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Abstract

In this work, a new approach to design predictive feedback control for SISO systems is presented. The proposed
formulation relies on the development of a single step predictor based on an autoregressive moving average with
external inputtARMAX) model. Although no explicit observer is actually involved in the implementation, this pre-
dictor implicitly includes one since the input-output model subsumes an observer. Exploiting this idea the resulting
ARMAX model is extended to include extra outputs to improve the quality of the prediction for systems with large time
delay and nonmeasurable disturbances. The resulting predictor is used to develop a predictive feedback controller. This
new formulation of predictive feedback control includes feedback and feedforward actions. Simulations of two linear
systems illustrate the applicability of the control algorithm. © 2004 ISA—The Instrumentation, Systems, and Auto-
mation Society.

Keywords: Predictive control; Dynamic observers; Inferential control; Feedback/Feedforward control

1. Introduction theory, which calls for an approximate one-step
ahead inversion of the input-output model to pro-
In the well-known state-space model, the rela- duce the control action. This simple inversion ap-
tionship between the input and output variables is proach is not suitable for a nonminimum phase
described in terms of an intermediate quantity system, which will cause the control input to grow
called the state vector. On the other hand, a typical unbounded while the controlled output remain
input-output model describes the current output as bounded. This problem can be overcome by intro-
a linear combination of past input and output mea- ducing a proper dynamic into the controller struc-
surements. One such model is the autoregressiveture [1,2] or varying the time index of the output

moving  average with  external input that is controlled2-4].
(ARMAX), which is the most commonly used To understand the connection between the state-
model in discrete control. space and input-output model-based control ap-

Many control techniques have been developed proaches, it is important to understand how an
for state-space and ARMAX models. One of the input-output model relates to the space-state
most relevant is the model predictive control model and vice versa. It is well known that start-
(MPC) techniques. The predictive control con- ing with an input-output model, such as an
cepts can be thought of as an extension of the ARMAX model, one can convert it to a control-
one-step ahead approach bf optimal control lable and/or observable canonical space-state

form. The reverse connection from a space-state
% Tel +44-141-548 2666: fax +44-141-552 2487. model to an equivalent ARMAX model can also
E-mail addressleonardo.giovanini@eee.strath.ac.uk be carried out via canonical forms too. Motivated
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by these results of realization theory, we look for y (k)
predictors that can make use of implicit observer d.(k) —>{ G4(¢") = k)
information embedded in an input-output model.
We exploit this understanding in the relationship
between the space-state and ARMAX model to de- ,
rive a single-step predictor capable of retaining the (k) —>{ G,(¢7) y(k)
key benefits of the space-state approach to im- (k)
prove the accuracy of the prediction. The resulting
predictor is employed to build a predictive feed-
back controller that includes feedback and feedfor-
ward actions. one nonmeasurable disturbarik) entering the
The organization of the paper is as follow: in Process at the output. Employing the models of the
Section 2, the expressions for a genedastep systemGp(q’l) andGgy(q™1), the output at time
ahead output prediction are presented. The rela-k is described by the difference equation
tionship between the coefficients of the single-step ny n,
predictor and the coefficients of ARMAX model is ~ N = b = L
established. In Section 3 the relationship between y(k)= ,-21 ay(k JHEO bju(k=t4—J)
the space-state and ARMAX models is analyzed.
The relationship between the space-state matrices

Fig. 1. Process model and disturbance.

Ng

and the coefficients of the equivalent ARMAX "'JZO Cjdm(k=j)+d(k),
model is explained in terms of an observer matrix,
whose dynamic behavior defines the order of the ny=n,,n,=ny, (1)

model. Then, exploiting this idea the resulting L ) )

ARMAX model is extended to include additional Which is also referred to in the literature as the
system outputs to improve the prediction for sys- ARMAX m(zdel. In this case, the nonmeasurable
tems with time delay and nonmeasurable distur- disturbanced(k) lumps together the unmeasured
bances. In Section 4 the basic formulation for the disturbanced(k) and inaccuracies due to plant-
single-prediction controller design is derived and model mismatch

stability analysis is carried out. A simple criterion ~ =

for choosing the prediction time is derived. It d(k)=(Gp(a™") = Gp(q™7))u(k) +d(k).
guarantees the robust stability of the closed-loop pefining the following variables

system. In Sectio 5 a direct feedback mode is

introduced in order to improve the overall system p=maxny,ny+tq,Ng), 2
performance. The stability of the resulting struc- ~ .
ture is analyzed. The main result is the indepen- ~_:[ -8, J=12,..ny,
dent selection of each element of the predictive 10, j>ny,
feedback controller. In Section 6 we show the re- _
sults obtained from the application of the proposed 0, j=12,..1t,
algo_rithm to two linear systems. Finally, the con- Z;J.: Bj , =ttt gt ng,
clusions are presented in Section 7. .
0, J >td+ ny,
2. Single-step output predictor ~ _|%» 1=01.2,..nq, 3
I O, J > Ng,

Consider the SISO system depicted in Fig. 1,
whereq 1 is the backward shift operatat,,(Kk) is
the load disturbance, andl(k) is the non- p p
measurable disturbance. In the following we as- V(k)= >, ay(k—j)+ > ",éju(k—j)
sume that a model 0o64(q~?1) is available and i=1 =0
d. (k) is a measurable deterministic disturbance. p
The process may also be subject to many distur- ~ v
bances. They can be collectively represented by +j20 ¥dm(k =) +d(k). @

we can write the system outpy(k) as follows:
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By shifting a time step, obtain the one-step ahead

prediction:

p—1
J(LI)=qr§(k)+ 2 @ eay(k—j)+Boulk+1)
p
+,Zl Biu(k+1—))+Fo0m(k+1)

p
+ 21 ¥idm(k+1—j)+d(k+1), (5
=

where the first index stands for the number of step
ahead samples for which the system output is
computed(k+1) and the second one is the time

when the prediction is computgk). Replacing
V(k) from Egs.(4) into (5) yields

p—1

J(1k)= 3, Efy(k—)+Bou(k+1)

P
2 Biu(kt1=]) +Fodn(k+1)
J:

p
+21 Yidm(k+1-j)+d(k+1), (6)
]=
where the coefficients of thpredictor are given
by

:aj+1+alaj, j:1,2,...,p_1,

~ o~
,8]' —,3j+1+ 0‘1,3jv

~]_ ~ ~ o~
Yi=7Yj+1tary;,

(7)

The system output at time+ 1, in the absence of
the output measurement at tinke can be ex-

J p
9<J,k>=j§0 ”/‘sz’;"u<k+j)+j§1 aly(k—j)
p J _
+j§l Efu(k—jw;o Y Jdm(k+])
p
+ 2 Fjdn(k=])+d(k+J), (8)
s

where the coefficient&;] , 3} and¥; are given by

J

@=ajt 2 @E ', J<p, j=01,..p,
J
BjJ:BHlJFIZl alﬁf_l , (9a)
J
Yj 7’J+1+|Zl Yy,
p
afzgl wmal™, J>p,
p
Bl=2 wh (9b)
p
7]22 al'}’]]_l
=1

Equation(8) defines al-step ahead predictignit
shows the effect of all inputs, past and future, on
the output. Observation of E¢Ob) shows that;
B} and¥] VJ>p are a linear combination of its
pastp parameters weighted by the paramefeérs
1=1,2,..,p.

Lemma 1: The coefficien, and¥}, are thejth
of the impulse response coefficient&gfand G,

respectively
Proof: See Appendix.A

pressed as a linear combination of past input and | emma 2: The coefficien® |=1,2,...,p rep-
output data. In this notation, the current output resent the observer gains that are used to compute

V(K) is given byy(0 k) with the coefficients given
by @’=a&; andB’=35;, j=0,1,2,...p.

Applying the same procedudetimes the system
output may be expressed at tirke-J through

an observer for state estimation

Proof: See Goodwin and Sin [5]

Employing the backward shift operatqr * de-
fine the quantities
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p
PYJ,aH=2 @q,
j=1

p
Rlda =2 Bla, (10

p
Pa =2 Fja

then the predictior(8) can be written as the fol-
lowing:

J
=2 Ry juk+ )+ B0 Hu(k)
=

J

+’|5§(J,q*1)y(k)+jgo BT u(k+j)

+PNJ,g Hdn(k)+d(k+J), (11
whereh and hm are thejth coefficients of the

|mpulse responses cﬂa and G4, respectively.
Since future control actlons are unknown, this pre-
diction is not realizable. To turn it realizable a

statement must be made about how the input vari-

ables are going to move in the future. For ex-
ample, the simplest rule is to assume that all the
inputs will not move in future,

u(k+j)=u(k+j—1), Vj=0,1,..,J,

dm(k+j+1)=dn(k+]), (12

d(k+j+1)=d(k+j),

which implies that the future changes are equal to
zero. Then, the predictiofl1) becomes

9°(3,k)=8,u(k—1)+P¥(J,a~Hu(k)

+PY(3,a7 1y (k) +aTdm(k)

+PT(3,q Ddp(k)+d(k), (13)

whered; andaj are theJth coefficients of step

responses OG and G, respectively, and the su-
perscript zero recalls the conditiori$2) are in-
cluded.

The disturbance term(k) is computed from the

output measurement(k) and the system model
through

Leonardo L. Giovanini/ ISA Transactions 43 (2004) 3359

d(k)=y(k)—(0k),

this term lumps together possible unmeasured dis-
turbance and inaccuracies due to plant-model mis-
match. Replacing this term in E¢13) and rear-
ranging we obtain thecorrected open-loop
predictiongiven by

993,k =[1+Py(J,qa-H]y(k)

+[3,97+PY(3.97 H]u(k)

+aT+PF.a Hldyk), (14
where
Py3.9-H=Py(J,qH-Py0g™Y),
(15a
PYJ,a H=PJ,q H-PY0gb),
(15b)

PJ,q H=PJ,q"H)-PTN0q ).
(150

The restriction of the measurability of the load
disturbanced,,(k), assumed to develop the cor-
rected prediction can be removed if the system has
analytic redundancy. In this case we can build an
ARMAX that provides an estimation of the distur-
bance. In Section 3 we will show how to build this
model, but first we will analyze the relationship
between the space-state and ARMAX models. The
relationship between the space-state matrices and
the coefficients of the equivalent ARMAX model
is explained in terms of an observer matrix, which
depends on the observer gain that determines the
dynamics of the observer and the order of the
ARMAX model. Exploiting this idea and using all
the information available in the outputs, the result-
ing ARMAX model is extended to estimate the
nonmeasurable disturbance from the input and
outputs of the system.

3. Implicit observer in ARX model

To analyze the relationship between ARMAX
and space-state models, let us consider the space-
state model of systengd4) without disturbances
whose statex(k) are not measurable,

X(k+1)=Ax(k)+Bu(k), x(0)=Xg,
y(k)=Cx(k)+Du(k). (18
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If A is stable andA,C) is an observable pair, the Note that this result is independent of the actual

system’s states can be estimates through a dy-system dynamics, which may still be in the tran-

namic observer, sient portion aftelp time steps. The last equation
. . is exactly the same as the ARMAX modél)
X(k+1)=(A=KC)x(k)+(B—KD)u(k) without disturbances. Besides, comparing Hgs.

+Ky(k), %(0)=Xo, and (20) reveals that the coefficients and; of
(17) ARX model are related to those of the space-state
¥(0k)=CXx(k)+Du(k), model by the following relationship:
whereK is the observer gain that is computed us- a;=CAI7K, j=12,..p,
ing the Riccatti equation with the covariance ma- - ,
trix equal to zerd6]. In case of a stochastic sys- Bj=CAI71B, (21
tem the covariance matrix is nonzero, and the _
observer(17) becomes the Kalman filter. Defining Bo=D.

the dynamic filter and gain matrices, Inspection of these equations shows that the rela-

A=A—-KC, (183 tionship between the space-state matrices and the
coefficients of the equivalent ARMAX model is
B=B—KD, (18b given in terms of a dynamic observer matti,

which depends on the observer giinEq. 18a)].
This gain not only defines the dynamic of the es-
timator but also determines the order of ARMAX
%(k+1)=AX(K) + Bu(k) + Ky(k), model. It is now clear that an ARMAX model of
orderp subsumes a deadbeat observer of opler

the filter (17) can be expressed in the following
form:

§(0,k)=C%(k)+Du(k).
3.1. Estimating the nonmeasurable disturbance
Propagating this equation forward in tine

times, starting fronk=0, one obtains the system |f the controlled system has analytic redundancy
output at timek, an estimator that is able to estimate the distur-
K bances present in the system can be developed
J(0K)=CA*K(0)+ >, CA~1Bu(k—i) [7,2_3]. So, thc_e ARMAX model pleveloped from this
i=1 estimator will be able to estimate the unmeasur-
K able disturbancel(k). For example, employing
+Z CAI-IKy(k—i)+Du(k). the filter proposed by Kellgf9]
=t X(k+1)=(A—AB4IIC-KXC)X(k)+Bu(k)

Observe that the current output not only depends

on the initial state, but also on the ldstcontrol + (KX +ABgIDy(k),

actions and system output. The contribution of the 0(0K)=Cx(k 29
states depends on the dynamic of the filter, do if §(0k)=Cx(k), 22
is large enough to dismiss the contribution of the d(o K)=TI[y(k)—CX(K)]

initial stateX(0) to the prediction

K (A K where d(0k) is the estimation of unmeasurable
A'=(A=KC)*~0, k>p, (19 disturbancesB, is the disturbance distribution

what is equivalent to the dynamics of the filter has matrix, and the matricel andIT satisfy the iso-

vanished some steps ago, the system output can bdation conditions 8]

approximated through MICBy=I

p p (23
y(o,k)zE1 CAi‘lBu(k—i)+El CA~Ky(k S.CBy=0.
i= i=
These design conditions are required to obtain an
—i)+Du(k). (20 unbiased estimatiof9].



sinc(i) Laboratory for Signals and Computational Intelligence (http:/fich.unl.edu.ar/sinc)
L. Giovanini; "Embedded Estimators in Predictive Feedback Control"

ISA Transactions Journal. Vol. 43, No. 4, pp. 643--649, 2004.

348 Leonardo L. Giovanini/ ISA Transactions 43 (2004) 3359

Following the procedure described in the previ- tem. So, the coefficienta; | =y,d of these esti-
ous section we obtain the following estimators: ~ mators are vectors in spite of the SISO nature of
the propose scheme.

Since we have an estimate of the non-
measurable disturbanckk) and its model, a bet-

0 tert_estir_r;ate oﬁ(:<+ J) cag_bt'e oggai]nid byltc_om—
- ; uting its open-loop predictio K)o Itis
+,Zl G A Ky(k=i), (243 gbtaiged usiFr)lg Eqig4§), (153, ;ﬁnd§15bg,]

p d°(J3,k) =[aJq "1+ P33, H]u(k)
d(0k)=Ty(k)— El CaAIT1BuU(k—])
e

p
J(0k)= _21 C AT BuU(k—])
=

+Py(d,q Hy(k), (30

P . _ with parameters of the predictoRy andP¢ given
2 CAl My (kD) (24D by Egs.(25), (27), and(29)
Finally, the corrected open-loop prediction is
where the matrices, C,, Cq, andK are given by _obtained by adding Eq30) to Eq.(14), the result

IS
A=A-KC,
e 9°(3,K) =[1+Py(3,a7 1) +1y(k)
’ (25 +[3,07 1+ Py(3,a7H]u(k)
Cd:HC, -
+[AT+PFI,q 7D ]dm(k), (31)
,C: KE +ABdH.

where
From these equations it is easy to see that the _ _ _
d Y P,3,9°H=PY3,aH+PlI,q ),

parameters of the output estimator,

i _ % PJ,a H=PiJ.a H+Pid.a Y, (32
Y(0,k)= wUu(k=j)+ 2, aiy(k—j),
k=2, Byutk=j)+ 2, @yyk=j) 3,3+,
(26)
_ This predictor is the best that can be built, because

are given by it employs all the information available in the sys-

~ i . tem. The controllers developed from this predictor

ay=CAK, J=12,.p, can take faster corrective action than a standard
control structure since it includes an approximate
feedforward action, even if the disturbances are

and the parameters of the disturbance estimator, Not measurable.

-~ . (27)
Bjy=CyAl"1B,

p p
d(0k)= 2, Bjau(k—j)+ 2, Fay(k=]),
(29) 4.1. The control algorithm

4. Single-prediction control

are given by Although the idea of using only one prediction
of the system output for controlling the system is
not new|[2,3,10 none of these authors used the
Fa=—CeAITIC, j=12,..p, (29 prediction timeJ as tuning parameter. This is the
case of single-prediction controller[4], whose
Z;jd: —Cy Al 1B, derivation procedur_e _is quite §traightforward frqm
the open-loop prediction. Revising the assumption
It is important to note that both estimators use all used to go from Eq11) to Eq.(13) observe that if
the information available at the output of the sys- just the only one control movement—we compute

aog=1I,
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the control chang@ u(k) in order to introduce an
integral action that guarantees free offset
responses{Au(k)) is computed, then
9(3,k)=9°(3,k) +3,Au(k). (33
Substracting this prediction from the reference
variabler (k+J) we obtain the predicted error
e(J,k)=r(k+3)—9(J,k). (34
The control action can be computed in a similar
way to standard predictive controllers, by mini-
mizing the following performance measure:
L(k)=&%(J,k)+pAu?(k), p=0. (395
Then, the control action that minimizes this per-
formance index is given by
Au(k)=K;'e%J,k), (36)
where &°(J,k)=r(k+J)—9°(J,k) and K;=3,
+pda;*. Giovanini [4] established the relation-
ship betweenJ and p with the closed-loop re-
sponse characteristic. He found that the prediction
time J is theclosed-loop settling timéor an error
a|e(ky)| and the control weighp is related toa
through

For particular choice op=0 (what is equivalent
a=0), the performance measu&5) and the pre-
dicted closed-loop errog(J,k) become zero and
the control change is given by
Au(k)=3; &% J,k). (37)

In the following it will be assumed thga=0 to
simplify the exposition. However the results that
will be obtained are the same whether the control
weight p is set to zero or not.

Using Z transform on Eq(36) shows that the
single-predictive control algorithm is basically an
integral action applied on the predicted error

u(z)= a;'e%(J,2). (39)

1-z71

Combining Egs.(14), (34), and (38) gives the
single-prediction control law

349

N,
¥o.0 k)

ap+P a7 fe——d, k)

\‘ Qo(.l,k) AM(k)f'\

K7y
SRS -m
gﬁ<—— arqgl+p (J.gH
1+P,(J.¢") [ y(b)

Fig. 2. Structure of the single-prediction controller.

r(k+J) —><

u(k)

L

u(2)={r(3,2-[1+Py(J,2)]y(2)
—[a+Pg(,2)1dm(2)}[E;+Pu(J,2)].
(39

Inspection of this equation revels that the single-
predictive controller uses the future reference
[r(k+J)]. If this one is not available the actual
referencer (k) must be used, with the consequen-
tial loss of performance during the setpoint track-
ing. Besides, it also includes a feedforward action
introduced by the inclusion of the disturbance pre-
diction d°(J,k).

Fig. 2 shows a block diagram of how the control
action is computed. It is apparent that it uses the
plant model to estimate the output at the present
time y(k). This value is then compared with the
actual measurement(k) to detect modeling er-
rors and external disturbances. Then, the predic-
tion of the disturbancel®(J,k) is added to esti-
mated(J,k). In other words, given all the input
changes accounted for until the instakt the
single-prediction controller observes the value that
would be reached by the system output if no future
control action is taken and ther(k) is computed
such that the performance ind€85) is mini-
mized. Hence, the output reaches the reference
valueJ sampling intervals later.

In this figure we can also see, after some block
manipulation, that the single-prediction controller
resembles a three degree of freedom structure.
However, the controller has only one parameter:
namely theprediction timeJ.
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4.2. Stability analysis

To analyze the effect of the prediction time on
the closed-loop stability, substitute the control law
(39) into the closed-loop characteristic equation to
obtain

T(z)=[a3+PyJ,z)+Py0,2)]D(2)
+[Py(J,2) +Py(0,2) IN(2). (40
Recalling
D(z2)=1-Py(0,2),
N(z)=P,(02),

and combining this expression with E@.5), this
equation becomes

T(z)=[a;+P,(J,2)—Py(0,2) + P,(0,2)]
X[1-Py(02)]
+[Py(3,2)-P,(02)+P(02)]P,(02),

or simply

T(z)=[a;+P,(J,2)—Py(02)+P,(02)]

P,(0,2)
1-Py(0,2)

+Py(02)].

[Py(3,2)-Py(02)

(41)

Combining this expression with the expression of
Py(J,z) and P(J,2) [Egs. (10)] we obtain the
characteristic equation of closed-loop system,

p p

p
~Jo i =~ Ny
@z J+J_Zl (aj—aj)z7|.

(42)

Leonardo L. Giovanini/ ISA Transactions 43 (2004) 3339

Effect of
Uncertainties

la

Robust Stability
Region -i

Fig. 3. Geometric interpretation of E¢.11).

p p p
§J>j21 IBfIJrIKIJZ1 Iaf|+j20 18— Bl

p
+|K|j21 laj— @, (43)
whereK is the process gain

Proof: See Appendix.B

The terms involved in this condition, ordered
from left to right, are(a) the contribution of the
nominal model, andb) the effect of parametric
uncertainty. From the geometrical point of view,
this condition can be visualized as a reduction of
the stability region in a size df (see Fig. 3,

p p

This means that the robust stability region is de-
fined by the circle of radiu& —la, so the stability
condition (43) guarantees that all of poles of the
closed-loop system are inside of this region. When
there is not uncertainty in the system, Eg3)
becomes

p p
a>3 BI+KIZ [afl, @9
and therobust stability regioris the unit circle.
Generally, control engineers assume that a fam-
ily W of M linear models is able to capture a
moderate nonlinearity. Therefore, to guarantee the
stability of the system we must chooselauch

that it guarantees the stability of all the plants of
W. Then, the robust stability problem becomes the

Theorem 1: Given a system controlled by the problem of finding al such that Eq(43) is satis-
control law (39), the closed-loop system will be fied for each model ofV. Using parametric uncer-
robustly stable if tainty Eq.(43) becomes
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P p from the nonlinear model employing a numerical

> >, |,BJ-J| +[K| >, |ajJ| integration scheme or using a local model network
=1 =1 [12].

p

+ max

p
2 B=Bil+ KX =@
le[1,M]L1=0 =1

5. Predictive feedback control

(45 5.1. The control algorithm
_This means it is necessary to guarantee the stabil-  Gigyanini [4] has established that the single-
ity of closed-loop for the worst case model, Com- rediction controller provides a similar closed-

pared with the nominal model. From the geometri- |50 performance to a MPC controller with fixed
cal point of view means that we choose the bigger parameters. This fact means that a single-

uncertainty(la),

la= max la!

le[1M]
p _ p
= max | > |B}—Bj|+|KI|E |a}_aj| ;
le[i,M]L1=0 =1

and the robust stability region is the smallest.

Another way to solve the robust stability prob-
lem is to find aJ that satisfies simultaneously Eq.
(44) for all the models ofV. In case of a system
with monotone response, the stability condition
(45) can be written as

Jsrg=maxJy; ;. .3 du),

(46)
where J, 1=1,2,..,M is the prediction time for
the Ith model of the family)V. This expression
means that we can chose a different prediction
time for each model odV, then we selected the
bigger prediction time.

A final remark is for recalling that the stability
condition given by Dabké¢l1] is a sufficient one.
Consequently stability condition&43)—(45) be-
come conservative and impose a too high lower
bound for selecting. So, always there are predic-
tion times lower thanlgg for which the closed-
loop system will be stable. The firdtthat guaran-
tees the closed-loop stability can be found through

a direct search, because the solution space is

bounded
1=<J=<N.

Furthermore, the open-loop predictor can be di-
rectly built from the nonlinear model, sinckg

guarantees the closed-loop stability for all the
models ofW. The nonlinear predictor can be built

prediction controller has a poor closed-loop per-
formance when there are disturbances and/or un-
certainties in the system. Thus, he introduced a
direct feedback mode in the computation of the
control action through the inclusion of a filter into
the single-prediction control lawB8). Since it em-
ploys only one prediction of the process future be-
havior, he applied the delay operatgr ', i
=0,1,..,w, to the time instant at which the pre-
diction is calculated. Hence, the control change
Au(k) is given by
w
Au(k)zzo 5,8%(J3,k—1i), (47)
=

where °(J,k—i) is the J-step ahead open-loop
error computed at tim&—i, we Z is the filter
order, andé; i e[0w] are the controller param-
eters. The predictive feedback control law can be
derived from Eq{(47), replacing the open-loop er-
ror °(J,k—1) by their components and following
a similar procedure to obtain E¢39). The result
is

_ F(@r(9)-F(2)[1+Py(J,2)]y(2)
U= A T8, T F (D3, T Py(3.2)]

F(z)[aYz 1+ PJ(3,2)]1dn(2)
- (1-z YHa;+F(z9)[az 1+ P,(3,2)]"

(48)

whose structure is shown in Fig. 4. Giovanj#i
pointed out that~(z) adds additional degrees of
freedom to improve the closed-loop performance
and makes the controller tuning difficult. How-
ever, he showed that the prediction tiri® and
the parameters of the filtgw and &; i e[0w])
can be independently fixed to each otkeze Ap-
pendix B. So, the prediction time will be chosen




sinc(i) Laboratory for Signals and Computational Intelligence (http:/fich.unl.edu.ar/sinc)
L. Giovanini; "Embedded Estimators in Predictive Feedback Control"

ISA Transactions Journal. Vol. 43, No. 4, pp. 643--649, 2004.

352

RAOR))

ar+P NI le——d,(k)

- Aulk)

) é%(J.k) y
r(k+]) —(O—"| F(g"")

¥4 k)

— u(k)

[ J—

ajq'+P, (g

L+ P (] g7y e yik)

Fig. 4. Structure of the predictive feedback controller.

based on stability criteria for the single-prediction
controller[Egs. (44)—(46)] and, then the filter pa-
rameters will be fixed using a tuning method for
fixed-structure controllef13].

This new formulation of predictive control com-
bines the capacity of the predictive algorithm and
the classical use of feedback information with the
capabilities of estimation techniques. So, it pro-
vides a better performance than the original for-
mulation of this controllefas we can see in the
exampleg and a linear MPC controllg4]. Also
note that the predictive feedback controller, in
both formulations, has two degrees of freedom:
the prediction time) and the filterF(z).

5.2. Stability analysis

Now, we study the effect of the filters and pre-
diction time on the closed-loop stability. First, we
substitute the predictive feedback control(@8)
in the characteristic closed-loop equation, which
becomes

T(2)=D(2){(1—z Ya;+F(z)[a;z 1+ Py(J,2)
+Py(0,2) ]} +N(2)F(2)[Py(J,2)
+Py(0,z)]. (49

Combining this expression with E¢L5), the char-
acteristic equatiorT(z™ 1) can be written as fol-
lows:

Leonardo L. Giovanini/ ISA Transactions 43 (2004) 3339

T(2)={(1-z"Ya,+F(2)a,z 1+ F(2)[P,(J,2)
—Pu(02)+P,(02)]}[1-Py(0,2)]
+Py(02)F(2)[Py(J,2)—Py(02)
+Py(02)].

The stability of the closed-loop system depends on
both the prediction time) and the parameters of
the filter F(z). So, it may be tested by any usual
stability criteria.

Theorem 2: Given a system controlled by the
control law (48), the closed-loop system will be
robustly stable if

p p p
?’513>J21 |BJ-J|+|K|J_21 |?Yf|+j20 18— Bl

p
+|K|j21 |t — &l (50)
Proof: See Appendix B

This stability condition is the same stability con-
dition for the single-prediction controllefEg.
(43)]. This result was previously obtained by Gio-
vanini[4]. It means that the prediction timeand
the parameters of the filter can be independently
selected such that both parametelsand 6, i
e [0w], independently guarantee the closed-loop
stability. This fact means that the prediction tiche
should be selected like the single-prediction con-
troller [Egs.(43)—(46)], and the filter must be tun-
ing as there is no time delay in the system, be-
cause it has been compensated by the open-loop
predictor.

Remark 1: Since the prediction timkcan be
fixed independently of the filters, parameters may
be tuned so that the closed-loop performance is
improved. Varying] the closed-loop settling time
can be modified, accelerating or decelerating the
system response. So, if we have to control a non-
linear system we can choose a differdrfor each
operating region such that we obtain a similar
closed-loop response for each one of them. Then,
during the operation, we vary according to the
operating region controlled at each sample

6. Simulations

In this section two simulation examples are con-
sidered to show the effectiveness of the controllers
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proposed in this work. In the first example we con-
sider the model of a distillation column previously
used by Prett and Morafil4] for evaluating linear

control strategies. In this example we compare two

classical(feedback and cascadeontrol strategies
and the original formulation of single-prediction
control[4] with the new one for disturbance rejec-

tion. In the second example we consider a continu-

ous stirred tank reactor, which was previously
used by several authofd5,16 to test discrete
control algorithms. In this example we compare

353

Table 1
Tuning constants used in the classical control schemes.

Control schemes Tuning constants

Direct feedback ory Kc=2.12,7,=50, ;p=13.5
Cascade contrdouter loop Kc=0.2, 7,=50, 7p=10
Cascade contrdiinner loop Kc=0.81,7,=9

the space-state model of Eqg. (51) assuming a
deadbeat behavior since there are no uncertain-

the responses obtained by predictive feedback tjeg

controllers, the original formulation and that one
proposed in this work, and BI for tracking set-
point and rejecting disturbances.

Example 1: Prett and Morari [14] have pro-
vided a distillation column case study for evaluat-

ing control strategies. We use a subset of the prob-
lem to illustrate and evaluate the ideas presented

above. The process model is

e 27s e 27s
y(S) :4.055087+1U(S) + l.44md($),

(519

e %S 1
t(s)= 3.6693T1u(s) + 1.276$—+1d(s).
(51b)

Note that the secondary variablgs) responds
much faster to both variables, manipulated and
disturbance, than the primary variablgs). For
direct feedback controy(s), the tuning constant
for the PID controller is obtained by applying
IMC tuning rules to the transfer function between
y(s) and u(s) with the filter time constant;
=10. Two controllers must be designed for the
cascade control scheme. For the inner loop, the
transfer function betweet(s) and u(s) is used to
get the tuning constants with;=2. The outer
loop controller is designed from the model ob-

- . . . o5l / v (with Embedded Eslimator)
tained for the inner loop, which was obtained from I O Single-Prediction ]
a step response experiment. This model is used to_ %4[ / “\. 1
design aPID usingIMC rules with 7:=10. The > o3f / ]

controller tuning constants for all these schemes
are shown in Table.|

To develop both predictive controllers, the sys-
tem (51) is discretized with a sampling time of.1 s
The single-predictive controller without estimator

was directly developed from the discretized model.

The single-prediction controller with estimator
was developed from the estimators building from

Then, the open-loop predictors for the system
output was developed from these models employ-
ing Egs. (15) and (32). The prediction time for
both predictive controllers were chosen using the
stability condition (44), s@ must satisfy

J=38.

Since it is known that Dabke’s condition is conser-

vative, we explore the solution space and find that
the prediction time that provides the better perfor-

mance is

J=30.

Fig. 5 shows the responses of the controllers using
the control schemes designed above to reject a
load disturbance change. The excellent distur-
bance rejection capabilities of the predictive con-
trol with embedded estimator is seen clearly in
these graphs. Note that because the longer time
constant and large time delay in the outer loop of
the cascade scheme, this controller cannot be ex-
pected to respond quickly to the input disturbance

~~~~~~~~~ Cascade
Single-Prediction ]

50 100 150 200 250 300

Fig. 5. Closed-loop responses of the linear system to a step
change in disturbance for different control schemes.
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0.1 . . . T . . . . . T

0.0 ‘ wveereree PID -
I | Cascade

o1l | 8 s edici N
| { 8 — Single-Prediction

o2l |1 h (with Embedded Estimator) i
L Vo --~~= Single-Prediction

N N 1 . N N N
0 50 100 150 200 250 300

Fig. 6. Control variable correspondent to the closed-loop
responses shown in Fig. 5.

Fig. 6 shows the control actions employ by each
control scheme to reject the disturbance. It is easy
to see the feedforward action introduced by the
estimator. The control action is applied to the sys-

Leonardo L. Giovanini/ ISA Transactions 43 (2004) 3339

Concentration [ mof #t-1]

0 10 20 30 40 50
Time [ min]

Fig. 7. Open-loop response to changegi(t).

axis. These facts are especially important for dis-
turbances rejection problem. So, to obtain a good
performance an important control energy will be
required. Besides, th€STR becomes uncontrol-

lable whenqc(t) go to beyond of13 ltmin 2.

We are interested in controlling the reactor

tem as soon as the disturbance is detected in anyaround the nominal operating region. So we de-

output of the system

Example 2: Now, let us consider the problem of
controlling a continuous stirred tank reactor
(CSTR in which an irreversible exothermic reac-
tion is carried out at constant volume. This is a
nonlinear system originally used by Morningred et
al. [16] and Giovanini [4] for testing predictive
control algorithms. The objective is controlling the
output concentratiol€ a(t) using the coolant flow
rate gc(t) as the manipulated variable. The dis-
turbances considered in this work are the inlet
coolant temperaturd o(t) (measurable) and the
feed concentratiorCag(t) (nonmeasurable). The
output concentration has a measured time delay of
tq=0.5 min.

The nonlinear nature of the system is shown in
Figs. 7 and 8, where we can see the open-loop
response to changes in the manipulated and the

disturbances. Fig. 7 shows the dynamic responses g ¢.14

to the following sequence of changes in the ma-
nipulated variableqc(t): +10, —10, —10, and
+10 Itmin~!. Fig. 8 shows the dynamic re-
sponses to changes in the disturbances variables,
first changes in the inlet concentratioBag(t)
(+0.05and —0.05 mol It %) and later in the re-
frigerant temperaturd -o(t) (+10and—10 °C).
From these figures it is easy to see that the re-
actor is quite difficult to control due to the change
in the dynamic from one operational condition to

a—

velop the controllers from the linear model that
resulting from the linearization of the reactor at
nominal parameters andjc=100 ltmin . The
linear model is

Ca(t) _[—101.3 10.1[Ca(t)
T(t) | | 25.3 0.001 T(t)
0 1 O
| -oo0dte+g 003
Cao(t)
[ Teolt) ] 2

0.20 d T d T d T d T

0.18

— 016

o
N
N

Concentration [
o
>

0 10 20 30 40 50
Time [ min]

Fig. 8. Open-loop response to changesGagy(t) and

another and the presence of zeros near imaginary Tcq(t).



sinc(i) Laboratory for Signals and Computational Intelligence (http:/fich.unl.edu.ar/sinc)

"Embedded Estimators in Predictive Feedback Control"

ISA Transactions Journal. Vol. 43, No. 4, pp. 643--649, 2004.

L. Giovanini;

Leonardo L. Giovanini/ ISA Transactions 43 (2004) 3339

which was discretized assuming a zero-order hold
in the input and a sampling timg=0.1seg

The controller must be able to follow the refer-
ence and reject the disturbances present in this

system. Besides, the closed-loop response shoulc €

satisfy the following constraint:

gc(k)=<10, VK, (53

to guarantee the controllability of the system. This
assumes that the nominal absolute value for the
manipulatedqc(k) is around 100 ltmin ! and
that the operation is kept near the nominal condi-
tions. Besides, a zero-offset steady-state respons
is demanded, then we include the following con-
straints:

> ¢=-1. (54)
j=1

This assumes that the nominal absolute value for
the manipulated is around00 Itmin~! and that
the operation is kept inside the polytope whose
vertices are defined by the linear models. The con-
straints (53) and (54) are then included in the tun-
ing problem

To develop the predictive feedback controller
with embedded estimator, estimators foa and
Cap must first be developed from the discrete
model of Eq. (52) assuming a deadbeat behavior.
Then, the open-loop predictors f@ra were devel-
oped from these estimators and the discretization
of model (52) using Egs. (10), (31), and (32).
Since an integral action is demanded, the predic-
tion time J was chosen using the stability condi-
tion (44). Therefore, the prediction time was fixed

J=09.

Finally, the order of the filter was chosen such that
the resulting controllers include the predictive ver-
sion of popularPID (w=2).

In a first step we consider the predictive feed-
back controller with embedded estimator. The pa-
rameters of the filters were fixed by solving the
tuning problem proposed by Giovanini and Mar-
chetti [15] for step changes in all inputs, the ob-
jective function:

N
ngl e?(k)+ N Au?(k), (55)

e
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0.040 T T T T T T T T T

0035 [ .
3

— 0.030
T 0025 - Reference T
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Predictive Feedback
-------- PI

0.020

0.015

Concentration [

0.010

0.005

15 20 25 30 35 40
Time [min]

0.000
0

Fig. 9. Closed-loop responses of the linear system due to a
Step change in setpoint.

and the design constraints (53) and (54). The con-
trol weight was fixed in a value such that the con-
trol energy has a similar effect than errors in the
tuning process(\=0.01). The behavior of the
closed-loop system evaluated ougr= 300 sam-
pling instants. The problem described to this point
has a fast solution using an algorithm based on
descendent gradient method. The filter parameters
of the filter are

8,=0.7655, 8,=—0.1251, &,=—0.495.
(56)

To evaluate the effects of estimators on the closed-
loop performance we compare the responses ob-
tained by a predictive feedback controller with the
same parameters, the same objective function and
design constraints as the previous predictive con-
troller. The only difference is the predictor, which
was directly developed from the discrete model of
Eq. (52) and includes the inlet coolant tempera-
ture Teo(t) to improve the closed-loop perfor-
mance. Solving again the previous tuning problem
we obtain the following parameters

5,=0.6883, &,=—0.071, &,=—0.395.
(57)

Morningred et al. [16] have previously worked
with this model for testing predictive controllers
and they compared their results with the responses
obtained using &1 controller, whose parameters
were adjusted by TAE criterion. Thus, we used

the same settings
Kc=52, 7,=0.46.

Fig. 9 shows the results obtained when comparing
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Fig. 10. Control variable corresponding to the closed-loop
responses shown in Fig. 9.
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Fig. 12. Control variable corresponding to the closed-loop
responses shown in Fig. 11.

the responses obtained for a set point change. Thedisturbance rejection capability is observed in the

superior performance of the proposed control
scheme is obtained through the better use of infor-
mation available in the system. This fact is shown
by the movement in the manipulated variable,
which does not overcome the upper bound
[9c(k)=<10 VK] limit as shown in Fig. 10, but

shows more movements than the other controllers.

discrete controller suggested in this paper

In Fig. 12 we see the same problem with the
manipulated variable, but increased. The excur-
sion ofqg¢ is more important in the case &, but
smoother. The predictive feedback controller em-
ploys more energy to control the system due to
feedforward action introduced by the estimator.

This fact happens due to the open-loop dynamic of W& can solve the problem increasing the control
the reactor. In fact, in Fig. 9 we can also see that WeIght\ in the objective function (55) or varying

the response of thBI exhibits the oscillatory be-
havior of the system (see Fig..7)

Fig. 11 shown the results obtained when com-
paring both predictive controllers under load
changes. For testing the disturbance rejection the
following sequence of changes is made: first the
feed stream concentratiolCag(t) goes down
0.05 mollt'! and 15 min later the refrigerant
temperatureTo(t) goes downlO°C. A better

0.5 ————————T——T—— T

| —— Predictive Feedback |
(with Embedded Estimator) |
Predictive Feedback

0.10 -

il
i
i
1
]
!
i
b PI |
!
i
i
!
i

°©
E
c 005F 4
L
@‘ i
c [ [
g AN
A \
5 00 | Vg P
[&] \‘;;/ /
J
i
H
-0.05 N 1 N 1 L 1 " 1 | . 1 2 L '
0 5 10 15 20 25 30 35 40
Time [ min ]

the closed-loop settling time through a greater
prediction timeJ (the last option is easier to
implement because we do not need to retune the
parameters of the controller). These facts have the
same effect: reduce the control energy by degrad-
ing the closed-loop performance

7. Conclusions

A new alternative method for designing a pre-
dictor from the ARMAX model was presented.
The resulting predictor employs the implicit ob-
server information embedded in the input-output
model and retains the key benefits of the space-
state approach to improve the prediction of the
system output. Then, it was used to develop a pre-
dictive feedback controller. The new formulation
of a predictive controller includes feedback and
feedforward actions that improve the closed-loop
performance, especially when unmeasured distur-
bances and time delay are present in the system.

Closed-loop responses were obtained to show
the successful working of this framework in re-

Fig. 11. Closed-loop responses of the linear system to a jecting nonmeasurable disturbances and compen-

step change ilCag(t) and Tcot).

sating time delay. Two case studies of the shell
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challenge problem were used to highlight the ad-
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where A=A—KC. Assuming thatk is large

vantages of the control scheme compared to con-enough to dismiss its contribution we obtain

ventional control strategies.
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Appendix A: Proof of Lemma 2.1

Employing the state space modd), theJ step
ahead prediction is given by

9(J,k)=Cx(k+J)+Du(k+J). (Al

Assuming that the statg(k) is measurable, the
output prediction is given by

J-1
9(J,k) = CAX(k)+ 20 CABu(k+J—j)

J:

J-1
+Du(k+J)+ 20 CAIByd,(k+J—j).
J:

(A2)

Comparing this equation with E¢8), we can see
that the effect of the effect of the future inputs is
given by

Bi=CAB j=1.2,..],
=D, (A3)
and
J=CABy j=12,..J. (A4)

which are thejth coefficient of the impulse re-
sponse ofG, and Gy, respectively.

If the statex(k) is not measurable, it can be
estimated using an observer

k-1
x(k)=Akx(0)+_§)0 CAIBu(k—j)
=

k—1

+EO CAIByd(k—])
P

k—1

+ 2 CAly(k=j),
]:

k—1

9(3,k) = 20 CAYIBu(k—j)
J:

k-1
T2 CAIBydn(k—])
]:

k—1
+ 2, CAYIKy(k=])
|=

J-1
+_20 CAIBu(k+J—j)+Du(k+J)
=

J-1

+_EO CAIByd(k+J—j).
=

Comparing this equation with E¢8), we can see
that the effect of the past inputs on the future out-
put is stated by

k—1 N
Pu(d,2)= 2> CAYIB= X Thig’,
=0 j=J+1
(A5)
k—1 N
Pg‘(a,z)zzo CA“dezEJ hilgJ,
1= =
(A6)

which are the open-loop predictors defined in pre-
vious work by Giovanini4].

Appendix B: Stability criteria for predictive
feedback control

The characteristic closed-loop equatibfe) for
the predictive feedback contréd8) is given by

T(2)=D(2){(1-zYHYa,+F(2)[a;z" 1+ P,(J,2)
+Pu(02) ]} +N(2)F(2)[Py(J,2)
+Py(02)].

Recalling

D(z)=1-Py(0,2),
N(z)=P,(0.2),

and combining this expression with E.5), the
characteristic equation becomes
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T(2)={(1-z Ha,;+F(2)a,z '+ F(2)[P.(J,2)
—Pu(02)+P,(02)]}[1-Py(0,2)]
+P,(02)F(2)[Py(J,2)—Py(02)
+Py(02)],

or simply

T(z2)=(1-z"Y3a,+F(2)a,z *+F(2)

P.(0,2)

X Ty(oz)"py(\]l)]

Pu(J,z H+

+F(z>[[Pu<o,z>—|3u(o,z)]

P,(0,2) -
+ Ty(O,Z)[Py(O’Z) - Py(O,Z)]] .

The stability of the closed-loop system depends on
the prediction timeJ and may be tested by any
usual stability criteria. First, the following lemma
is introduced.

Lemma 3: If the polynomial T(z)=1
+3P_,hiz"" has the property that

inf |T(2)| <0,

|zZ|=1

then the related closed-loop system will be asym-
toptically stable [11]
Hence,

IT(2)|=|(1-z"Y3,|+[F(2)|[az

—|F<z>|[|ﬁu<a,z>|

P.(0,2)
‘1— P,(0,2)

|§y(J'Z)|]

—|F(Z)|[|PU(O,Z)—ﬁu(O,Z)|

P.(0,2) ~
+ ]._P—y(O,Z) |Py(0,Z) - Py(O,Z)|]

and again using Lemma 1 gives

;> |Py(3, )| +|K||Py(3,1)|+|Py,(0,D)

—Pu(0,D]+|K||P,(0,1)—P,(0,)],

(B1)
whereK is the system gain given by
K = Eip:OIBi .
1-3 0

Finally, combining this expression with the ex-
pression ofP,(J,z) and P,(J,2) [Egs. (10)] we
obtain the characteristic equation of closed-loop
system

p p p
53>j21 IBJ-JIJFIKIJZl I"&f|+§0 18— Bl

p
+|K|2}1 ;=) (B2

Remark 2: IfF(z)=1 the predictive feedback
controller becomes the single-prediction and the
stability condition for this controller is Eq. (B2)
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