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Embedded estimator in predictive feedback control

Leonardo L. Giovanini*
Industrial Control Centre, University of Strathclyde, Graham Hills Building, 50 George Street, Glasgow G1 1QE, Scotlan
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Abstract

In this work, a new approach to design predictive feedback control for SISO systems is presented. The p
formulation relies on the development of a single step predictor based on an autoregressive moving avera
external input~ARMAX ! model. Although no explicit observer is actually involved in the implementation, this
dictor implicitly includes one since the input-output model subsumes an observer. Exploiting this idea the re
ARMAX model is extended to include extra outputs to improve the quality of the prediction for systems with larg
delay and nonmeasurable disturbances. The resulting predictor is used to develop a predictive feedback contro
new formulation of predictive feedback control includes feedback and feedforward actions. Simulations of two
systems illustrate the applicability of the control algorithm. © 2004 ISA—The Instrumentation, Systems, and
mation Society.

Keywords: Predictive control; Dynamic observers; Inferential control; Feedback/Feedforward control
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1. Introduction

In the well-known state-space model, the re
tionship between the input and output variables
described in terms of an intermediate quant
called the state vector. On the other hand, a typ
input-output model describes the current output
a linear combination of past input and output me
surements. One such model is the autoregres
moving average with external inpu
~ARMAX !, which is the most commonly use
model in discrete control.

Many control techniques have been develop
for state-space and ARMAX models. One of t
most relevant is the model predictive contr
~MPC! techniques. The predictive control co
cepts can be thought of as an extension of
one-step ahead approach ofl 2 optimal control

*Tel: 144-141-548 2666; fax:144-141-552 2487.
E-mail address: leonardo.giovanini@eee.strath.ac.uk
0019-0578/2004/$ - see front matter © 2004 ISA—The Instru
l

e

theory, which calls for an approximate one-st
ahead inversion of the input-output model to pr
duce the control action. This simple inversion a
proach is not suitable for a nonminimum pha
system, which will cause the control input to gro
unbounded while the controlled output rema
bounded. This problem can be overcome by int
ducing a proper dynamic into the controller stru
ture @1,2# or varying the time index of the outpu
that is controlled@2–4#.

To understand the connection between the st
space and input-output model-based control
proaches, it is important to understand how
input-output model relates to the space-st
model and vice versa. It is well known that sta
ing with an input-output model, such as a
ARMAX model, one can convert it to a contro
lable and/or observable canonical space-s
form. The reverse connection from a space-st
model to an equivalent ARMAX model can als
be carried out via canonical forms too. Motivate
mentation, Systems, and Automation Society.



or
er

el.
ip
e-
he
im-
ng
d-
or-

in

ela
tep
s
en

ed.
ice
X
ix,
the
g
l
s-
ur-
he
nd
n
It
op
s
m
c-
n-

ive
re-
ed
n-

1,

s-

ce.
tur-
by

the

e
le
d
t-

344 Leonardo L. Giovanini / ISA Transactions 43 (2004) 343–359

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
; "

E
m

be
dd

ed
 E

st
im

at
or

s 
in

 P
re

di
ct

iv
e 

Fe
ed

ba
ck

 C
on

tr
ol

"
IS

A
 T

ra
ns

ac
tio

ns
 J

ou
rn

al
. V

ol
. 4

3,
 N

o.
 4

, p
p.

 6
43

--
64

9,
 2

00
4.
by these results of realization theory, we look f
predictors that can make use of implicit observ
information embedded in an input-output mod
We exploit this understanding in the relationsh
between the space-state and ARMAX model to d
rive a single-step predictor capable of retaining t
key benefits of the space-state approach to
prove the accuracy of the prediction. The resulti
predictor is employed to build a predictive fee
back controller that includes feedback and feedf
ward actions.

The organization of the paper is as follow:
Section 2, the expressions for a generalJ-step
ahead output prediction are presented. The r
tionship between the coefficients of the single-s
predictor and the coefficients of ARMAX model i
established. In Section 3 the relationship betwe
the space-state and ARMAX models is analyz
The relationship between the space-state matr
and the coefficients of the equivalent ARMA
model is explained in terms of an observer matr
whose dynamic behavior defines the order of
model. Then, exploiting this idea the resultin
ARMAX model is extended to include additiona
system outputs to improve the prediction for sy
tems with time delay and nonmeasurable dist
bances. In Section 4 the basic formulation for t
single-prediction controller design is derived a
stability analysis is carried out. A simple criterio
for choosing the prediction time is derived.
guarantees the robust stability of the closed-lo
system. In Section 5 a direct feedback mode i
introduced in order to improve the overall syste
performance. The stability of the resulting stru
ture is analyzed. The main result is the indepe
dent selection of each element of the predict
feedback controller. In Section 6 we show the
sults obtained from the application of the propos
algorithm to two linear systems. Finally, the co
clusions are presented in Section 7.

2. Single-step output predictor

Consider the SISO system depicted in Fig.
whereq21 is the backward shift operator,dm(k) is
the load disturbance, andd(k) is the non-
measurable disturbance. In the following we a
sume that a model ofGd(q

21) is available and
dm(k) is a measurable deterministic disturban
The process may also be subject to many dis
bances. They can be collectively represented
-

s

one nonmeasurable disturbanced(k) entering the
process at the output. Employing the models of
systemG̃p(q

21) andG̃d(q
21), the output at time

k is described by the difference equation

ỹ~k!52 (
j 51

ny

ãiy~k2 j !1 (
j 50

nu

b̃ju~k2td2 j !

1 (
j 50

nd

c̃jdm~k2 j !1d̃~k!,

ny>nu ,ny>nd , ~1!

which is also referred to in the literature as th
ARMAX model. In this case, the nonmeasurab
disturbanced̃(k) lumps together the unmeasure
disturbanced(k) and inaccuracies due to plan
model mismatch

d̃~k!5~Gp~q21!2G̃p~q21!!u~k!1d~k!.

Defining the following variables

p>max~ny ,nu1td ,nd!, ~2!

ã j5H 2ã j , j 51,2,...,ny ,

0, j .ny ,

b̃ j5H 0, j 51,2,...,td ,

b̃ j , j 5td11,...,td1nu ,

0, j .td1nu ,

g̃ j5H c̃ j , j 50,1,2,...,nd ,

0, j .nd ,
~3!

we can write the system outputỹ(k) as follows:

ỹ~k!5 (
j 51

p

ã j y~k2 j !1 (
j 50

p

b̃ ju~k2 j !

1 (
j 50

p

g̃ jdm~k2 j !1d̃~k!. ~4!

Fig. 1. Process model and disturbance.
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By shifting a time step, obtain the one-step ahe
prediction:

ŷ~1,k!5ã1ŷ~k!1 (
j 51

p21

ã j 11y~k2 j !1b̃0u~k11!

1 (
j 51

p

b̃ ju~k112 j !1g̃0dm~k11!

1 (
j 51

p

g̃ jdm~k112 j !1d̃~k11!, ~5!

where the first index stands for the number of s
ahead samples for which the system output
computed(k11) and the second one is the tim
when the prediction is computed(k). Replacing
ỹ(k) from Eqs.~4! into ~5! yields

ŷ~1,k!5 (
j 51

p21

ã j
1y~k2 j !1b̃0u~k11!

1 (
j 51

p

b̃ j
1u~k112 j !1g̃0dm~k11!

1 (
j 51

p

g̃ j
1dm~k112 j !1d̃~k11!, ~6!

where the coefficients of thepredictor are given
by

ã j
15ã j 111ã1ã j , j 51,2,...,p21,

b̃ j
15b̃ j 111ã1b̃ j ,

g̃ j
15g̃ j 111ã1g̃ j ,

~7!
ãp

15ã1ãp ,

b̃p
15ã1b̃p ,

g̃p
15ã1g̃p .

The system output at timek11, in the absence o
the output measurement at timek, can be ex-
pressed as a linear combination of past input a
output data. In this notation, the current outp
ỹ(k) is given byŷ(0,k) with the coefficients given
by ã j

05ã j and b̃ j
05b̃ j , j 50,1,2,...,p.

Applying the same procedureJ times the system
output may be expressed at timek1J through
ŷ~J,k!5 (
j 50

J

b̃0
J2 ju~k1 j !1 (

j 51

p

ã j
Jy~k2 j !

1 (
j 51

p

b̃ j
Ju~k2 j !1 (

j 50

J

g̃0
J2 jdm~k1 j !

1 (
j 51

p

g̃ j
Jdm~k2 j !1d̃~k1J!, ~8!

where the coefficientsã j
J ,b̃ j

J and g̃ j
J are given by

ã j
J5ã j 111(

l 51

J

ã l ã j
J2 l , J<p, j 50,1,...,p,

b̃ j
J5b̃ j 111(

l 51

J

ã l b̃ j
J2 l , ~9a!

g̃ j
J5g̃ j 111(

l 51

J

ã l g̃ j
J2 l ,

ã j
J5(

l 51

p

ã l ã j
J2 l , J.p,

b̃ j
J5(

l 51

p

ã l b̃ j
J2 l , ~9b!

g̃ j
J5(

l 51

p

ã l g̃ j
J2 l .

Equation~8! defines aJ-step ahead prediction, it
shows the effect of all inputs, past and future,
the output. Observation of Eq.~9b! shows thatã j

J ,
b̃ j

J and g̃ j
J ;J.p are a linear combination of its

pastp parameters weighted by the parametersã l

l 51,2,...,p.
Lemma 1: The coefficientsb̃0

j and g̃0
j are thej th

of the impulse response coefficients ofG̃p andG̃d ,
respectively.

Proof: See Appendix A.
Lemma 2: The coefficientsã l l 51,2,....,p rep-

resent the observer gains that are used to comp
an observer for state estimation.

Proof: See Goodwin and Sin [5].
Employing the backward shift operatorq21 de-

fine the quantities
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P̃y
y~J,q21!5 (

j 51

p

ã j
Jq2 j ,

P̃u
y~J,q21!5 (

j 51

p

b̃ j
Jq2 j , ~10!

P̃d
m~J,q21!5 (

j 51

p

g̃ j
Jq2 j ,

then the prediction~8! can be written as the fol
lowing:

ŷ~J,k!5 (
j 50

J

h̃J2 ju~k1 j !1 P̃u
y~J,q21!u~k!

1 P̃y
y~J,q21!y~k!1 (

j 50

J

h̃J2 j
m u~k1 j !

1 P̃d
m~J,q21!dm~k!1d̃~k1J!, ~11!

where h̃ j and h̃ j
m are the j th coefficients of the

impulse responses ofG̃p and G̃d , respectively.
Since future control actions are unknown, this p
diction is not realizable. To turn it realizable
statement must be made about how the input v
ables are going to move in the future. For e
ample, the simplest rule is to assume that all
inputs will not move in future,

u~k1 j !5u~k1 j 21!, ; j 50,1,...,J,

dm~k1 j 11!5dm~k1 j !, ~12!

d̃~k1 j 11!5d̃~k1 j !,

which implies that the future changes are equa
zero. Then, the prediction~11! becomes

ŷ0~J,k!5ãJu~k21!1 P̃u
y~J,q21!u~k!

1 P̃y
y~J,q21!y~k!1ãJ

mdm~k!

1 P̃d
m~J,q21!dm~k!1d̃~k!, ~13!

where ãJ and ãJ
m are theJth coefficients of step

responses ofG̃p andG̃d , respectively, and the su
perscript zero recalls the conditions~12! are in-
cluded.

The disturbance termd̃(k) is computed from the
output measurementy(k) and the system mode
through
d̃~k!5y~k!2 ŷ~0,k!,

this term lumps together possible unmeasured d
turbance and inaccuracies due to plant-model m
match. Replacing this term in Eq.~13! and rear-
ranging we obtain thecorrected open-loop
predictiongiven by

ŷ0~J,k!5@11P y
y~J,q21!#y~k!

1@ ãJq
211P u

y~J,q21!#u~k!

1@ ãJ
m1P d

m~J,q21!#dm~k!, ~14!

where

P y
y~J,q21!5 P̃y

y~J,q21!2 P̃y
y~0,q21!,

~15a!

P u
y~J,q21!5 P̃u

y~J,q21!2 P̃u
y~0,q21!,

~15b!

P d
m~J,q21!5 P̃d

m~J,q21!2 P̃d
m~0,q21!.

~15c!

The restriction of the measurability of the loa
disturbancedm(k), assumed to develop the co
rected prediction can be removed if the system h
analytic redundancy. In this case we can build
ARMAX that provides an estimation of the distu
bance. In Section 3 we will show how to build th
model, but first we will analyze the relationsh
between the space-state and ARMAX models. T
relationship between the space-state matrices
the coefficients of the equivalent ARMAX mode
is explained in terms of an observer matrix, whi
depends on the observer gain that determines
dynamics of the observer and the order of t
ARMAX model. Exploiting this idea and using a
the information available in the outputs, the resu
ing ARMAX model is extended to estimate th
nonmeasurable disturbance from the input a
outputs of the system.

3. Implicit observer in ARX model

To analyze the relationship between ARMA
and space-state models, let us consider the sp
state model of system~4! without disturbances
whose statesx(k) are not measurable,

x~k11!5Ax~k!1Bu~k!, x~0!5x0 ,
~16!

y~k!5Cx~k!1Du~k!.
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If A is stable and(A,C) is an observable pair, th
system’s states can be estimates through a
namic observer,

x̂~k11!5~A2KC!x̂~k!1~B2KD !u~k!

1Ky~k!, x̂~0!5 x̂0 ,
~17!

ŷ~0,k!5Cx̂~k!1Du~k!,

whereK is the observer gain that is computed u
ing the Riccatti equation with the covariance m
trix equal to zero@6#. In case of a stochastic sys
tem the covariance matrix is nonzero, and t
observer~17! becomes the Kalman filter. Definin
the dynamic filter and gain matrices,

A5A2KC, ~18a!

B5B2KD, ~18b!

the filter ~17! can be expressed in the followin
form:

x̂~k11!5Ax̂~k!1Bu~k!1Ky~k!,

ŷ~0,k!5Cx̂~k!1Du~k!.

Propagating this equation forward in timek
times, starting fromk50, one obtains the system
output at timek,

ŷ~0,k!5CA kx̂~0!1(
i 51

k

CA i 21Bu~k2 i !

1(
i 51

k

CA i 21Ky~k2 i !1Du~k!.

Observe that the current output not only depen
on the initial state, but also on the lastk control
actions and system output. The contribution of t
states depends on the dynamic of the filter, sok
is large enough to dismiss the contribution of t
initial statex̂(0) to the prediction

A k5~A2KC!k'0, k.p, ~19!

what is equivalent to the dynamics of the filter h
vanished some steps ago, the system output ca
approximated through

ŷ~0,k!5(
i 51

p

CA i 21Bu~k2 i !1(
i 51

p

CA i 21Ky~k

2 i !1Du~k!. ~20!
-

e

Note that this result is independent of the actu
system dynamics, which may still be in the tra
sient portion afterp time steps. The last equatio
is exactly the same as the ARMAX model~4!
without disturbances. Besides, comparing Eqs.~4!

and ~20! reveals that the coefficientsã i and b̃ i of
ARX model are related to those of the space-st
model by the following relationship:

ã j5CA j 21K, j 51,2,...,p,

b̃ j5CA j 21B, ~21!

b̃05D.

Inspection of these equations shows that the re
tionship between the space-state matrices and
coefficients of the equivalent ARMAX model i
given in terms of a dynamic observer matrixA,
which depends on the observer gainK @Eq. 18~a!#.
This gain not only defines the dynamic of the e
timator but also determines the order of ARMA
model. It is now clear that an ARMAX model o
orderp subsumes a deadbeat observer of orderp.

3.1. Estimating the nonmeasurable disturbance

If the controlled system has analytic redundan
an estimator that is able to estimate the dist
bances present in the system can be develo
@7,8#. So, the ARMAX model developed from thi
estimator will be able to estimate the unmeas
able disturbanced̃(k). For example, employing
the filter proposed by Keller@9#

x̂~k11!5~A2ABdPC2KSC!x̂~k!1Bu~k!

1~KS1ABdP!y~k!,

ŷ~0,k!5Cx̂~k!, ~22!

d̂~0,k!5P@y~k!2Cx̂~k!#,

where d̂(0,k) is the estimation of unmeasurab
disturbances,Bd is the disturbance distribution
matrix, and the matricesS andP satisfy the iso-
lation conditions@8#

PCBd5I ,
~23!

SCBd50.

These design conditions are required to obtain
unbiased estimation@9#.
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Following the procedure described in the pre
ous section we obtain the following estimators:

ŷ~0,k!5 (
j 51

p

CyA j 21Bu~k2 j !

1 (
j 51

p

CyA j 21Ky~k2 j !, ~24a!

d̂~0,k!5Py~k!2 (
j 51

p

CdA j 21Bu~k2 j !

2 (
j 51

p

CdA j 21Ky~k2 j !, ~24b!

where the matricesA, Cy , Cd , andK are given by

A5A2KC,

Cy5C,
~25!Cd5PC,

K5KS1ABdP.

From these equations it is easy to see that
parameters of the output estimator,

ŷ~0,k!5 (
j 51

p

b̃ jyu~k2 j !1 (
j 51

p

ã jyy~k2 j !,

~26!

are given by

ã jy5CyA j 21K, j 51,2,...,p,
~27!

b̃ jy5CyA j 21B,

and the parameters of the disturbance estimato

d̂~0,k!5 (
j 51

p

b̃ jdu~k2 j !1 (
j 50

p

ã jdy~k2 j !,

~28!

are given by

ã0d5P,

ã jd52CdA j 21K, j 51,2,...,p, ~29!

b̃ jd52CdA j 21B.

It is important to note that both estimators use
the information available at the output of the sy
tem. So, the coefficientsã j l l 5y,d of these esti-
mators are vectors in spite of the SISO nature
the propose scheme.

Since we have an estimate of the no
measurable disturbanced̃(k) and its model, a bet-
ter estimate ofd̃(k1J) can be obtained by com
puting its open-loop prediction@d0(J,k)#. It is
obtained using Eqs.~14!, ~15a!, and~15b!,

d0~J,k!5@ ãJ
dq211P u

d~J,q21!#u~k!

1P y
d~J,q21!y~k!, ~30!

with parameters of the predictorsP u
d andP u

d given
by Eqs.~25!, ~27!, and~29!.

Finally, the corrected open-loop prediction
obtained by adding Eq.~30! to Eq. ~14!, the result
is

ŷ0~J,k!5@11Py~J,q21!1#y~k!

1@ ãJq
211Pu~J,q21!#u~k!

1@ ãJ
m1P d

m~J,q21!#dm~k!, ~31!

where

Py~J,q21!5P y
y~J,q21!1P y

d~J,q21!,

Pu~J,q21!5P u
y~J,q21!1P u

d~J,q21!, ~32!

ãJ5ãJ
y1ãJ

d .

This predictor is the best that can be built, becau
it employs all the information available in the sy
tem. The controllers developed from this predict
can take faster corrective action than a stand
control structure since it includes an approxima
feedforward action, even if the disturbances a
not measurable.

4. Single-prediction control

4.1. The control algorithm

Although the idea of using only one predictio
of the system output for controlling the system
not new @2,3,10# none of these authors used th
prediction timeJ as tuning parameter. This is th
case of single-prediction controller@4#, whose
derivation procedure is quite straightforward fro
the open-loop prediction. Revising the assumpt
used to go from Eq.~11! to Eq.~13! observe that if
just the only one control movement—we compu
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the control changeDu(k) in order to introduce an
integral action that guarantees free offs
responses—(Du(k)) is computed, then

ŷ~J,k!5 ŷ0~J,k!1ãJDu~k!. ~33!

Substracting this prediction from the referen
variabler (k1J) we obtain the predicted error

ê~J,k!5r ~k1J!2 ŷ~J,k!. ~34!

The control action can be computed in a simi
way to standard predictive controllers, by min
mizing the following performance measure:

L~k!5ê2~J,k!1rDu2~k!, r>0. ~35!

Then, the control action that minimizes this pe
formance index is given by

Du~k!5KJ
21ê0~J,k!, ~36!

where ê0(J,k)5r (k1J)2 ŷ0(J,k) and KJ5ãJ

1rãJ
21 . Giovanini @4# established the relation

ship betweenJ and r with the closed-loop re-
sponse characteristic. He found that the predict
time J is theclosed-loop settling timefor an error
aue(k0)u and the control weightr is related toa
through

r5
a

12a
ãJ

2, a>0.

For particular choice ofr50 ~what is equivalent
a50), the performance measure~35! and the pre-
dicted closed-loop errorê(J,k) become zero and
the control change is given by

Du~k!5ãJ
21ê0~J,k!. ~37!

In the following it will be assumed thatr50 to
simplify the exposition. However the results th
will be obtained are the same whether the cont
weight r is set to zero or not.

Using Z transform on Eq.~36! shows that the
single-predictive control algorithm is basically a
integral action applied on the predicted error

u~z!5
1

12z21 ãJ
21ê0~J,z!. ~38!

Combining Eqs.~14!, ~34!, and ~38! gives the
single-prediction control law
u~z!5 $r ~J,z!2@11Py~J,z!#y~z!

2@ ãJ
m1P d

m~J,z!#dm~z!%/@ ãJ1Pu~J,z!# .

~39!

Inspection of this equation revels that the sing
predictive controller uses the future referen
@r (k1J)#. If this one is not available the actua
referencer (k) must be used, with the conseque
tial loss of performance during the setpoint trac
ing. Besides, it also includes a feedforward acti
introduced by the inclusion of the disturbance p
diction d0(J,k).

Fig. 2 shows a block diagram of how the contr
action is computed. It is apparent that it uses
plant model to estimate the output at the pres
time ŷ(k). This value is then compared with th
actual measurementy(k) to detect modeling er-
rors and external disturbances. Then, the pred
tion of the disturbanced0(J,k) is added to esti-
mated(J,k). In other words, given all the inpu
changes accounted for until the instantk, the
single-prediction controller observes the value th
would be reached by the system output if no futu
control action is taken and thenu(k) is computed
such that the performance index~35! is mini-
mized. Hence, the output reaches the refere
valueJ sampling intervals later.

In this figure we can also see, after some blo
manipulation, that the single-prediction controll
resembles a three degree of freedom structu
However, the controller has only one paramet
namely theprediction timeJ.

Fig. 2. Structure of the single-prediction controller.



n
w
to

of

he
e

d

,
of

e-

e
en

m-
a
the

of
he

-

350 Leonardo L. Giovanini / ISA Transactions 43 (2004) 343–359

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
; "

E
m

be
dd

ed
 E

st
im

at
or

s 
in

 P
re

di
ct

iv
e 

Fe
ed

ba
ck

 C
on

tr
ol

"
IS

A
 T

ra
ns

ac
tio

ns
 J

ou
rn

al
. V

ol
. 4

3,
 N

o.
 4

, p
p.

 6
43

--
64

9,
 2

00
4.
4.2. Stability analysis

To analyze the effect of the prediction time o
the closed-loop stability, substitute the control la
~39! into the closed-loop characteristic equation
obtain

T~z!5@ ãJ1Pu~J,z!1Pu~0,z!#D~z!

1@Py~J,z!1Py~0,z!#N~z!. ~40!

Recalling

D~z!512Py~0,z!,

N~z!5Pu~0,z!,

and combining this expression with Eq.~15!, this
equation becomes

T~z!5@ ãJ1 P̃u~J,z!2 P̃u~0,z!1Pu~0,z!#

3@12Py~0,z!#

1@ P̃y~J,z!2 P̃y~0,z!1Py~0,z!#Pu~0,z!,

or simply

T~z!5@ ãJ1 P̃u~J,z!2 P̃u~0,z!1Pu~0,z!#

1
Pu~0,z!

12Py~0,z!
@ P̃y~J,z!2 P̃y~0,z!

1Py~0,z!#. ~41!

Combining this expression with the expression
Py(J,z) and Pu(J,z) @Eqs. ~10!# we obtain the
characteristic equation of closed-loop system,

T~z!5ãJ1 (
j 51

p

b̃ j
Jz2 j1 (

j 50

p

~b j2b̃ j !z
2 j

1
( i 50

p b iz
2 i

12( i 51
p a iz

2 i

3F (
j 51

p

ã j
Jz2 j1 (

j 51

p

~a j2ã j !z
2 j G .

~42!

Theorem 1: Given a system controlled by t
control law (39), the closed-loop system will b
robustly stable if
ãJ. (
j 51

p

ub j
Ju1uKu (

j 51

p

ua j
Ju1 (

j 50

p

ub j2b̃ j u

1uKu (
j 51

p

ua j2ã j u, ~43!

whereK is the process gain.
Proof: See Appendix B.
The terms involved in this condition, ordere

from left to right, are~a! the contribution of the
nominal model, and~b! the effect of parametric
uncertainty. From the geometrical point of view
this condition can be visualized as a reduction
the stability region in a size ofla ~see Fig. 3!,

la5 (
j 50

p

ub j2b̃ j u1uKu (
j 51

p

ua j2ã j u.

This means that the robust stability region is d
fined by the circle of radius12 la, so the stability
condition ~43! guarantees that all of poles of th
closed-loop system are inside of this region. Wh
there is not uncertainty in the system, Eq.~43!
becomes

ãJ. (
j 51

p

ub j
Ju1uKu (

j 51

p

ua j
Ju, ~44!

and therobust stability regionis the unit circle.
Generally, control engineers assume that a fa

ily W of M linear models is able to capture
moderate nonlinearity. Therefore, to guarantee
stability of the system we must choose aJ such
that it guarantees the stability of all the plants
W. Then, the robust stability problem becomes t
problem of finding aJ such that Eq.~43! is satis-
fied for each model ofW. Using parametric uncer
tainty Eq.~43! becomes

Fig. 3. Geometric interpretation of Eq.~4.11!.
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ãJ. (
j 51

p

ub j
Ju1uKu (

j 51

p

ua j
Ju

1 max
l P[1,M ]

H (
j 50

p

ub j
l 2b̃ j u1uKl u (

j 51

p

ua j
l 2ã j uJ .

~45!

This means it is necessary to guarantee the sta
ity of closed-loop for the worst case model, com
pared with the nominal model. From the geome
cal point of view means that we choose the bigg
uncertainty( la),

la5 max
l P[1,M ]

lal

5 max
l P[1,M ]

H (
j 50

p

ub j
l 2b̃ j u1uKl u (

j 51

p

ua j
l 2ã j uJ ,

and the robust stability region is the smallest.
Another way to solve the robust stability prob

lem is to find aJ that satisfies simultaneously E
~44! for all the models ofW. In case of a system
with monotone response, the stability conditi
~45! can be written as

JSTB5max~J1 ;J2 ;...;JM !, ~46!

where Jl l 51,2,...,M is the prediction time for
the l th model of the familyW. This expression
means that we can chose a different predict
time for each model ofW, then we selected th
bigger prediction time.

A final remark is for recalling that the stabilit
condition given by Dabke@11# is a sufficient one.
Consequently stability conditions~43!–~45! be-
come conservative and impose a too high low
bound for selectingJ. So, always there are predic
tion times lower thanJSTB for which the closed-
loop system will be stable. The firstJ that guaran-
tees the closed-loop stability can be found throu
a direct search, because the solution space
bounded

1<J<N.

Furthermore, the open-loop predictor can be
rectly built from the nonlinear model, sinceJSTB
guarantees the closed-loop stability for all t
models ofW. The nonlinear predictor can be bu
-

from the nonlinear model employing a numeric
integration scheme or using a local model netwo
@12#.

5. Predictive feedback control

5.1. The control algorithm

Giovanini @4# has established that the singl
prediction controller provides a similar closed
loop performance to a MPC controller with fixe
parameters. This fact means that a sing
prediction controller has a poor closed-loop pe
formance when there are disturbances and/or
certainties in the system. Thus, he introduced
direct feedback mode in the computation of t
control action through the inclusion of a filter int
the single-prediction control law~38!. Since it em-
ploys only one prediction of the process future b
havior, he applied the delay operatorq2 i , i
50,1,...,w, to the time instant at which the pre
diction is calculated. Hence, the control chan
Du(k) is given by

Du~k!5(
i 50

w

d i ê
0~J,k2 i !, ~47!

where ê0(J,k2 i ) is the J-step ahead open-loo
error computed at timek2 i , wPZ is the filter
order, andd i i P@0,w# are the controller param
eters. The predictive feedback control law can
derived from Eq.~47!, replacing the open-loop er
ror ê0(J,k2 i ) by their components and following
a similar procedure to obtain Eq.~39!. The result
is

u~z!5
F~z!r ~z!2F~z!@11Py~J,z!#y~z!

~12z21!ãJ1F~z!@ ãJz
211Pu~J,z!#

2
F~z!@ ãJ

mz211P d
m~J,z!#dm~z!

~12z21!ãJ1F~z!@ ãJz
211Pu~J,z!#

,

~48!

whose structure is shown in Fig. 4. Giovanini@4#
pointed out thatF(z) adds additional degrees o
freedom to improve the closed-loop performan
and makes the controller tuning difficult. How
ever, he showed that the prediction time(J) and
the parameters of the filter(w and d i i P@0,w#)
can be independently fixed to each other~see Ap-
pendix B!. So, the prediction time will be chose
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based on stability criteria for the single-predictio
controller @Eqs.~44!–~46!# and, then the filter pa
rameters will be fixed using a tuning method f
fixed-structure controller@13#.

This new formulation of predictive control com
bines the capacity of the predictive algorithm a
the classical use of feedback information with t
capabilities of estimation techniques. So, it pr
vides a better performance than the original f
mulation of this controller~as we can see in th
examples! and a linear MPC controller@4#. Also
note that the predictive feedback controller,
both formulations, has two degrees of freedo
the prediction timeJ and the filterF(z).

5.2. Stability analysis

Now, we study the effect of the filters and pr
diction time on the closed-loop stability. First, w
substitute the predictive feedback controller~48!
in the characteristic closed-loop equation, whi
becomes

T~z!5D~z!$~12z21!ãJ1F~z!@ ãJz
211Pu~J,z!

1Pu~0,z!#%1N~z!F~z!@Py~J,z!

1Py~0,z!#. ~49!

Combining this expression with Eq.~15!, the char-
acteristic equationT(z21) can be written as fol-
lows:

Fig. 4. Structure of the predictive feedback controller.
T~z!5$~12z21!ãJ1F~z!ãJz
211F~z!@ P̃u~J,z!

2 P̃u~0,z!1Pu~0,z!#%@12Py~0,z!#

1Pu~0,z!F~z!@ P̃y~J,z!2 P̃y~0,z!

1Py~0,z!#.

The stability of the closed-loop system depends
both the prediction timeJ and the parameters o
the filter F(z). So, it may be tested by any usu
stability criteria.

Theorem 2: Given a system controlled by t
control law (48), the closed-loop system will b
robustly stable if

ãJ. (
j 51

p

ub̃ j
Ju1uKu (

j 51

p

uã j
Ju1 (

j 50

p

ub j2b̃ j u

1uKu (
j 51

p

ua j2ã j u. ~50!

Proof: See Appendix B
This stability condition is the same stability con

dition for the single-prediction controller@Eq.
~43!#. This result was previously obtained by Gio
vanini @4#. It means that the prediction timeJ and
the parameters of the filter can be independen
selected such that both parameters,J and d i i
P@0,w#, independently guarantee the closed-lo
stability. This fact means that the prediction timeJ
should be selected like the single-prediction co
troller @Eqs.~43!–~46!#, and the filter must be tun
ing as there is no time delay in the system, b
cause it has been compensated by the open-
predictor.

Remark 1: Since the prediction timeJ can be
fixed independently of the filters, parameters m
be tuned so that the closed-loop performance
improved. VaryingJ the closed-loop settling time
can be modified, accelerating or decelerating t
system response. So, if we have to control a n
linear system we can choose a differentJ for each
operating region such that we obtain a simila
closed-loop response for each one of them. Th
during the operation, we varyJ according to the
operating region controlled at each sample.

6. Simulations

In this section two simulation examples are co
sidered to show the effectiveness of the controll
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proposed in this work. In the first example we co
sider the model of a distillation column previous
used by Prett and Morari@14# for evaluating linear
control strategies. In this example we compare t
classical~feedback and cascade! control strategies
and the original formulation of single-predictio
control @4# with the new one for disturbance reje
tion. In the second example we consider a conti
ous stirred tank reactor, which was previous
used by several authors@15,16# to test discrete
control algorithms. In this example we compa
the responses obtained by predictive feedb
controllers, the original formulation and that on
proposed in this work, and aPI for tracking set-
point and rejecting disturbances.

Example 1: Prett and Morari [14] have pro
vided a distillation column case study for evalua
ing control strategies. We use a subset of the pr
lem to illustrate and evaluate the ideas presen
above. The process model is

y~s!54.05
e227s

50s11
u~s!11.44

e227s

40s11
d~s!,

~51a!

t~s!53.66
e22s

9s11
u~s!11.27

1

6s11
d~s!.

~51b!

Note that the secondary variablet(s) responds
much faster to both variables, manipulated a
disturbance, than the primary variabley(s). For
direct feedback controly(s), the tuning constant
for the PID controller is obtained by applying
IMC tuning rules to the transfer function betwee
y(s) and u(s) with the filter time constantt f

510. Two controllers must be designed for th
cascade control scheme. For the inner loop, t
transfer function betweent(s) andu(s) is used to
get the tuning constants witht f52. The outer
loop controller is designed from the model o
tained for the inner loop, which was obtained fro
a step response experiment. This model is use
design aPID usingIMC rules witht f510. The
controller tuning constants for all these schem
are shown in Table I.

To develop both predictive controllers, the sy
tem (51) is discretized with a sampling time of 1.
The single-predictive controller without estimato
was directly developed from the discretized mod
The single-prediction controller with estimato
was developed from the estimators building fro
the space-state model of Eq. (51) assuming
deadbeat behavior since there are no uncerta
ties.

Then, the open-loop predictors for the syste
output was developed from these models emp
ing Eqs. (15) and (32). The prediction time fo
both predictive controllers were chosen using t
stability condition (44), soJ must satisfy

J>38.

Since it is known that Dabke’s condition is conse
vative, we explore the solution space and find th
the prediction time that provides the better perfo
mance is

J530.

Fig. 5 shows the responses of the controllers us
the control schemes designed above to rejec
load disturbance change. The excellent distu
bance rejection capabilities of the predictive co
trol with embedded estimator is seen clearly
these graphs. Note that because the longer ti
constant and large time delay in the outer loop
the cascade scheme, this controller cannot be
pected to respond quickly to the input disturbanc.

Fig. 5. Closed-loop responses of the linear system to a
change in disturbance for different control schemes.

Table 1
Tuning constants used in the classical control schemes

Control schemes Tuning constants

Direct feedback ony Kc52.12,t I550, tD513.5
Cascade control~outer loop! Kc50.2, t I550, tD510
Cascade control~inner loop! Kc50.81,t I59
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Fig. 6 shows the control actions employ by ea
control scheme to reject the disturbance. It is ea
to see the feedforward action introduced by t
estimator. The control action is applied to the sy
tem as soon as the disturbance is detected in
output of the system.

Example 2: Now, let us consider the problem
controlling a continuous stirred tank reacto
~CSTR! in which an irreversible exothermic reac
tion is carried out at constant volume. This is
nonlinear system originally used by Morningred
al. [16] and Giovanini [4] for testing predictive
control algorithms. The objective is controlling th
output concentrationCa(t) using the coolant flow
rate qC(t) as the manipulated variable. The di
turbances considered in this work are the inl
coolant temperatureTCO(t) (measurable) and the
feed concentrationCaO(t) (nonmeasurable). The
output concentration has a measured time delay
td50.5 min.

The nonlinear nature of the system is shown
Figs. 7 and 8, where we can see the open-lo
response to changes in the manipulated and
disturbances. Fig. 7 shows the dynamic respon
to the following sequence of changes in the m
nipulated variableqC(t): 110, 210, 210, and
110 lt min21. Fig. 8 shows the dynamic re
sponses to changes in the disturbances variab
first changes in the inlet concentrationCaO(t)
(10.05and 20.05 mol lt21) and later in the re-
frigerant temperatureTCO(t) (110 and210 °C).

From these figures it is easy to see that the
actor is quite difficult to control due to the chang
in the dynamic from one operational condition
another and the presence of zeros near imagin

Fig. 6. Control variable correspondent to the closed-lo
responses shown in Fig. 5.
,

axis. These facts are especially important for d
turbances rejection problem. So, to obtain a go
performance an important control energy will b
required. Besides, theCSTR becomes uncontrol-
lable whenqC(t) go to beyond of113 lt min21.

We are interested in controlling the reacto
around the nominal operating region. So we d
velop the controllers from the linear model tha
resulting from the linearization of the reactor a
nominal parameters andqC5100 lt min21. The
linear model is

F Ċa~ t !

Ṫ~ t !
G5F2101.3 10.1

25.3 0.001G FCa~ t !
T~ t ! G

1F 0
20.004GqC~ t !1F1 0

0 0.02G
3FCaO~ t !

TCO~ t ! G , ~52!

Fig. 7. Open-loop response to change inqC(t).

Fig. 8. Open-loop response to changes inCaO(t) and
TCO(t).
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which was discretized assuming a zero-order h
in the input and a sampling timetS50.1 seg.

The controller must be able to follow the refe
ence and reject the disturbances present in t
system. Besides, the closed-loop response sh
satisfy the following constraint:

qC~k!<10, ;k, ~53!

to guarantee the controllability of the system. Th
assumes that the nominal absolute value for
manipulatedqC(k) is around 100 lt min21 and
that the operation is kept near the nominal cond
tions. Besides, a zero-offset steady-state respo
is demanded, then we include the following co
straints:

(
j 51

v

f j521. ~54!

This assumes that the nominal absolute value
the manipulated is around100 lt min21 and that
the operation is kept inside the polytope who
vertices are defined by the linear models. The c
straints (53) and (54) are then included in the tu
ing problem.

To develop the predictive feedback controll
with embedded estimator, estimators forCa and
CaO must first be developed from the discre
model of Eq. (52) assuming a deadbeat behav
Then, the open-loop predictors forCa were devel-
oped from these estimators and the discretizat
of model (52) using Eqs. (10), (31), and (32
Since an integral action is demanded, the pred
tion time J was chosen using the stability cond
tion (44). Therefore, the prediction time was fix

J59.

Finally, the order of the filter was chosen such th
the resulting controllers include the predictive ve
sion of popularPID (w52).

In a first step we consider the predictive fee
back controller with embedded estimator. The p
rameters of the filters were fixed by solving t
tuning problem proposed by Giovanini and Ma
chetti [15] for step changes in all inputs, the ob
jective function:

L5 (
k51

N

e2~k!1lDu2~k!, ~55!
d

e

and the design constraints (53) and (54). The co
trol weight was fixed in a value such that the co
trol energy has a similar effect than errors in th
tuning process(l50.01). The behavior of the
closed-loop system evaluated overN5300 sam-
pling instants. The problem described to this po
has a fast solution using an algorithm based
descendent gradient method. The filter paramet
of the filter are

d050.7655, d1520.1251, d2520.495.
~56!

To evaluate the effects of estimators on the clos
loop performance we compare the responses
tained by a predictive feedback controller with th
same parameters, the same objective function
design constraints as the previous predictive co
troller. The only difference is the predictor, whic
was directly developed from the discrete model
Eq. (52) and includes the inlet coolant temper
ture TCO(t) to improve the closed-loop perfor
mance. Solving again the previous tuning proble
we obtain the following parameters:

d050.6883, d1520.071, d2520.395.
~57!

Morningred et al. [16] have previously worke
with this model for testing predictive controller
and they compared their results with the respons
obtained using aPI controller, whose parameter
were adjusted byITAE criterion. Thus, we used
the same settings

Kc552, t I50.46.

Fig. 9 shows the results obtained when compar

Fig. 9. Closed-loop responses of the linear system due
step change in setpoint.
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the responses obtained for a set point change.
superior performance of the proposed contr
scheme is obtained through the better use of inf
mation available in the system. This fact is sho
by the movement in the manipulated variab
which does not overcome the upper bou
@qC(k)<10 ;k# limit as shown in Fig. 10, but
shows more movements than the other controlle
This fact happens due to the open-loop dynamic
the reactor. In fact, in Fig. 9 we can also see th
the response of thePI exhibits the oscillatory be-
havior of the system (see Fig. 7).

Fig. 11 shown the results obtained when co
paring both predictive controllers under loa
changes. For testing the disturbance rejection t
following sequence of changes is made: first
feed stream concentrationCaO(t) goes down
0.05 mol lt21 and 15 min later the refrigerant
temperatureTCO(t) goes down10 °C. A better

Fig. 10. Control variable corresponding to the closed-lo
responses shown in Fig. 9.

Fig. 11. Closed-loop responses of the linear system t
step change inCaO(t) andTCO(t).
.

disturbance rejection capability is observed in th
discrete controller suggested in this paper.

In Fig. 12 we see the same problem with t
manipulated variable, but increased. The excu
sion ofqC is more important in the case ofPI, but
smoother. The predictive feedback controller e
ploys more energy to control the system due
feedforward action introduced by the estimato
We can solve the problem increasing the cont
weightl in the objective function (55) or varying
the closed-loop settling time through a great
prediction time J (the last option is easier to
implement because we do not need to retune
parameters of the controller). These facts have
same effect: reduce the control energy by degr
ing the closed-loop performance.

7. Conclusions

A new alternative method for designing a pr
dictor from the ARMAX model was presented
The resulting predictor employs the implicit ob
server information embedded in the input-outp
model and retains the key benefits of the spa
state approach to improve the prediction of t
system output. Then, it was used to develop a p
dictive feedback controller. The new formulatio
of a predictive controller includes feedback a
feedforward actions that improve the closed-lo
performance, especially when unmeasured dis
bances and time delay are present in the syste

Closed-loop responses were obtained to sh
the successful working of this framework in re
jecting nonmeasurable disturbances and comp
sating time delay. Two case studies of the sh

Fig. 12. Control variable corresponding to the closed-lo
responses shown in Fig. 11.
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challenge problem were used to highlight the a
vantages of the control scheme compared to c
ventional control strategies.
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Appendix A: Proof of Lemma 2.1

Employing the state space model~4!, theJ step
ahead prediction is given by

ŷ~J,k!5Cx~k1J!1Du~k1J!. ~A1!

Assuming that the statex(k) is measurable, the
output prediction is given by

ŷ~J,k!5CAJx~k!1 (
j 50

J21

CAjBu~k1J2 j !

1Du~k1J!1 (
j 50

J21

CAjBddm~k1J2 j !.

~A2!

Comparing this equation with Eq.~8!, we can see
that the effect of the effect of the future inputs
given by

b̃0
j 5CAjB j51,2,...,J,

b̃0
05D, ~A3!

and

g̃0
j 5CAjBd j 51,2,...,J. ~A4!

which are thej th coefficient of the impulse re
sponse ofGp andGd , respectively.

If the statex(k) is not measurable, it can b
estimated using an observer

x~k!5A kx~0!1 (
j 50

k21

CA jBu~k2 j !

1 (
j 50

k21

CA jBddm~k2 j !

1 (
j 50

k21

CA j y~k2 j !,
-
where A5A2KC. Assuming that k is large
enough to dismiss its contribution we obtain

ŷ~J,k!5 (
j 50

k21

CA J1 jBu~k2 j !

1 (
j 50

k21

CA J1 jBddm~k2 j !

1 (
j 50

k21

CA J1 jKy~k2 j !

1 (
j 50

J21

CA jBu~k1J2 j !1Du~k1J!

1 (
j 50

J21

CA jBddm~k1J2 j !.

Comparing this equation with Eq.~8!, we can see
that the effect of the past inputs on the future o
put is stated by

Pu~J,z!5 (
j 50

k21

CA J1 jB5 (
j 5J11

N

h̃jq
2 j ,

~A5!

P d
m~J,z!5 (

j 50

k21

CA J1 jBd5 (
j 5J

N

h̃j
dq2 j ,

~A6!

which are the open-loop predictors defined in p
vious work by Giovanini@4#.

Appendix B: Stability criteria for predictive
feedback control

The characteristic closed-loop equationT(z) for
the predictive feedback control~48! is given by

T~z!5D~z!$~12z21!ãJ1F~z!@ ãJz
211Pu~J,z!

1Pu~0,z!#%1N~z!F~z!@Py~J,z!

1Py~0,z!#.

Recalling

D~z!512Py~0,z!,

N~z!5Pu~0,z!,

and combining this expression with Eq.~15!, the
characteristic equation becomes
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T~z!5$~12z21!ãJ1F~z!ãJz
211F~z!@ P̃u~J,z!

2 P̃u~0,z!1Pu~0,z!#%@12Py~0,z!#

1Pu~0,z!F~z!@ P̃y~J,z!2 P̃y~0,z!

1Py~0,z!#,

or simply

T~z!5~12z21!ãJ1F~z!ãJz
211F~z!

3 H P̃u~J,z21!1
Pu~0,z!

12Py~0,z!
P̃y~J,z!J

1F~z!H @Pu~0,z!2 P̃u~0,z!#

1
Pu~0,z!

12Py~0,z!
@Py~0,z!2 P̃y~0,z!#J .

The stability of the closed-loop system depends
the prediction timeJ and may be tested by an
usual stability criteria. First, the following lemm
is introduced.

Lemma 3: If the polynomial T(z)51
1( i 50

p hiz
2 i has the property that

inf
uzu>1

uT~z!u,0,

then the related closed-loop system will be asy
toptically stable [11].

Hence,

uT~z!u>u~12z21!ãJu1uF~z!uuãJz
21u

2uF~z!u H uP̃u~J,z!u

1U Pu~0,z!

12Py~0,z!UuP̃y~J,z!uJ
2uF~z!u H uPu~0,z!2 P̃u~0,z!u

1U Pu~0,z!

12Py~0,z!UuPy~0,z!2 P̃y~0,z!uJ
and again using Lemma 1 gives
ãJ.uP̃u~J,1!u1uKuuP̃y~J,1!u1uPu~0,1!

2 P̃u~0,1!u1uKuuPy~0,1!2 P̃y~0,1!u,

~B1!

whereK is the system gain given by

K5
( i 50

p b i

12( i 51
p a i

.

Finally, combining this expression with the ex
pression ofPy(J,z) and Pu(J,z) @Eqs. ~10!# we
obtain the characteristic equation of closed-lo
system

ãJ. (
j 51

p

ub̃ j
Ju1uKu (

j 51

p

uã j
Ju1 (

j 50

p

ub j2b̃ j u

1uKu (
j 51

p

ua j2ã j u. ~B2!

Remark 2: IfF(z)51 the predictive feedback
controller becomes the single-prediction and t
stability condition for this controller is Eq. (B2).
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