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Abstract

Information measures have been used in the context of nonlinear systems presenting abrupt11
complexity changes and related to nonlinear time series analysis. In this study, complexity mea-
sures such as Shannon entropy, q-entropy and their associated divergences have been added13
to a robust speech recognizer front-end. The method proposed here is tested on continuous
speech and compared with a classical mel-cepstral analysis. The recognition degradation has15
been evaluated in both systems in presence of white and babble noise. The results suggest that
complexity measures provide additional valuable information for speech recognition in noisy17
conditions.
c© 2003 Published by Elsevier B.V.19
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1. Introduction

In the last two decades the analysis of time series obtained from experimental data,23
where the underlying dynamics is not well known, has been a �eld of active research.
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A rich variety of self-oscillating regimes that involve either regular or complex1
behavior are present [1]. Several notions of entropy have been used to characterize the
complexity degree in nonlinear physiological signals. The application of quantitative3
measures for the analysis of such time series has helped to gain a better understanding
of the system dynamics [2].5
Linear autoregressive models have been used in the �rst attempts to obtain a speech

synthesis system. In most of the physical models proposed to represent human speech a7
stationary behavior is assumed on those segments corresponding to voiced phonemes,
as vowel and nasal consonants. A suitable model for unvoiced sounds demands the9
inclusion of random components. In other studies, voiced speech was well characterized
by nonlinear and low dimensional behavior [3]. Compared with the pronunciation of11
isolated and well-pronounced words, signal complexity is increased in natural speech.
This is due to the way in which transitions appear between di�erent phonemes in13
continuous speech, for example, during the transition from a nasal consonant to a vowel
due to nasal co-articulation [4]. Some nonlinearities like those produced by radiation15
at the lips level or turbulence during constrictions [5] are not able to be assessed by a
linear model, although this type of model is broadly used.17
Considerable progress has been made in the last two decades in automatic speech

recognition (ASR). The incorporation of hidden Markov models (HMM) led to very19
high levels of performance, mainly thanks to the way this technique enables speech
time variability modelization. Research using various HMM paradigms have resulted in21
the incorporation of a number of features that attempt to model human speech percep-
tion and production. In the �eld of acoustic modeling several speech parameterization23
techniques were applied, and important advances have been made, such as linear pre-
dictive coding [6], cepstral and mel frequency cepstral coe�cients (MFCC) with delta25
and acceleration coe�cients [7]. Complexity measures have been previously used for
easier tasks than ASR, such as end-point detection or segmentation. In these works,27
entropy has been usually computed in frequency domain and referred to as spectral
entropy [8,9].29
An important performance deterioration of ASR systems is observed when trained

with clean speech and tested with noisy speech [10]. In this case the reduction of their31
capacities can lead to increased error up to 80%. Similarly, when the ASR system is
trained with speech registered by means of a high-quality audio system and is then33
tested with a simple home microphone, the errors can grow up to 50%. This is the
area of “robust” speech recognition research. Thus, the main objective is to obtain ASR35
systems that can be used in real environments, with noise, reverberation, losses in the
transmission channel, home quality audio systems, etc. There are two main approaches37
that guide this research: techniques based on the transformation of speech into the
feature space and techniques based on speech model adaptation to noise. In many39
cases the noise possesses very special characteristics that allow it to be modeled easily
and to signi�cantly improve the ASR system’s performance. Nevertheless, often the41
noise consists of other voices in a conversation and, specially for low signal-to-noise
ratio (SNR), the problem is still open. For example, Fig. 1(a) shows a part of a labeled43
speech signal of sentence: “C�omo se llama el mar que baña Valencia?” (What is the
name of the sea that border Valencia?). In Fig. 1(b) the corresponding spectrogram45
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Fig. 1. (a) Labeled speech signal. (b) |H (f; t)| corresponding to the signal displayed in (a). (c) The same
signal shown in (a) with additive white noise (20 dB). (d) |H (f; t)| corresponding to the signal displayed
in (c).

analysis of this clean speech signal can be observed. Figs. 1(c) and (d) show the same1
signal but contaminated with a pub conversation at 20 dB SNR. The clean spectrogram
shows better spectral contrast that allows an easier indenti�cation of important acoustic3
clues for phoneme recognition.
In this work a new approach to the front-end stage of an ASR system is introduced.5

One dimension, that takes into account the dynamical changes of speech signal, is
added to a classical MFCC parameterization. This dimension is computed by means of7
the evaluation of a temporal complexity measure. The Shannon entropy and the more
general Harvda–Charvat–Dar�ovczy–Tsallis [11–13] (q-entropies) and their correspond-9
ing relative informations are considered. We contrast the performance of a classical
ASR system front-end and the ones obtained including these measures in the presence11
of noise.
This paper is organized as follows. In Section 2 the materials and methods are13

introduced. The results obtained are discussed in Section 3 and the conclusions are
presented in Section 4. Computational aspects concerning the information measures are15
considered here and also some basic speech parametrization elements are discussed in
Appendix A.
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2. Materials and methods1

In this section we brie�y review the complexity measures used in this paper and the
ASR system used in this study. Technical details and description of the data used to3
perform the experiments are given.

2.1. Complexity measures5

2.1.1. Entropies
Given a signal x, its Shannon entropy is de�ned as7

H=−
M∑
i=1

pi ln(pi) ; (1)

where pi is the probability that the signal belongs to a considered interval, with the
understanding that p ln(p) = 0 if p= 0, and M is the number of partitions [14]. The9
entropy H is a measure of the information needed to locate a system in a certain state,
meaning that H is a measure of our ignorance about the system.11
The q-entropy [11–13], that depends on a single real parameter q �= 1, reads as:

Hq = (q− 1)−1
M∑
i=1

(pi − pqi ) : (2)

Applications of q-entropy in the context of nonlinear dynamical systems have been13
recently introduced to the detection of slight changes on the system’s parameter by the
analysis of the complex biological signal [15,16].15

2.1.2. Relative entropies
The relative entropy (or Kullback–Leiber distance) D(f|g) between two probability17

densities f and g is de�ned by

D(f|g) =
∫
X
f(x) ln(f(x)=g(x)) dx (3)

with the understanding that y ln(y) = 0 if y = 0 [17]. In the q-entropies case for19
q∈R− {1}, the corresponding relative q-entropies are given by [18]

Dq(f|g) = (1− q)−1
∫
X
f(x)(1− (f(x)=g(x))q−1) dx : (4)

In our case, given two probabilities pi and ri, corresponding to di�erent frames of the21
same signal, the discrete versions read as

D(p|r) =
M∑
i=1

pi ln
(
pi
ri

)
(5)

and23

Dq(p|r) = 1
1− q

M∑
i=1

pi

[
1−

(
pi
ri

)q−1]
: (6)
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The presented complexity measures H; D; Hq and Dq, with di�erent values of q,1
and have been explored in this work inside an ASR framework. For computational
details we refer the reader to Appendix A. For more comprehensive discussions, see3
e.g. [11,12,15,19]. In particular, in Ref. [15], these measures have been applied to the
detection of dynamical changes in complex biological signals.5

2.2. Automatic speech recognition

A “state of the art” multi-speaker ASR system for continuous speech in Spanish was7
built, based on HMM. It is our baseline reference for comparisons with the alternative
proposed here. We brie�y present here the most relevant aspects of this baseline system9
used in the experiments. For computational details we refer the reader to Appendix A.
For further details, and due to the extent of this topic we remit readers not familiarized11
with ASR to [20].
The “front-end” (or speech parametrization) used here was based on classical MFCC13

analysis. A three state semi-continuous HMMs (SCHMMs) have been used for context-
independent phonemes and silences [6]. Observations probability density functions have15
been modeled with Gaussian mixtures. A complete model was built for all the phrases
and four reestimations have been accomplished using the Baum–Welch algorithm [21].17
Parameters tying was accomplished using a pool of 200 Gaussians for each model state.
Tied mixtures reduces the total e�ective amount of parameters from 855 000 to 26 200.19
This stage is necessary in order to improve the estimation robustness because of the
reduced training set used [22]. Finally the remaining reestimations have been computed21
in order to complete the total of 16. For language modeling, backing-o� smoothed
bigrammars [21] have been estimated with transcriptions of the training database.23
For the reference system, each phrase has been normalized in mean, preemphasized

and Hamming windowed in segments of 25 ms length, shifted 10 ms. Each segment25
has been parameterized with 28 coe�cients: 13 MFCC, 1 energy coe�cient (E) and
their temporal derivatives (�MFCC+�E) [7]. For the alternative front-end proposed27
here, we considered 12 MFCC, 1 energy coe�cient and their temporal derivatives. One
coe�cient related to a given complexity measure of the speech segment or “frame”, and29
its temporal derivative have been added to obtain the same feature vector dimension
of the reference system (see Appendix A for more details). These two new coe�cients31
incorporate information about the dynamical changes and complexity of the speech
signal.33

2.3. Database and cross validation tests

A subset of the Albayzin speech corpus [23] was used for the experiments. This35
subset consists of 600 sentences concerning Spanish geography, and a vocabulary size
of 200 words. The speech utterances from this corpus, registered in a recording study,37
had 3:55 s phrase duration average, and they were spoken by six males and six females
from the central area of Spain (average age 31.8 years). The data was digitized at39
8 KHz, 16 bits and a �-law sampling has been used.
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In order to determine the system robustness, once trained with clean data, it has been1
tested with speech contaminated with di�erent kinds of noise. White and babble noise
of the NOISEX-92 database were used [24]. The white noise data was digitized from a3
high-quality analog noise generator. The source of background conversation noise data
(babble) was 100 persons speaking in a pub. The noise has been re-sampled to 8 KHz5
and has been mixed with speech data at di�erent SNRs.
Tests were accomplished using the leave-k-out cross-validation method [25] with 107

di�erent partitions on the same subset of speech data. For each partition, the 20% of
sentences not used during the training stage, are randomly selected to play as the test9
set. For recognition error measurement, the word error rate (WER) was evaluated,
considering as errors the words deletions and substitutions [26]. The percentage of rel-11
ative error improvement of the di�erent measures compared with the baseline front-end
has also been computed13

��% =
�ref − �
�ref

× 100 ;

where � is the WER value.

3. Results and discussion15

In this section we present and discuss the most relevant results obtained. Fig. 2(a)
shows the same speech signal of Fig. 1(a). The Dq evolution is displayed in Fig. 2(b).17
We can appreciate that there is a correspondence between the divergence variations
and the phonemic changes. In Fig. 2(c) the same signal is shown but now corrupted19
with additive white noise (20 dB) and Fig. 2(d) is the corresponding Dq evolution.
The peaks are located in similar positions with respect to the ones obtained for the21
clean signal. This suggests a certain robustness of this measure, at least for this SNR
level. Similar results have been reported in Ref. [8], using Shannon’s spectral entropy23
in end-point speech detection. In other biological signals robustness has been improved
by means of multiresolution analysis [27].25
The WER for the ASR systems described below has been computed. Figs. 3 and 4

present the results obtained for signals corrupted with white and babble additive noise,27
respectively, vs. SNR. The subplots compare the classical front-end (dotted lines)
with the alternative ones (full lines) obtained using the Shannon entropy for (a), the29
q-entropy (q=0:5) for (b), the Kullback–Leiber divergence for (c) and the q-divergence
(q=0:1) for (d). The reference value for the classical front-end in the clean signal case31
was 6.74%. As can be seen in Fig. 3, it is clear that in the white noise case, the best
results are obtained for Dq. In particular for SNR between 20 and 50 dB the error rate33
is reduced (Fig. 3(d)). In the babble noise case (Fig. 4) the Dq advantage is not so
clear. In most of the considered measures the WER values obtained for the white noise35
case are higher than the ones obtained for babble noise. This last result is consistent
with the fact that white noise is more destructive of the signal spectral properties and37
the information measures provide additional information for the recognition.
The percentage of relative error improvement of the di�erent measures compared39

with the classical front-end was computed. The results are summarized in Table 1 for
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Fig. 2. (a) Labeled speech signal. (b) Dq evolution corresponding to the signal displayed in (a). (c) The
same signal shown in (a) with additive white noise (20 dB). (d) Dq evolution corresponding to the signal
displayed in (c).

Table 1
Percentage of relative error improvement (��%) of the di�erent measures compared with the classical
front-end for speech signal corrupted with white noise

SNRdB H Hq=0:1 Hq=0:5 D Dq=0:1 Dq=0:5

∞ 0.89 3.55 2.55 0.96 8:04 3.89
100 −1.88 0.09 1.48 −2.01 7:23 1.42
50 1.20 −8.57 7.19 5.90 12:83 2.38
30 8.60 6.39 7.30 −7.43 21:25 2.51
20 13.02 15.79 12.29 8.99 18:38 −1.14
10 2.25 3:20 3.13 −5.45 −1.91 −8.53
0 −1.26 0:31 −0.75 −4.07 −2.44 −3.17
Bold numbers indicate the best performance for each SNR value and they remark the results observed in

Fig. 3.

di�erent q values and SNRs under white noise. The same analysis using babble noise1
are given in Table 2. Bold numbers indicate the best performance for each SNR value.
The results displayed in Table 1 remark those observed in Fig. 3. From Tables 1 and3
2 it can be concluded that with white and babble noise, Dq=0:1 is the measure that
provides better results, in particular for SNRs higher than 20 dB.
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Fig. 3. Recognition WER for the ASR systems vs. SNR, for speech signals corrupted with white addi-
tive noise. Comparison of the classical front-end (dotted lines) with the alternative ones obtained using:
(a) Shannon entropy; (b) q-entropy with q=0:5; (c) Kullback–Leiber divergence; and (d) q-divergence with
q = 0:1.

Table 2
Percentage of relative error improvement (��%) of the di�erent measures compared with the classical
front-end for speech signal corrupted with babble noise

SNRdB H Hq=0:1 Hq=0:5 D Dq=0:1 Dq=0:5

∞ 0.89 3.55 2.55 0.96 8:04 3.89
100 1.48 1.68 3.79 1.66 10:71 3.92
50 6.46 −1.34 6.84 4.31 14:11 1.06
30 17.98 14.50 20.75 17.19 24:31 10.13
20 14:83 10.42 13.46 4.13 8.16 0.64
10 1.52 2:67 2.18 −6.73 −4.53 −11.36
0 −4.35 −2:00 −2.77 −8.56 −4.96 −7.25
Bold numbers indicate the best performance for each SNR value. They allow us to assert that in the

babble noise case it is again Dq measure that provides better results, for q = 0:1, in particular for SNR
between 30 and 50 dB.
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Fig. 4. Recognition WER for the ASR systems vs. SNR, for speech signals corrupted with babble addi-
tive noise. Comparison of the classical front-end (dotted lines) with the alternative ones obtained using:
(a) Shannon entropy; (b) q-entropy with q=0:5; (c) Kullback–Leiber divergence; and (d) q-divergence with
q = 0:1.

We have also evaluated the statistical signi�cance of these results by computing1
the probability that a given recognizer is better than the reference or baseline system
(Pr(�ref ¿�)). In order to perform this test we assumed the statistical independence of3
the recognition errors for each word and we approached the errors’ Binomial distribu-
tion by means of a Gaussian distribution. This is possible because we have a su�ciently5
high number of words (11 077 words if we take into account all the partitions). In this
way, for q = 0:1 and SNR between 20 and 50 dB of both noise types we have that7
Pr(�ref ¿�)¿ 99:999%.

4. Conclusions9

In this work we have introduced the use of complexity measures in the front-end of
an ASR system. The original motivation for this approach was the relation observed11
between complexity measures and speech segmentation. In previous works [15,27,28]
we have shown that information measures as the ones used in this paper are well13

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

H
. L

. R
uf

in
er

, M
. E

. T
or

re
s,

 L
. G

. G
am

er
o 

&
 D

. H
. M

ilo
ne

; "
In

tr
od

uc
in

g 
co

m
pl

ex
ity

 m
ea

su
re

s 
in

 n
on

lin
ea

r 
ph

ys
io

lo
gi

ca
l s

ig
na

ls
: a

pp
lic

at
io

n 
to

 r
ob

us
t s

pe
ec

h 
re

co
gn

iti
on

"
Ph

ys
ic

a 
A

: S
ta

tis
tic

al
 M

ec
ha

ni
cs

 a
nd

 it
s 

A
pp

lic
at

io
ns

, V
ol

. 3
32

, N
o.

 1
, p

p.
 4

96
-5

08
, 2

00
4.



UNCORRECTED P
ROOF

10 H.L. Ru�ner et al. / Physica A ( ) –

PHYSA7772

ARTICLE IN PRESS

suited both for detecting relative complexity changes and slight parameters variations1
in nonlinear dynamical systems. These aspects and the fact that speech signals show
a nonlinear behavior allowed us to expect that the inclusion of these measures in an3
ASR system would provide a more reliable information about the speech underlying
dynamics, improving recognition capabilities in adverse conditions.5
The proposed method has been tested on noisy speech and compared with a classical

MFCC parametrization. The expansion of the feature vector through the addition of the7
Dq=0:1 measure, demonstrated a signi�cant reduction of the WER in noisy conditions.
For both white and babble noise, the best improvements have been obtained for 209
and 30 dB SNRs. Although this would not be considered extremely noisy conditions,
these preliminary results suggest that, as expected, complexity measures could provide11
valuable information derived from vocal tract dynamical changes in speech recognition.
Therefore, complexity measures could be considered as part of the information provided13
to an ASR system.

Appendix A. Computational aspects15

A.1. Information measures17

Let x(t) be the temporal evolution of a given signal and let us consider its discrete
evolution, obtained by a regular sampling, given by19

S = {x[k]; k = 1; 2; : : : ; K} ;
where x[k] stands for x(tk), the signal value at the time tk = k�t, where �t is the
sampling period.21
The central idea of the analysis proposed here is that of being in a position to gener-

ate a suitable probability set from a given signal. Once the probabilities are determined,23
the information measures are computed according to the pertinent de�nitions. In order
to calculate the di�erent entropies, we have to evaluate the probability distributions of25
the corresponding sampled signal x[k].
Fixed a desired number of partitions M , we may de�ne on set S a sliding window27

depending on the two parameters, width L∈N and sliding factor �∈N:
WR(m;L; �) = {x[k]; k = 1 + m�; : : : ; L+ m�} ;

m= 0; 1; 2; : : : ; mmax ; (A.1)

with � and L selected such that L6K and (K − L)=�=mmax ∈N. Observe that mmax29
has to be �xed in such a way that as m evolves from 0 to mmax, all the data set
S is “viewed” through the rectangular windows. In this way WR(m;L; �) is called a31
“frame”.
In the case of speech signal the window’s width has direct relation with the maximum33

speed of signi�cant vocal tract morphology modi�cation. A suitable selection allows
the study of the signal within each frame under a stationary hypothesis [7]. In our35
experiments, M = 10; �= 200 and L= 80 were used, with �t = 125 �s.
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The center of the frame (A.1) is x[L=2 +m�]. The integer m is a time-control and,1
for each WR(m;L; �), the equipartition

x0 = xmin[m]¡x1¡x2¡ · · ·¡xM = xmax[m] ; (A.2)

is to be considered, where3

xmin[m] =̂ min[WR(m;L; �)]

=min
k
{x[k]; k = 1 + m�; : : : ; L+ m�} ; (A.3)

and

xmax[m] =̂ max[W (m;L; �)]

=max
k

{x[k]; k = 1 + m�; : : : ; L+ m�} : (A.4)

Attention is now focused upon the set {I l=[xl−1; xl[; l=1; : : : ; M} of disjoint intervals5
such that

[x0; xM ] =
M⋃
l=1

I l : (A.5)

Let us indicate pm(I l) the probability that the element x[k]∈WR(m;L; �) belongs to the7
interval I l. This probability is estimated as the ratio between the number of elements
of WR(m;L; �) in I l and the total number of elements in this window. In this way the9
corresponding q-entropy can be computed as

Hq;x[m] = (q− 1)−1
M∑
l=1

[pm(I l)− (pm(I l))q] ; (A.6)

for m= 0; 1; : : : ; M .11
In conclusion, Hq allows us to follow the corresponding entropy temporal evolution

(time-control m) of the given signal. The other information measures that involve pdf13
functions are computed in a similar way.

A.2. Basic speech parametrization15

For basic speech parametrization it is more convenient to use sliding windows other
than rectangular windows. In the Hamming window case we modify (A.1)17

WH (m;L; �) = {xH [k; m]; k = 1 + m�; : : : ; L+ m�} ;
m= 0; 1; 2; : : : ; mmax ; (A.7)

where xH [k; m] is the scalar product of the original speech signal and a shifted Hamming
window:19

xH [k; m] = x[k]!H [k; m;L] ; (A.8)

with � and L as above, and !H [k; m;L] the Hamming window

!H [k; m;L] =
27
50

− 23
50
cos(2�(k − m�)=L) : (A.9)
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IfTC[n] is the operator for the domain transformation corresponding to the real cepstral1
coe�cients in mel scale (MFCC), the windowed signal parametrization process of
xH [k; m] is carried out according to3

c[n; m] =TC[n]{xH [k; m]}; 0¡n6N :

That is to say that the application of TC[n] to the windowed speech signal generates
the MFCC parametrization mentioned in Section 2.2.5
As the �rst step for the de�nition of TC[n] the output of a �lter bank u[j; m] for

each time-control index m is computed, starting from the weighted summation of the7
log-spectral coe�cients derived from xH [k; m]:

u[j; m] = 2
i=B( j)∑
i=B( j−1)

!B[i − B(j − 1);B(j + 1)− B(j)] log |x̂H [i; m]|; 0¡j6 J ;

where x̂H [i; m] corresponds to the discrete Fourier transform of xH [k; m], and B(j) is9
a vector that establishes the initial and ending samples for each summation range for
each one of the �lters, and !B is the Bartlett (or triangular) window11

!B[i;L] =

{
2i=L if 0¡i6L=2 ;

2− 2i=L if L=2¡i6L :
(A.10)

In order to compute the values of B(j) an expression is used that allows one to locate
the central frequencies of �lter windows !B according to the so-called mel scale [7]13

Fmel(fHz) = 2595 log10

(
1 +

fHz
700

)
:

This scale has been derived from studies of the human perception of audio pure tones
that allowed to approach the relationship between the perceived frequency and the real15
one.
Now, TC[n] can be de�ned from the discrete cosine transform of u[j; m]:17

c[n; m] =

√
2
J

J∑
j=1

u[j; m] cos
(�n
J
(j − 0:5)

)
:

The experimental results had widely favored this combination. It should be mentioned
that, as it is common practice in ASR, only the �rst c[n; m] were used (12 or 13).19
These coe�cients hold information with respect to the spectral envelope of the vocal
tract. In our experiments J = 24 �lter bands were used.21

A.3. Energy and delta coe�cients

When the speech feature vector is assembled, it is common practice to add a measure23
of local energy (see Section 2.2) that is simply de�ned as [26]

E[m] = log
m�+L∑
k=m�+1

xH [k; m]2 : (A.11)
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An estimate of the temporal derivative was also added for all the computed elements.1
For a generic feature vector y[n; m] the delta coe�cients are obtained by means of the
regression [26]3

�y[n; m] =

∑N
j=1 j(y[n; m+ j]− y[n; m− j])

2
∑N

j=1 j
2

;

where N is used to smooth the estimate through the di�erent frames. In our case N =2
was used.5
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