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Abstract: The predictive feedback control strategy is used to develop a reconfigurable
control system capable of compensating system component faults. The proposed
formulation relies on the development of a single step predictor from input-output model
that implicitly includes a fault isolation filter. Although no explicit observer is actually
involved in the implementation, this predictor can be understood based due to the fact that
an input-output model subsumes an implicit observer. Exploiting this idea the resulting
input-output model is developing from a fault isolation filter. Simulations of a simple
linear system illustrate the properties of the control algorithm in presence of actuator and
sensor failures. Copyright © 2004 IFAC
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1. INTRODUCTION
The main goal of modern control law is to achieve
high performance with increased safety and reliability
in dynamical systems where an unlimited number of
faults or failures can happen. This situation generally
leads to critical changes in the system. Thus, fault–
tolerant control of automated systems has become a
high priority. In fact, many complex processes, when a
fault happens, the maintenance or the reparation can
not be achieved immediately. Hence, to preserve the
safety of the operator and the reliability of the process,
the presence of faults must be taken into account
during the system control design.
During the last decades, different approaches dealing
with this problem have been reported. Most of these
studies are based on the linear–quadratic control
methodology (Looze et. al., 1985; Chen and Joshi,
2002), adaptive control systems (Morse and Ossman,
1990), knowledge–based systems (Chang, Zrida and
Bridwell, 1990; Polycarpou and Hemicki, 1995),
hybrid systems (Blanke et al., 2000; Lunze and
Steffen, 2002; Lunze and Steffen, 2003) and
modifying the Youla parameter.
For real–time applications, the current fault–tolerant
control design is based on a nominal control law, fault
detection and isolation module, fault estimation and
fault compensation (Ostroff and Hueschen, 1984).
When a fault happens, the task of the fault detection
and isolation module gives the type, origin and
magnitude of the fault. Then, the parameters of the
faulty system are then identified and the
reconfiguration algorithm computes the appropriate
control law (Morse and Ossman, 1990). Another

methods are based on adaptive control and do not
require fault diagnosis. The control system is designed
such that its coefficients are adjusted to support the
required dynamic system performances upon
variations of the dynamic parameters caused by faults.
These methods also present many advantages for
reconfiguration and fault–tolerance.
In this work a fault–tolerant predictive feedback
controller is presented. The proposed approach does
not require residual evaluation or parameter
identification. Its main advantages are that it is no time
consuming, very easy to implement and takes into
account input bounding constraints. The resulting
controller is based on the computation of additional
control law, which is added to the nominal one that
compensates the fault actuator effect. The predictors
employed by the controller are built from an ARX
model, which employs the observer information
embedded in it. This fact enables us to tackle the
problems of controlling process disturbed
simultaneously by unmeasured disturbances and
system faults.
The paper is organized as follow: In Section 2, the
control problem is presented. Section 3 is devoted to
the fault estimation problem. A fault isolation and
estimation filter is presented. In Section 4 the fault–
tolerant predictive feedback is developed. Firstly,
fault–tolerant predictors are built. Then, the fault–
tolerant predictive feedback controller is developed
and the meaning of the design parameters is
discussed. Finally, the conclusions are presented in
section 6.
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2. PROBLEM FORMULATION
Considering the model–based approach, a
mathematical model is built and in a non-linear case,
a model linearization around an operating point is
performed. For fault diagnosis and control purposes,
the system is described including actuator and
sensor dynamics and faults, which are represented
by additive signals. The actuator and sensor
dynamics are given
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The following state space model describes the
overall system dynamic
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where X(t)= [xA (t) x(t ) xS (t) ]T ∈R n is the state
vector, y(t)∈R m are the system outputs, u(t) ∈Rp

are the control inputs, u(t) ∈R q are disturbances
vector, f(t)= [fA( t) fS(t ) ]T ∈R p  are the  vector of
fault magnitudes, and F∈R n × p is the distribution
matrix of components faults. The system matrices
are defined by
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Besides, we assume that the plant described by (1) is
subject to the following assumption: i) the number
of available actuator effectors can exceed the
number of outputs that we want to control (p> m),
and ii) the rank( CX ) = m, rank( F )=p and
rank( CX BD )= rank( BD )=p . This situation is
commonly encountered in most of chemical process
and mechanical system, i.e. modern aircraft.
The control objective is design a control law u ( t )
for the system (1), such that the system output yS ( t )
following a given reference trajectory r ( t ) in
presence of faults in control effectors and sensors. In
this paper we will focus on the control effectors and
sensor freezing type of failures.

3. FAULT–ESTIMATION
The estimation of the fault vector )(ˆ kf  and the

non–measurable disturbance )(ˆ kd  can be obtained
from the filter for fault isolation (Keller, 1999)
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where [ ]Tr )k(d̂)t(f̂)k(q =  are the fault and non-
measurable disturbance estimation and the filter
matrices are given by
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The matrix W  states the effect of faults and
disturbances on the system states. The matrices Π
and Σ  are designed such we obtain an unbiased
estimation. Then, Π  and Σ  must decouple the

effect of the of disturbances and fault from the
estimation error they satisfy the following relations
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=Π

W
W ,I

(4)

The filter gain K is designed to obtain the best
estimation possible. If there is noise in the system,
we can compute K such that we obtain minimum
variance estimation. In other case, with no noise in
the system, we compute K to obtain the faster
observer possible.

Finally, the fault isolation filter (2) can be
directly implemented using the space–state
equations or in a recursive fashion such as ARX
model. The coefficients of ARX model are related
with the isolation filter through (Giovanini, 2003)
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where p is the ARX model order that satisfy
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Then, the output estimator filter can be written as
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and the fault isolation filter is given by
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We must see that filter (7) estimates the system
output including the effects of the faults and the
disturbances on the system output. On the other
hand, the fault isolation filter (8) estimates the origin
and the magnitude of the faults. Then, an estimation
of the real input applied to the system and real
system output are given by

).(ˆ)()(ˆ

),(ˆ)()(ˆ

tftyty

tftutu

SR

AR

−≈

+≈
(9)

This information will be used to develop a fault
tolerant predictor in the next section.

4. FAULT TOLERANT CONTROL
4.1. Fault–Tolerant Predictor

To built a fault tolerant predictive controller, we
need to develop an open–loop predictor that provide
an unbiased prediction in spite of the system faults
and/or external disturbances.
Firstly, we develop the open–loop predictor from
output estimator filter (7), it is given by (Giovanini,
2003)
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and the coefficients of the predictor are given by
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From equation (10), we can see that the open–loop
predictor employed the measured output y ( k ) to
compute the J–step ahead prediction. Therefore, it
includes the deviation produced by the sensor fault
and the prediction will be biased in spite of
developing the predictor from the output estimator
filter (7).
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Then, we must correct the effect of sensor fault
before computing the prediction ),(ˆ 0 kJy . To
accomplish this correction we employed the fault
isolation filter for the sensor (FS(z )), developed from
(8), and the measured output. Subtracting the
estimation of sensor fault )(ˆ tf S  from the measure
output y(k ) (eq. (9)) the correction is carried out.
This procedure is schematized in the block diagram
showed in Figure 1. However, operating with
equations (8) to (12), it can be reduced into an only
one that includes both: the predictor and the fault
isolation filter. So, the overall open–loop predictor
PY (J,z ) will be tolerant to sensor faults.

-  )(ˆ tfS

P( J , z)

FS ( z )
 y(k )
 u (k)

),(ˆ 0 kJy
 )(ˆ tyR

Figure 1: Structure of fault–tolerant sensor
open–loop predictor PY ( J ,z ).

However, operating with equations (8) to (12), it can
be reduced into an only one that includes both: the
predictor and the fault isolation filter. So, the overall
open–loop predictor PY(J,z ) will be tolerant to
sensor faults.
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The Cauchy formula applies to fault isolation sensor
filter and open-loop predictor coefficients (eqs (8)
and (12)) gives the coefficients of the fault-tolerant
predictor.
The next step is developed an open–loop predictor
that computes the effect of actuator faults on the
system output. This predictor is used to build the
complementary control law that compensates the
effect of the actuator faults. To constructed this
predictor we assembled the fault isolation filter for
the actuator (FA (z)), developed from (8), with the
open loop predictor (10). The output of this predictor
is the future deviation of the system output, due to

the actuator faults, and the input is the estimation of
actuator fault ( )(ˆ tf A ).

)(ˆ tf S

P (J , z )
F A ( z )

 y (k )
 u (k )),(ˆ 0

ˆ kJy
Af∆

Figure 2: Structure of fault–tolerant actuator
open–loop predictor P ∆ ( J ,z ).

Operating with equations (8) to (12), the fault
actuator predictor equations can be reduced into an
only one (P∆(J ,z)) that includes both the predictor
and the fault isolation filter.
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Again, the coefficients of the fault actuator predictor
P∆(J,z ) will be given by the Cauchy formula,
applied to coefficients of open–loop predictor and
fault actuator filter.

4.2. Predictive Feedback Control
Model Predictive Control (MPC) refers to the class
of algorithms that uses a model of the system to
predict the future behavior of the controlled systems
to compute the control actions such that a measure
of the closed–loop performance is minimized and all
the constrains are and will be fulfilled. The basic
formulation implies a. control philosophy similar to
an optimal open–loop control law that allows
including constrains present in the system.

u (t)
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i = 1 , … , U

k - w + J k + Jk - 2 k - 1
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ŷ0 ( i , k)

k
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i = 1 , … , V

y ( k-n )

r (k - n + J)

ê0( J , k - n )

ŷ0 (J , k - n )

t

y ( k-n )

k

k - 1k - 2
t

u (t)

Figure 3: General predictive set–ups

However, as pointed out by (Lee and Yu, 1997) this
formulation can give poor closed–loop performance,
especially when uncertainties are assumed to be
time–invariant in the formulation. This is true even
when the underlying system is time–invariant. When
the uncertainty is allowed to vary from one time step
to next in the prediction, the open loop formulation
gives robust, but cautious, control.
A way to solve these problems is introduce a
feedback action in the predictive controller
(Giovanini, 2003). So the predictive control law is
given by
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where ),(ˆ0 zJe  is the Z –transform the J step ahead
open–loop predicted error, w is the filter order and
qn n ∈ [0 ,w ] are the controller parameters. Due to
the fact that (16) employs only one prediction of the
process future behavior, the delay operator z–n

n=0,…,w is applied to the time instant at the
prediction is calculated. Hence, the control
movement ∆u(k ) is given by

,),(ˆ)(
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0∑
=

−=∆
w

n
n nkJeqku (17)

where ),(ˆ0 nkJe −  is the J step ahead open–loop
error computed at time k–n .  Replacing the open–
loop predicted error (assuming a step change in the
setpoint) in (17) and rearranging gives
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Observe that the two first terms of the right size
belong to a reduce order controller (Isermann,
1981), while the last term is the contribution of the
future deviation from the reference. The last term is
a weighing contribution of the future open–loop
deviations at time (k+J –n ) tS

wnnkynkJynkJy ,,1,0)(~),(ˆ),(ˆ 00 L=−−−=−∆

It states the effect of the past control actions on the
future behavior of the system. It has great influence
on the closed–loop performance when we have to
follow a set point but a negligible one when we have
to reject a disturbance, since it has little information
about the disturbance. Thus, the control law (16)
includes a feedback action –based on present and
past errors– which improve the closed–loop system
response. Now, it is clear that (16) uses more
information than model predictive control. So,
predictive feedback control reduces the effect of
disturbances more aggressively than predictive
control since it uses more information (Giovanini,
2003). Then, the predictive feedback control
combines the advantages of predictive control
algorithm (good setpoint tracking, time delay
compensation and decoupling control) with the
classical use of the feedback information to improve
the disturbance rejection.
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5. FAULT–TOLERANT PREDICTIVE CONTROL
It is assumed that the nominal system is controlled by
a predictive feedback control

),z(e)z(C)z(u =

where C(z ) is the transfer function of the predictive
feedback controller (Giovanini, 2003) given by

)z,J(P)z(F

)z(F)z(C
U+

=
1

Different techniques have dealt with the fault–tolerant
control problem where the goal is to make the faulty
system to be close as possible to the nominal one.
Many control techniques (Gao and Antsaklis, 1991;

Looze et. al., 1985; Blanke et al., 2000; Chen and
Joshi, 2002) consist in computing a new control law
such that the closed–loop eigenvalues remain
unchanged. Even if the control law exists, the closed–
loop system may be unstable in some cases.
Moreover, these methods depend on the robustness of
the FDI system and the ability of the supervision
system to determine the fault signature and still not
realistic and hardly applicable.
In this paper, another fault–tolerant control method is
proposed. Its goal is to compute an additional control
law, employing the additional control inputs, able to
compensate the effects of the fault effect on the
system. Then, the total control law is then compute by
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where up(z ) ∈ Rm is the control variable vector with
the same size as the system output, uS(z ) ∈ Rp-m  is the
vector of remaining control inputs, ∆y f is the effect of
fault actuator over the system output and, CP (z ) and
CS( z) are the transfer function of predictive feedback
controllers.

 -

 )(ˆ kyR

FS (z)

e ( k )

-

^ ),(ˆ 0 kJe
FP (z)r( k ) uP( k )

 ),(ˆ 0 kJy∆

PY (J,z)
y ( k )

FS (z)  uS ( k)

 ),(ˆ 0
ˆ kJy
Af∆−

P∆ (J,z)

Figure 4: Structure of the fault–tolerant predictive
feedback controller.

At this point, we only need to compensate sensor
faults in the system output measurements y(z). The
correction is again executed employing equation (9).
Then, the fault isolation filter for the sensor FS(z ) is
included in the controller. The structure of the
resulting predictive controller is shown in Figure 4.

6. STABILITY ANALYSIS
The stability of the faulty system given by (1) with
fault–tolerant control method can be studied by
looking at the closed–loop system driven by the new
control law composed by the nominal control law
(CP(z )) with the additional one (CS(z ))
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∆−
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Observe that the additional control law CS (z ),
develops to compensate the actuator faults, acts like a
feedforward control. So, it does not affect the closed–
loop stability, which is determined by CP( z) law as
we can see in the next section.
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Since the system performances (essentially the
stability and the transient behavior) are fixed by the
poles of closed–loop equation, )z(G)z(C PP+1 , these
performances are still preserved if the new control
inputs ( )(zuS ) remain inside the physical capacities
of the actuator.

7. SIMULATION AND RESULTS
Now, to demonstrate the effectiveness of the fault–
tolerant predictive feedback controller we consider the
following simulation example obtained from the
linearization of a continue stirred tank reactor (CSTR)
with a jacket, where a first order exothermic reaction
is carried out, which was previously used by
(Morningred et al, 1992)
In normal operative conditions, the CSTR is
controlled by manipulating the coolant flow rate
(q C( t)) while the remaining variables remain
unchanged. When a fault in the valve of coolant flow
rate happen, the reaction can be controlled by
manipulating feed flow rate (q (t)). Under this
operative condition we have to introduce a level
control, such that the volume of the reactor and the
residence time remain constant.
The linear model employed in the simulations is
obtained from the linearization of CSTR non-linear
model around the nominal operation point (Ca=0.05
mol lt –1, T =  T j=350 K and qC =q= 100  lt min–1). The
resulting matrices are
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A

(22)

The disturbances considered in this example are the
feed concentration Ca0 (t) and the inlet coolant
temperature TCO (t). To complete the description of the
system we include the actuators and the concentration
sensor dynamic, which are given by
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The dynamics of the temperature sensors are
dismissed because they are faster and more reliable
than concentration sensor. Different faults are
simulated in this system. They correspond to actuator
and sensor freeze and loss in the sensitivity of the
actuator and sensor. The disturbance that will be
estimated is the feed concentration, because it is non-
measurable.
Like in Morningred's work (1992), the sampling time
period was fixed in 0.1 min, which gives about four
sampled-data points in the dominant time constant
when the reactor is operating in the high concentration
region. Then, the discrete linear model is obtained by
Z –transforming the continue model assuming a
zero–order-hold device is included.

Firstly, we develop the fault isolation and estimation
filter. We check the isolating condition

[ ]( ) 3=+= qpBCFCrank DXX

This condition implies that we can isolate the faults
and the disturbance simultaneously with only one
filter. Then, we find the fault isolation matrices

,and ΣΠ  and the filter gain K. The fault isolation
matrices were computed such that they satisfy (4)
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and the filter gain K was designed such that the filter
(2) has a deadbeat behavior
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Then, we built the open–loop predictors PY (J,z ) and
P∆(J,z ) using the output estimator and fault isolation
filters (eqs (7) and (8)) and the coefficients of the
open–loop predictor (eqs (12.a) and (12.b)).
Figure 5 shows the results obtained in the simulations.
The set point was changed in intervals from 0.1 to
0.125 at 10 min and returns to 0.1 at 45 min.  At 25
min the feed stream concentration changes from 1
mollt-1 to 1.05 mol lt-1, and finally the valve that
control the coolant flow rate freeze at 47.5 min.
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Figure 5: System for faulty conditions

The effect of the disturbance is to drive the principal
actuator to saturation (Figure 6). However, the
proposed algorithm is able to reconfigure the system,
treating the saturation like a fault.  Besides, in Figure 6
it possible to appreciate the reconfiguration of the
controller when the valve fails.
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Figure 6: Manipulated variables for the simulation
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It can easily be seen that the output of the
reconfigured loop matches the output of the nominal
loop.  Due to these differences, the control
performance of the reconfigured control loop is
slightly inferior to the nominal control loop.
However, the stability of the reconfigured control loop
is guaranteed under all operating conditions. It is also
interesting to see the differences between the output of
the controller (which is the input of the nominal plant)
and the output of the second actuator (q) that controls
the faulty plant

8. CONCLUSIONS
The method developed in this paper emphasizes the
importance of the fault–tolerant control in high-
automated systems. The problems inherent to the
fault detection and isolation module are avoided
using an additional control law, implemented
through the additional control inputs, based on the
on–line estimation of the fault magnitude. This
method is suitable for every type of actuator faults.
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