was that produced 
by Camilleri et al (2004). The treatment plant model 
was that of the ASM2d (IWA, 2000), which was used to 
model an anoxic-aerobic process within the plant, whilst 
the Takàcs’ model (Takács et al., 1991) was used to 
represent the secondary clarifier. The sewer model 
consisted of a catchment model, the unit hydrograph of 
(Sherman, 1932), and a detention tank simulated as a 
CFSTR (Continuous Flow Stirred Tank Reactor). 
Hydraulic and biological or chemical processes were 
assumed not to occur within the detention tank. The 
model of the receiving wasters was based on that 
demonstrated by the QUAL2E model (Brown, L. C. and 
Barnwell Jr.,T. O. (1987)). The river was represented  
by a series of segments with the same properties, 
modelled as above by a CFSTR. The mass transport 
equations described in (Camilleri et al, 2004) model the 
behaviour of the fractions in the river. 
 
The wiener model is developed by performing step tests 
on the nonlinear system, over the flow range. The data 
is divided into two components: the component that 
changes over the flow range (the steady state gain) and 
the component which does not change over the flow 
range (the transfer function of the step response).  The 
first of these was determined by calculating the steady 
 

 
Figure 2. Normalised step responses 
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state gain of the system at different flow values, as is 
shown in Figure 2. 
 
The transfer function was determined using subspace 
identification techniques with the normalised step 
responses.  
 

1
145.0)(

+
+

=
s

ssG  (11)

 
With the transfer function of the dissolved oxygen 
dynamics, and the nonlinear gain function, the wiener 
model can be built. The nonlinear gain was determined 
by interpolation and is shown in Figure 3, where it is 
compared to a linear approximation. Figure 4 shows the 
comparison between the responses of the system and the 
wiener model. The full wiener model is a suitable 
approximation of the nonlinear dissolved oxygen 
dynamic within this case study. 
 
The storm event presented here for the wiener dissolved 
oxygen control is of duration 0.33h at an intensity of 
30mm/h at time 2 days, the controller was tuned to a set 
point of 7.6g/m3. It is compared in Figure 5 with the 
response of the fuzzy MPC designed in (O’ Brien et al, 
2005b). It can be seen that the Wiener MPC  
 

 
Figure 3. Nonlinear Wiener gain dynamics 

 
Figure 4. Full Wiener Model versus real system for 

nonlinear storm event 

 
Figure 5. Wiener MPC versus Fuzzy MPC 

 
Figure 6. Wiener versus Fuzzy: control action 

 
outperforms the fuzzy predictive controller in setpoint 
tracking, and also in some instances in disturbance 
rejection. The wiener MPC can be seen at points to 
underperform the fuzzy MPC in disturbance rejection, 
however this is with the advantage of a less oscillatory 
response and a quicker return to steady state conditions.  
 
Another advantage of the wiener is the smoother control 
action, compared with the oscillatory response of the 
fuzzy MPC, as can be seen in Figure 6. The Wiener 
model also has the advantage of being determined from 
simple step responses as opposed to more complex 
system identification methods such as fuzzy logic or 
neural networks. The fuzzy model uses several linear 
models, and thus requires tuning for each, whilst the 
Wiener model uses only one system model, thus 
reducing computational costs and tuning required. 
 
CONCLUSION 

The research presented in this paper detailed the 
approaches of modelling for a control purpose, with 
particular application to an integrated wastewater 
system. The objective of this control was to maintain 
dissolved oxygen levels in the receiving waters, and this 
was obtained through the application of wiener model 
predictive control to the process. The results shown 
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were compared with that of previous work in fuzzy 
gain-scheduled control.  
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