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Abstract—Various aspects relating to the human production 

and perception of speech have gradually been incorporated into 

automatic speech recognition systems. Nevertheless, the set of 

speech prosodic features has not yet been used in an explicit way 

in the recognition process itself. This study presents an analysis of 

prosody’s three most important parameters, namely energy, 

fundamental frequency and duration, together with a method for 

incorporating this information into automatic speech recognition. 

On the basis of a preliminary analysis, a design is proposed for a 

prosodic feature classifier in which these parameters are 

associated with orthographic accentuation. Prosodic-accentual 

features are incorporated in a hidden Markov model recognizer; 

their theoretical formulation and experimental setup are then 

presented. Several experiments were conducted to show how the 

method performs with a Spanish continuous-speech database. 

Using this approach to process other database subsets, we 

obtained a word recognition error reduction rate of 28.91%. 

 
Index Terms—prosody, accentuation, continuous speech 

recognition, language models. 

 

I. INTRODUCTION 

ONSIDERABLE progress has been made in automatic 
speech recognition (ASR) technology over the last 20 

years. The incorporation of hidden Markov models (HMM) in 
ASR in the 1980s led to very high levels of performance, 
mainly thanks to the way this technique enables the time 
variability of speech to be modeled. Research using various 
HMM paradigms have resulted in the incorporation of a 
number of features that attempt to model human perception. 
Research has been carried out in the modeling of speech as it 
relates to the recognition of phonemes, isolated words, 
connected words and continuous speech (CSR) [52]. In the last 
few years, techniques such as context dependent phoneme 
modeling (triphones) and language modeling have been 
incorporated [23][47]. 

In recent years, acoustic models have evolved from vector 
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quantization-based models to continuous observation density 
hidden Markov models (CHMM). In vector quantization 
systems, acoustic features are modeled as chains composed of 
a finite set of discrete elements from the vector quantizer. This 
gave rise to discrete HMM [51]. However, in CHMM it is 
possible to use continuous observation densities instead of 
vector quantization, thus taking advantage of modeling speech-
selected features through Gaussian mixtures [31]. In the field 
of acoustic modeling several speech parameterization 
techniques may be applied, and important advances have been 
made, such as linear predictive coding [50], cepstral 
coefficients and mel-cepstral with delta and acceleration 
coefficients [18]. 

Computing optimization and its associated algorithms is 
another field in which considerable progress has been made. 
Semi-Continuous HMM (SCHMM), also termed tied-mixture 
models, are examples of algorithms aimed at computational 
efficiency. The remaining innovations worth mentioning are 
those related to the speaker's adaptation of estimated 
parameters and robust speech recognition [25]. 

Neural networks constitute another important technique that 
has been successfully applied in some aspects of ASR. In this 
area, the pioneering works in self-organizing maps [26] and 
time-delay neural networks [66] should be cited. 

Although exhaustive research has been carried out in the 
field of ASR, computers are still far from attaining the 
recognition capabilities of human beings [32]. One of the 
fields in which meaningful improvements have not yet been 
made is the incorporation of prosodic features into the 
recognition process. In contrast, we find that prosody is given 
fundamental importance in text-to-speech (TTS) systems [55]. 
These analyses and proposed models provide important data 
about the natural way in which human beings use prosody in 
spoken discourse. Basically, in the case of TTS systems, 
prosody gives the naturalness sought in the synthesized speech 
[61]. Furthermore, some very interesting experiments have 
studied human speech recognition abilities in different 
prosodic conditions [21] (also [6] for infants, [27] for 
spontaneous speech and [35] for dialogue/monologue). A 
typical situation, encountered daily, is the difficulty in 
recognizing speech affected by regional accents [2]. This has 
been studied in the context of ASR in [22]. Another case in 
which prosodic information and its utilization in spoken 
language can be seen is speaker identification, see for example 
[56]. 
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In addition, it is important to note that prosodic 
modifications in the utterance evidently induce a considerable 
modification of other parameters that are explicitly modeled in 
current recognizers. For example, it can clearly be seen that 
the spectral characteristics of vowels are modified to a 
significant degree when the intonation changes. Furthermore, 
the duration of phonemes (mainly vowels) undergoes a notable 
variation depending on the semantic, syntactic and even 
orthographic characteristics transmitted in spontaneous speech 
[4][13]. Considerable improvements in recognition 
performance can be made by simply taking into account the 
speaking rate [9]. These, and many other modifications can be 
achieved at phrase level as well as at word level, or even at 
syllable and phoneme levels. For example, a fundamental 
frequency (F0) model based on several added hierarchic levels 
is used in [54]. However, prosodic characteristics are often not 
related to the information at the phonetic level and are only 
associated with phrase semantics [30]. 

If we consider prosody within the limits of the word but 
without arriving at the phoneme, we encounter syllabic 
suprasegments. These structures are at a superior level than 
phonemes and are affected by common prosodic features. 
Some authors (e.g. [49]) treat the terms suprasegment and 
prosodeme as synonyms. It should be mentioned that the 
information provided by the energy and F0, at suprasegmental 
level, is not modeled in an explicit way in current recognizers. 

These are the principal reasons for which we have sought to 
address the problem of incorporating prosodic characteristics 
into ASR in a more explicit way. Some authors [45] have 
alluded to the potential benefits of incorporating prosodic 
features into ASR, but they have not proposed concrete 
solutions. On the other hand, there have been projects that 
have incorporated some prosodic characteristics to solve a 
limited range of ASR-related problems. For example, in [33] 
pitch is used successfully to recover some particular 
recognition mistakes in connected digits. In this case, as in 
[17], prosody is incorporated on the basis of post-recognition 
analysis and not as part of the recognizer itself. In [3], [40], 
[57], [64] and [67], N-best recognition outputs are used as a 
starting point and a subsequent rescoring is performed based 
on prosody. Conversely, in [62] prior segmentation is 
performed based on prosodic characteristics and the segments 
are then recognized individually. Exceptions are [28] and [65], 
where prosody is used to incorporate the phrase-end and other 
boundary hypotheses into the recognizer itself. In more recent 
work [42], many aspects of prosody have been incorporated 
into a speech understanding system. Other authors ([20], [28], 
[53], [57] among others) have used prosody focused on 
boundary or disfluency events. In our study, the use of prosody 
was principally related to suprasegments within the word. 

Much research has also been carried out on the information 
contained in pitch and its utilization in recognizers for several 
tonal languages (see [15], [16], [20], [28] and [29]). In these 
languages, there is a very direct relationship between the word 
meaning and the pronounced tonal cadence [48]. At this point, 

it is important to emphasize that the use of prosodic features, 
and the information encoded in them, varies significantly from 
a tonal language to a non-tonal language and that 
extrapolations are frequently invalid. Prosody cross analyses 
between several non-tonal languages can be reviewed, for 
example, in [11] and [44]. This study was carried out using a 
Spanish database, and therefore previous analyses of this 
language ([5][34]) are of great benefit. As an approach to 
incorporating pitch in ASR, one could add F0 to the feature 
vector used in a standard speech recognizer. In our early tests, 
this addition was performed in a mel-cepstral, energy and delta 
parameterization, but no improvement was obtained. 

An aspect that is closely related to prosody and forms an 
important part of this study is accentuation. Parameters that 
characterize prosody in different languages are found to be 
closely related to accentuation; see for example [13]. This has 
also been studied for Spanish in [1] and [49]. We developed 
further the ideas put forward in these studies. For experimental 
purposes, we propose a system that is divided into two parts: 
one that associates prosodic characteristics with word 
accentuation and another that introduces this information into 
an automatic speech recognizer based on HMM. 

The following section discusses the most significant 
prosodic features, their measurement and relationship to 
accentuation. This is followed by the description of a set of 
techniques aimed at establishing an association between the 
prosody and the accentual properties of Spanish. Section IV 
contains a proposal for the explicit incorporation of prosody in 
ASR. The final sections describe a series of experiments 
carried out, concluding with the analysis of the results 
achieved.  

II. PROSODY AND ACCENTUATION 

When we talk of prosody, we refer mainly to three physical 
characteristics of spoken language: energy, fundamental 
frequency (F0), and duration. These three parameters can be 
analyzed on a time segment basis ranging from a short frame 
to complete phrases. However, more relevant information is 
found at the suprasegmental level; thus, energy, F0 or the 
duration of linguistic structures such as syllables are frequently 
considered. 

A. General Aspects of Prosody 

Studies have been made from a linguistic viewpoint into 
how prosody is manifested at different levels of abstraction in 
spoken language [49]. If we consider, for instance, intonation 
functions at the linguistic level, it is possible to distinguish 
functions such as integrative (from words to phrases), 
distinctive (interrogatory or declaratory statements) and 
demarcative (as the case of enumeration) functions, as well as 
functions at the expressive level or even at that of 
sociolinguistics (for example in regional intonations). All these 
functions can be considered and incorporated at either the 
phrase or word levels. They are of particular interest in 
dialogue systems where the pragmatic meaning of the phrases, 
in addition to their semantic content, needs to be captured 
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[58]. 
From a physical viewpoint, prosody can be defined as the 

effect that different combinations of energy, F0 and duration 
produce on spoken language. Moreover, the pauses related to 
punctuation and to word endings –as well as sentence and 
paragraph endings– are often alluded to as part of the field of 
prosodic features. 

As mentioned in the introduction, many aspects of prosody 
modeling have been discussed extensively in the area of TTS 
systems. In this area, various models for different languages 
can be found (for example, [10] for English, [14] for Mandarin 
Chinese, [43] for German and [63] for French). Basically, 
these attempt to generate prosodic parameters from written 
text. However, this task is inverted when prosody is required 
to assist in ASR. We now need to discover and characterize 
the prosodic structures in a natural speech utterance in order to 
incorporate them into the recognition process. In principle, we 
do not have the text and must attempt to obtain prosodic 
features from the utterance. Here, the two main facets of the 
analysis of the problem emerge: (1) obtaining the prosodic 
features, and (2) incorporating them into ASR. This section 
examines the relationship between accentuation and prosody, 
which may be put forward as a conceptual link between these 
two facets.  

The most important case of a suprasegment is the accent 
(stress accent). Various distinguishing features arise from 
considering suprasegments as units both different and 
independent from phonemes. For example, the same phonemes 
are considered when speaking the /á/ in “papá” (dad) /papA/ 
and the /a/ of “papa” (potato) /pApa/. However, they are not 
the same suprasegments relative to the syllable kernel. This 
difference is expressed in the accentuation. 

B. Accentuation 

Accentual typology in Spanish (as in English, German, and 
Italian) is free. That is to say, the accent can be found in any 
part of the word. This is not the case in Finnish where the 
accent is always found on the first syllable or in French where 
it is always found on the last [1]. Furthermore, it is apparent 
that the accent, on the isolated words, is intimately related to 
suprasegmental prosodic features (in the case of Spanish). We 
notice that an accented syllable possesses greater energy, F0, 
and duration in its kernel vowel. Therefore, it might be 
beneficial to carry out an in-depth study of these relationships 
in continuous speech and their possible application to ASR. 
However, previous studies in continuous speech indicate the 
absence of the matches between accented syllable and 
maximums of energy, F0, and duration in the kernel vowel. For 
example, this can be seen in the case of the use of pitch in 
English in [68]. In the case of Dutch, an automatic 
classification of accented and non-accented syllables has been 
achieved, with 72.6% accuracy in the best case [60]. This 
classification was based on the relationship between prosody 
and accentuation for continuous speech in telephony. 
Accentuation studies in continuous speech carried out in [49] 
indicate that 36.56% of Spanish words can be considered 

atonic (no syllables accented), and 90.23% of words in this 
category being monosyllabic. These words possess distinctive 
accentual characteristics according to their grammatical 
function (for example the accentual distinction between the 
article “el” (the) and the personal pronoun “él” (he)). 
However, monosyllabic words are not the main interest of this 
analysis since syllable accentuation cannot be relatively 
compared within the same word. In these cases, it is necessary 
to refer it to the sentence. Of the remaining atonic words, 
several groups of interest have been found, which were 
analyzed by the author and are incorporated here into our 
working hypothesis. In the study cited above, the author also 
related the grammatical function of words to their tonicity. For 
example, he distinguished between the preposition “para” 
(for), an atonic word, and the verb in the second person 
singular “para” (stop), a tonic word. This study, carried out 
using 20361 words, constitutes an excellent starting point for 
subsequent designs. Therefore, we have deepened the analysis 
to reveal some other interesting points that link accentuation 
and prosody in continuous speech. 

C. Relating Prosody and Accentuation in Continuous 

Speech 

An automatic segmentation and the corresponding 
computation of energy and F0 curves were performed using a 
phrase subset of the Spanish database “Albayzin” [12]. This 
subset, called “minigeo”, consisted of 600 phrases pronounced 
by 6 female and 6 male speakers (i.e., 50 phrases by each 
speaker) with a vocabulary size of 200 words. 
For syllable segmentation, a CHMM alignment based on 
transcriptions was used. The CHMM was trained with 12 mel-
cepstral coefficients with energy and delta coefficients. Each 
phoneme and the silence was modeled with a 3 state HMM 
without Gaussian mixtures. Energy curve computation was 
based on analysis of windowed speech using a frame shift (FS) 
of 10 ms and a frame width (FW) of 52ms. The same 
windowing parameters were used to make an estimation of the 
pitch curve using a cepstral peak detector. Pitch-doubling 
errors and other spurious peaks were reduced with a median 
filter and similar rules to those described on [41]. Pitch curves 
were verified using thousands of sentences. To obtain duration 
data, the vowel kernel of each syllable was considered, and 
those made up of diphthongs were taken in account separately. 
Manual transcriptions of phrases were used to discard 
monosyllabic words, leaving 2929 analyzed words. The 
accentual structure of the words was obtained from the text in 
accordance with orthographic rules1 and aforementioned 
considerations regarding grammatical word functions. 
First of all, some of the main characteristics of the analyzed 
phrases should be noted. As a notation for the accentual 
structures, an ‘L’ (from Low) is used in the case of non-
accented syllables and an ‘H’ (from High) for accented 
syllables. Using this notation, Table I describes the distribution 
 

1 In Spanish there is a simple set of rules that make it possible to obtain the 
accentuation from a written word. In English, for example, an accentuation 
dictionary would be necessary (similarly to the pronunciation dictionary). 
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of accentual structures in the analyzed data. It is worth 
recalling that, in Spanish, only one orthographic accent per 
word is permitted. There are special cases, such as adverbs 
ending in /-mente/ that have two physical accents but just one 
orthographic accent (only two words present the /LHLHL/ 
structure in the analyzed database, and these are not included 
in Table I) [49]. Table I also includes words considered to be 
atonic, where orthographic accentuation is not taken as a 
reference. Table II shows occurrences of different 
accentuations according to the relative position of accented 
syllables. Finally, Table III lists occurrences of words 
according to the number of syllables they contain. 

Taking into account the fact that the accented syllable in 
isolated words is characterized as having greater energy, F0, 
and duration, an analysis of how these simple rules are 
satisfied for continuous speech was carried out. These results 
are given in Table IV. The percentages were calculated using 
the times that the parameter maxima matched with the 
orthographic accent, divided by the total number of matches 
founded. We see from this table that in 17.71% of the cases no 
maximum value of any of the three parameters coincided with 
the orthographically accented syllable. However, we also see 
that the maxima of both energy and duration match the 
orthographic accentuation on more occasions than do the 
maxima of F0. To provide a more detailed analysis, the 
percentage matches of each parameter for each syllable are 
shown in Table V. This percentage was calculated by relating 
the number of matches for each syllable to the total number of 
words accented on that syllable. The same table presents an 
average value to indicate how representative each parameter 
maximum is in relation to accentuation. The matches increased 
notably in the case of oxytones (accent on the last syllable) and 
four-syllable proparoxytones (accent on the third syllable from 
the end). 

It was considered of interest to examine the minima, and so 
an analysis was made of the minimum energy peak, minimum 
F0, minimum duration, and all possible combinations between 
the maxima and minima. In general, this analysis confirmed 
that accented syllables are characterized by the maxima of 
energy and duration. However, the correlation found between 
accented syllables and the F0 minima was greater than in the 
case of the F0 maxima. These results are shown in Table VI. 
As before (Table V), the matches per accented syllable were 
considered by taking the F0 minimum as a reference value. The 
matches in this case were 66.76, 31.40, 25.06 and 23.80% for 
the accent in syllables 1, 2, 3 and 4 respectively and with an 
average of 36.76% (versus 28.97% for the F0 maxima case). 

The prosodic parameters vary significantly when a word 
pause occurs before or after the word considered [59]. In the 
case of phrases without important pauses in the middle, it is 
the first and last words which are affected most. To confirm 
the influence of this effect, all the previous statistics were 
recalculated, eliminating all the words located at either end of 
the phrase from the count. Thus 1984 words were analyzed 
and, in general, maximum match rates were found to increase 

by around 10%, in keeping with the conclusions above.  
Given the low correlation between intonation and 

accentuation, a different set of pre-processed intonation signals 
were tested with an F0 curve fit by 6th-degree polynomials. 
The shape of the resulting fit marked the phrase intonation 
trend, which has a distinctive function (interrogative, 
affirmative, exclamative, etc.) This fit was subtracted from the 
original F0 curve to obtain the difference-by-fit intonation. 
This new parameter was analyzed according to the method 
described. However, no meaningful improvements were found. 

To continue with this study of intonation trends, a cadence 
analysis was performed. In this work, the term cadence refers 
to upward or downward movements of intonation. To obtain a 
parameter representative of intonation cadences, a slope was 
fitted onto the time interval of the syllable in question. Three 
broad groups were considered [19][33][46]: falling pitch, with 
a negative slope, level pitch, with a near-zero slope, and rising 
pitch, with a positive slope. These cadences were analyzed for 
the intonation curve as well as for the difference-by-fit 
intonation curve (the latter providing no significantly different 
results). The association between intonation with a positive 
slope (rising pitch) and accentuation was found to be about 
20% closer than the intonation maximum association. Thus, 
the results of analyses concerning the F0 minima were also 
improved on. With this averaged success rate, rising pitch is as 
valuable as energy, as seen from Table V. 

Another interesting series of tests show how these 
parameters vary depending on the vowel kernel in the syllable. 
Duration distributions were analyzed; the average duration was 
found to be between 54.68 ms (for /e/) and 78.45 ms (for /i/). 
To obtain a more detailed analysis and to link this data with 
accentuation, the duration averages and standard deviations 
per accented and non-accented vowel were studied. Fig. 1 
gives the results of this analysis. In all cases, accented vowels 
have a greater average duration. However, it should be noted 
that the standard deviations are quite large. Although the 
statistical significance of this parameter is not very high, it still 
provides some useful information. 

The same study was repeated for F0 and energy, and the 
results are shown in Figs. 2 and 3. In the case of F0, four of the 
five vowels were found to have a higher average for non-
accented syllables. For energy it was found that, in two cases, 
the non-accented vowel has a higher average, although the 
standard deviations are very large. As energy varies 
considerably during a sentence, and even more so between 
phrases, normalization at word level was considered advisable 
[46]. Fig. 4 shows the results obtained. Although the 
deviations continue to be large, the averages for the accented 
syllables can be seen to be higher than those of non-accented 
syllables in all of the cases. Finally, results for a similar 
analysis of intonation cadence are shown in Fig. 5. In this case, 
only the /e/ does not have a rising characteristic (on average) 
in the accented syllable. The remaining accented syllables are 
characterized well by a rising pitch. 

To summarize the main results of this section, Tables VII 
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and VIII show the confusion matrices relating positions of the 
most relevant analyzed parameters and orthographic accents. 
Note that, to simplify these tables, no matching beyond the 4th 
syllable is included. This compact presentation allows us to 
look at many aspects of the study together and compare them 
directly. Here we can select the most representative 
parameters: Max. E and Max D in Table VII and Rising Pitch 
in Table VIII. Nevertheless, these simple counts point to the 
first important conclusion: in continuous speech, the 
correspondence between orthographic and physical 
accentuation is mostly lost, thus complicating the task of 
extracting simple rules to establish such associations. 
However, this does not mean that no rules can be extracted. 
Though more complex, other rules, which do relate these 
characteristics of continuous speech, can be found.  

 

III. ACCENTUAL STRUCTURE ESTIMATION 

In a CSR system assisted by prosodic information, the 
estimation of a sequence of accentual structures from speech 
signals is the first task to be performed. We carried out various 
tests to estimate these sequences on the basis of the little 
unambiguous information available about associations between 
prosodic features and accentual structure. The most relevant 
experiments and results are summarized in Table IX. 

The first tests were carried out using only energy and F0 
because obtaining a duration value requires explicit 
segmentation, at least into syllables. This process is somewhat 
more complex in real time and independent of the recognition 
itself. In previous studies ([7] and [8]) an HMM-based 
classification of pitch movements was carried out for German. 
In our first tests, HMMs were used as a recognition system for 
accentual structures. Different models for accented and non-
accented syllables were trained and a bigram language model 
with possible accentual structures (Table I) was built from 
valid combinations of these basic models. Based on this 
structure, with an FS of 10 ms and an FW of 25ms, various 
tests were performed.  

As far as parameterization is concerned, the FS and FW of 
the analysis window were modified and different polynomial 
degrees (from 3 to 15) for difference-by-fit intonation were 
tried. Mel-cepstral with delta and acceleration, linear 
prediction, and spectral coefficients (not shown in Table IX) 
were also included. For the models, tests using different 
numbers of states (between 5 and 15) and different mixtures 
were performed. Accentuation models for each vowel and 
diphthong were also tested to model the syllables. Concerning 
the language model, different relative weights for the bigram 
language model of accentual structures and acoustic models 
were tested. Comparisons of the relative influences were made 
using flat grammars (equal probability for all the transitions). 
By searching for the best characteristic in each aspect, an 
accentual structure recognition rate of 56.94% was obtained. A 
sample sentence and its correct and estimated accentual 
structures are shown in Table X, to clarify these results. 

A second series of results were obtained by training static 
classifiers. The best results were obtained with neural tree 
networks (NTN) [37][38]. This method combines the structure 
of decision trees with nodes that separate patterns through a 
neural classifier (in these tests one self-organizing map per 
node was used). In this series of tests, only energy and F0 were 
initially used. Energy and F0 related to word maxima were also 
tested. Syllable and word segmentation were determined using 
a standard HMM recognizer. For each word, the input pattern 
contains the maximum values of the prosodic parameters of 
each syllable in the word. Because pattern length depends on 
the maximum number of syllables per word in the database, 
the elements outside the word are set to zero. A recognition 
rate of up to 85.65% was achieved in the absence of duration 
and 89.98% when duration was introduced. However, since 
this NTN-based method is a static classifier, prior syllable 
segmentation is required. To solve the segmentation problem 
without using HMM alignment, various tests with a 
segmentation method based on evolutionary computation are 
being evaluated [39]. With successful segmentation, it is also 
possible to consider the use of rising pitch as valuable 
information for the estimation. 

Finally, our current work focuses on improving the 
estimation of accentual structures from speech utterances. At 
present, HMMs partially capture the relationship between 
prosody and accentuation but obtaining linguistic rules from 
the resulting models is far from straightforward. Nevertheless, 
as will be discussed in the following sections, the 56.94% 
estimation for accentual structures is very helpful for CSR. In 
the subsequent tests on prosodic and accentual information for 
speech recognition, the results were obtained using the 
prosodic-accentual structure sequences (PASS) estimated with 
the best HMM method (HMM-PASS). The prosodic-accentual 
structure sequences automatically extracted from database 
transcriptions (T-PASS) were used to obtain the best-case 
reference.  

 

IV. PROSODIC-ACCENTUAL GRAMMAR 

In this study we worked on the language model in order to 
incorporate prosodic and accentual features explicitly into the 
recognition process. A SCHMM-based recognizer was taken 
as a reference and a language model was then built taking into 
account the accentual structure of the words in the phrase to be 
recognized. Thus, recognition was achieved through some 
PASS estimation, language model penalization (according to 
the estimated PASS) and recognition itself with the penalized 
language model. This simplified three-stage structure was 
created for the purposes of the experiments. 

In this section, we will deal mainly with the method of 
language model penalization since the third stage consists of a 
standard recognition procedure. The first step, then, is to 
consider the formalization of the language model. 
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A. Statistical Language Models 

From a fixed and known vocabulary W  of Q  words, the 

ordered sequence of m  words: 
 

W,...,, 21 ∈= im
m wwwww  (1) 

 
is considered for the recognition task. For each word iw  in 

this sequence its n-order history is defined as: 
 

W,...,, 121 ∈= +−−− iniii
n
i wwwwh  (2) 

 
The language model is approximated using the designated 

n-gram as:  
 

∏
=

=
m

i

n
ii

mn wPP
1

)|()( hw  (3) 

 
The probability that iw  will be spoken, given its history, 

can be estimated simply from its frequency of occurrence: 
 

)(

),(
)|(ˆ

n
i

n
iin

ii
C

wC
wP

h

h
h =  (4) 

 
where )(xC  is a function that counts the occurrences of a 

given sequence x  in the training corpus. 
However, in practice some word combinations never take 

place in a given corpus. Therefore, it is necessary to consider 
n-gram smoothing. This technique allows the probabilities for 
words without a given n-order history to be estimated. Several 
techniques are useful for n-gram smoothing [24]. A first 
approximation, for example, is linear interpolation smoothing 

[52]. Considering a given history k
h  for which 0)( >kC h  

and 10 −<< nk : 
 

∑
=

=
k

j

j
iij

k
iiI wPwP

0

)|(ˆ)|(ˆ hh λ  (5) 

 

10 << jλ  and 1=∑ jλ  for kj ,...,1,0= . Where 1h  

corresponds to a unigram model and the probability for history 
0h  is defined as: 
 

QwP ii /1)|(ˆ 0 =h  (6) 

 
One of the most frequently used approaches for grammar 

estimation and smoothing is the back-off n-gram [47]. In the 
present case:  

 









=

>−
=

− 0),( if)|(ˆ)(

0),( if
)(

),(

)|(ˆ

1 k
ii

k
iiB

k
i

k
iik

i

k
ii

k
iiB

wCwP

wC
C

wC

wP

hhh

h
h

h

h

β

ϑ
 (7) 

 
where 5.0=ϑ  and: 

 

∑
∑

>
−

>

−

−
=

0),(:
1

0),(:

)|(ˆ1

)|(ˆ1
)(

k
iii

k
iii

wCw

k
iiB

wCw

k
iiB

k
i

wP

wP

h

h

h

h
hβ  (8) 

 

B. Prosodic-Accentual Structures and Penalization  

Let { }Paaa ,...,,A 21=  be the set of word accentual 

classes. The mapping function AW: →g  assigns a class 

A∈ia  to each word W∈jw . Within the set A , we 

consider a distance measure between two accentual structures 
( )ji aa ,ξ  which assigns a value between 0 and 1 to each pair 

of accentual structures. 
During estimation of the PASS, a sequence like the 

following is obtained: 
 

Aˆˆ,...,ˆ,ˆˆ 21 ∈= ir
r aaaaa  (9) 

 
The accentual structure of a word can be compared with the 

estimation, and a link penalization that is proportional to the 
distance between the two accentual structures ( )ii awg ˆ),(ξ  is 

created. For example, the estimated accentual structure could 
be LLHˆ =ia  but the word in the hypothesis could be 

LHL)estable""()( == gwg i . Then, a penalization can be 

introduced based on distance ( )LLH,LHLξ . 

However, some problems are encountered in the definition 
of this penalization function. First, the r  elements in the 
estimated PASS do not necessarily coincide with the m  
words. Second, word recognition as well as the estimated 
accentual structure may be wrong. Thus, when defining the 
penalization function it is necessary to consider this and other 
particular situations: 

 

( ) ( )
( ) ( )
( ) ( )











>+−

=+−

=∨=+−
>

=

0),( if1ˆ),(1

0),( if1ˆ),(1

1 if1ˆ),(1

 if

)ˆ,,(

n
iiiiw

n
iiiin

iis

e

rn
iii

wCawg

wCawg

miiawg

ri

w

h

h
ah

ξγ

ξγ

ξγ
γ

ϕ (10) 

 
where each condition is verified excluding those following it, 
according to the order shown. The motivation for this 
penalization was the linear rule 1)1( +−= ξγϕ : if 1=ξ  then 

γϕ = ; if 0=ξ  then 1=ϕ . The γ  constants are adjusted in 

accordance with the weighting required for each penalization. 
The first condition considers the case in which the phrase to 
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be evaluated contains more words than were estimated in the 
PASS. Secondly, words with a pre- or post-pause are 
considered. This is necessary since, as we have already seen, 
the relationship between prosody and accentuation is 
significantly modified in pre- and post-pause conditions, and 
therefore estimation is less reliable. Thirdly, the case is 

considered in which the history n
ih  (for iw ) is not found 

during estimation of the initial language model. This 
probability is the result of a smoothing process. Finally the 
case is considered where the word probability is calculated 
from the occurrences counted in the training corpus. 
The language model presented in Section IV.A cannot be 
modified while the recognition process is in progress. Given 
the word and its history, the probability is defined 
independently of the speech signal to be decoded and 
recognized. To incorporate PASS, it is necessary to consider 
the penalization factor directly in the language model equation 
in the following way: 

 

)|(ˆ)ˆ,,()|(ˆ n
iiB

rn
iii

n
iiP wPwwP hahh ϕ=  (11) 

 
Now, in the language model, the probability for a given 

word depends not only on its history but also on its accentual 
structure. Furthermore, this probability is related to the 
position of the word in the sentence and to the accentual 
structure estimated for this position. 

For example, let us consider two consecutive words in a 
simple bigram model. Suppose that we are interested in the 
probability that the next word will be /rIo/ (river) since the 
previous was /el/ (the). In the corpus used, we can find the 
following examples: 

 
1. El río Ebro, ¿pasa por la Comunidad Autónoma de 

Navarra? (Does the river Ebro flow through the 
Autonomous Region of Navarre?) 

2. Mar donde desemboca el río Pisuerga. (The sea into 
which the River Pisuerga flows) 

 
Let the first sentence be the one uttered and the second 

sentence another hypothesis in the recognition search. Let us 
further suppose that the accentual structure was correctly 
estimated from the prosodic features, that is: /L HL HL HL L 
L LLLH LHLL L LHL/. The transition probability is certainly 
not the same when /el/ is the first word and /rIo/ the second in 
the sentence as when /el/ is the fourth and /rIo/ the fifth in the 
sentence. This is because the estimated accentual structure in 
different positions within the phrase is different, and therefore 
the distance measurement ξ  is different. Finally, the 

penalization function ϕ  makes a different link probability for 

the same word transition at different phrase positions.  

C. Experimental Setup 

A bigram language model is first calculated using the back-
off method. This model subsequently constitutes the reference 

point for the recognition of all the phrases. 
As explained above, for each transition between words, a 

different probability set must exist depending on the word 
position in the phrase. To obtain this, a prior grammar net 
“expansion” is proposed. Fig. 6 shows a simplified scheme of 
a “compressed” bigram model. In this compressed grammar 
net, the modification (penalization) of any transition 
probability would be effective for all the positions of the 
words in the phrase. Fig. 7 shows the same grammar net 
expanded. Using this more complex network, transition 
probabilities can be modified throughout the phrase as the 
words are pronounced (recognized). Thus, starting from a 
compressed grammar net, a simple program transforms it into 
an expanded version. This network is taken as the basis for all 
the succeeding penalizations (we checked carefully that a 
standard recognizer has the same performance with both the 
compressed and the expanded grammar net versions). With the 
expanded grammar, the penalization function can be applied to 
the whole sentence according to the estimated PASS.  

A number of points need to be taken into account during the 
expansion of the grammar. In Fig. 6, it can be seen that the 
compressed grammar net achieves smoothing by means of a 
null node (empty circle in the figure). Keeping this smoothing 
in the expanded grammar net is important, though the 
influence of this on the results obtained must not be 
overlooked. Each layer in the grammar net corresponds to a 
word (or silence) and therefore will be expanded up to the 
maximum number of allowed words per phrase. Hence, this 
maximum is defined beforehand, reducing recognizer 
flexibility. However, the main goal of the scheme presented 
here is to quantify the improvements obtained by the explicit 
incorporation of prosody into the recognizer. Moreover, as 
stated above, the three phases into which recognition is 
divided are only accepted as a compromise for the sake of 
simplicity and flexibility. 

The expanded grammar net has the arcs from the null node 
of each layer towards silence and from silence towards the null 
node of the following layer. This allows a silence or pause to 
be incorporated between two words in the middle of the 
phrase. Besides, short pauses constitute a model with one 
active state, which is equal to the central state of the silence. 
Optionally, each word model has a short pause at the end. 

Five basic types of transition can be distinguished in an 
expanded grammar net. First, those between two words 
(penalization factor wγ ). Second, those between a null node 

and a word or vice versa (penalization factor nγ )(smoothed 

transitions). Then, those between a silence and a word or vice 
versa (penalization factor sγ ) and fourth, those which are 

made towards the terminal node (EXIT) or from the initial 
node (ENTER towards the first silence with probability 1.0). 
Lastly, when the phrase of estimated accentual structures is 
finished, all the transitions of the following layers are affected 
by the penalization constant eγ . 

The distance measure between accentual classes in set A  
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remains to be defined. For the current tests, this distance was 
simply based on the Kronecker delta ( ) jiji aa ,1, δξ −=  for 

Pji ≤< ,0 . The mapping function )(wg  is defined by the 

orthographic rules of the language used if they exist, or by an 
accentuation dictionary otherwise. The word accentual classes 
forming set A  are shown in Table I. 

Once prosodic-accentual penalization of grammar had been 
performed, the standard recognition process was carried out 
using this expanded and penalized grammar.  

 

V. RESULTS 

Two basic types of experiments were designed. The first 
type was intended to investigate prosodic-accentual 
penalization patterns and the influence of different 
penalization constants. The second series of experiments was 
designed to compare the recognition results with the 
benchmark of a standard HMM-based recognizer. The 
following section provides details of the corpus, reference 
system and validation method used. 

A. Speech Corpus, Reference System and Cross-validation 

Tests 

The “Albayzin” [12] speech corpus is a continuous read 
speech database for CSR tasks. This Spanish database consists 
of 3 corpora of spoken sentences: the phonetic corpus (6800 
phonetically balanced utterances); the geographic corpus 
(6800 utterances about Spanish geography) and the Lombard 
corpus (2000 utterances exhibiting the Lombard effect). In our 
test, the geographic corpus was used, uttered by 134 speakers 
from central Spain, aged 18 to 55. The environment was a 
recording studio and the average SNR was 48 dB. The 
utterances presented a natural spoken language syntax and 
constrained (geographic) semantics. The average duration of 
the sentences was 3.55 s. and they comprised 3-26 words per 
phrase. Some examples of these sentences are: 

 
1. Dime el número de ríos que desembocan en el 

Mediterráneo y que sean entre mil y doscientos 

kilómetros de largo. (Tell me how many rivers flow 
into the Mediterranean and are between one thousand 
and two hundred kilometers long). 

2. ¿Cuántos mares hay? (How many seas are there?). 
3. Quiero saber qué Comunidades Autónomas no tienen 

salida al mar. (Please tell me how many Autonomous 
Regions do not have access to the sea). 

 
Two different subsets from the geographic corpus were used 

in our tests (one for Section V.B and the other for Section 
V.C). The first subset (SS1) consisted of 1000 sentences and a 
vocabulary size of 400 words. SS1 was uttered by 6 female 
and 6 male speakers. The second subset (SS2) consisted of 
600 sentences and a vocabulary size of 200 words. SS2 was 
uttered by another 6 female and 6 male speakers. 

Base-line reference system consists of a SCHMM 

continuous speech recognizer. The system front-end generates 
12 mel-cepstral coefficients with energy and delta coefficients, 
with cepstral mean subtraction and pre-emphasis filtering. 
Each phoneme and the silence were modeled with a 3 state 
HMM and short pauses at the end of words with a 1 state 
HMM. A standard bigram was used as the language model. 

Cross-validation techniques were used to estimate the 
recognition errors [36]. Of the 1000 sentences in SS1, 600 
were used to train acoustic models and to estimate bigram 
model probabilities, while 400 were used to test the recognizer 
(Section V.B). In the second set of tests (Section V.C) more 
detailed cross-validation was used, namely averaged leave-k-
out. To obtain the overall results, 10 sets of 480 sentences for 
training and 120 for testing were generated from SS2. Using 
the training partitions, 10 different sets of acoustic models 
were obtained and 10 different language models estimated. 
Finally, from the 10 test partitions, the base-line reference, 
HMM-PASS and T-PASS results were obtained.  

B. Penalization Behavior 

Different penalization values were taken for each of the 4 
constants. For all combinations of values in the four γ  

constants, the sentence error rate (SER), the word error rate 
(WER) (taking into account deletion and substitution errors) 
and the recognition word accuracy-error rate (WAER) 
(including also the word insertion errors) were calculated. This 
exhaustive search was performed using a database subset 
(SS1) that was different from the one used later for the overall 
results (Section V.C). The test results for each combination of 
γ  constants were analyzed to determine the penalization 

behavior. 
The combination of penalization constants giving the best 

results was obtained; this combination was 2−=wγ , 4−=sγ , 

4−=nγ  and no eγ  penalization (values expressed as 

logarithmic probabilities: )log(p ). In order to analyze in detail 

the influence of each penalization constant on recognition 
rates, we averaged all the results with a given value of the 
penalization constant. Thus, for example, we averaged all the 
results with no sγ  penalization to equate this constant 

influence to zero. By doing this for all the penalization values 
of sγ , we obtained a curve that indicated its influence on 

recognition rates. This curve, together with the corresponding 
one for the other constants, is shown in Fig. 8 for WER (the 
corresponding curves for SER and WAER are not shown 
because their characteristics are similar and they do not 
provide any other relevant information). Because the curves 
suggest that 4, −<ns γγ  reduces WER, tests for penalizations 

up to 8−  were carried out. For 4−<sγ , no better results were 

found. However, for 4−<nγ  performance went on increasing, 

even for 8−<nγ . This reflects the fact that even though the 

phrases, in both training and test partitions, are always 
different, both partitions come from the same database and 
therefore present a similar vocabulary and grammatical 
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structure. Thus, when the smoothing is reduced, part of the 
grammar net is adjusted to the given database, which reduces 
overall system flexibility. In order to avoid this effect, it was 
decided not to surpass the nγ  penalization of -4, and so 

improvements dependent on a reduction in recognizer 
flexibility were not obtained. Finally, one further test useful for 
reference purposes, was carried out; this consisted of 
eliminating all null nodes (n-gram smoothing) and comparing 
the recognition achieved with the reference values. This test 
used the same acoustic models. Under these conditions, the 
reference model had an error of 4.86% in WER (on 5675 
words). The reduction in the WER was 15.43% for the HMM-
PASS and 43.00% for the T-PASS. However, these results 
cannot be considered definitive because n-gram smoothing was 
eliminated.  

C. Overall Results 

For these tests, 10 training and test partitions of the SS2 set 
were used as explained above. With each test partition, the 
standard recognition results were obtained as base-line 
reference. The average recognition errors over 10 partitions 
were 38.30% for SER, 7.54% for WER and 8.53% for WAER.  

Grammar nets of language models were expanded and used 
as a starting point for the tests featuring penalization. For 
reference, we also tested the recognizer with F0 added to the 
speech parameterization and noted a worsening of the results. 
Table XI shows these and other interesting results. The 
random penalization is achieved setting random values to ξ  in 

(10). Then we separately apply penalizations of conditions 2, 3 
and 4 in (10), also ignoring PASS information. 

To obtain definitive results, the best combination of 
penalization constants found with the SS1 database subset was 
used. Tests penalizing with HMM-PASS and with T-PASS 
were performed using continuous speech. Finally, average 
results over 10 partitions were subtracted from the average 
reference values and the error reduction rates were obtained by 
dividing by these reference values. These results are shown in 
Table XII. This table also provides, as a best reference value, 
the “overall maximum” results obtained from the best of the 10 
partitions and overall combinations of penalization constants.  

 

VI. DISCUSSION AND CONCLUSIONS 

Fig. 8 shows how each of the penalizations used has a 
different effect. Penalization for the end of sentences, which 
would seem to be appropriate conceptually, does not produce 
any improvement in the final results. Penalization for words 
with an incorrect accentual structure in the null nodes 
enhances recognition in all cases. This error rate reduction is 
the same that the presented in Table XI for a fixed nγ . 

The penalization of non-smoothed transitions ( wγ ) presents 

a local error minimum, which allows a more simple selection 
of its optimum. Finally, the penalization constant that is mainly 
effective at the beginning and end of a phrase also presents a 
local penalization minimum but is close to -4. Although not 

shown in Fig. 8, as mentioned above, similar tests for 
penalizations of up to -8 have confirmed that, in fact, it is not 
beneficial to use values for sγ  smaller than -4. 

One might expect all penalizations to enhance recognition, 
even for very high values. However, if excessively high 
penalizations were used, many paths of the Viterbi search 
would be discarded and, despite good acoustic scores, an 
entire hypothesis would be eliminated; obviously, not all 
accentual structures can be good in HMM-PASS estimation. 
But even when T-PASS is used, the relationship between the 
accentual structure and the prosodic parameters is not direct 
(as discussed in Section II). Thus, we arrive at the same 
conclusion that it is not advantageous to completely eliminate 
a hypothesis with an incorrect accentual structure. 

During recognition with the expanded grammar, if insertion 
or elimination errors exist, then all transitions in the following 
words are penalized. These penalizations punish excessively 
the insertion and elimination errors. To allow insertions or 
deletions to take place with a controlled degree of 
penalization, we tested a grammar net that had been expanded 
with backward and forward links. However, for recognition 
rates close to 100%, this type of compensation ceases to have a 
meaningful effect. 

The overall results shown in Table XII clearly indicate the 
benefits to be obtained from incorporating prosodic accentual 
information into automatic speech recognition. The table 
shows the results based on a poor PASS estimate (HMM-
PASS). With a better PASS (T-PASS), considerably lower 
errors are obtained, illustrating how the method operates with 
a good PASS estimation. 

Future projects will be aimed at obtaining improvements in 
the PASS estimation technique, probably by the inclusion of 
segmental durations and rising pitch. 

 

ACKNOWLEDGMENT 

The authors wish to thank the detailed revision of the editor 
and reviewers that helped in improving the presentation of this 
paper. 

 

REFERENCES 

[1] Alarcos Llorach E., Gramática de la Lengua Española, Madrid: Espasa 
Calpe, pp. 52-68, 1999. 

[2] Arslan L. M. and Hansen J. H. L., “Language accent classification in 
American English”, Speech Communication, Vol. 18, pp. 353-367, 
1996. 

[3] Bartkova K. and Jouvet D., “Selective prosodic post-processing for 
improving recognition of French telephone numbers”, Proc. of 7th 
European Conference on Speech Communication and Technology, 
Vol. 1, pp. 267-270, 1999. 

[4] Batliner A, Kieβling A., Kompe R., Niemann H. and Nöth E., “Tempo 
and its Change in Spontaneous Speech”, Proc. of 5th European 
Conference on Speech Communication and Technology, Vol. 2, pp. 
763-766, 1997. 

[5] Bonafonte A., Esquerra I., Febrer A., Vallverdu F., “A bilingual text-to-
speech system in Spanish and Catalan”, Proc. of 5th European 
Conference on Speech Communication and Technology, Vol. 5, pp. 
2455-2458, 1997. 

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. H

. M
ilo

ne
 &

 A
. J

. R
ub

io
; "

Pr
os

od
ic

 a
nd

 a
cc

en
tu

al
 in

fo
rm

at
io

n 
fo

r 
au

to
m

at
ic

 s
pe

ec
h 

re
co

gn
iti

on
"

IE
E

E
 T

ra
ns

ac
tio

ns
 o

n 
Sp

ee
ch

 a
nd

 A
ud

io
 P

ro
ce

ss
in

g,
 V

ol
. 1

1,
 N

o.
 4

, p
p.

 3
21

-3
33

, 2
00

3.



PAPER IDENTIFICATION NUMBER SAP1143 10 

[6] Bosch L. and Gallés N., “The role of prosody in infants’ native-
language discrimination abilities: the case of two phonologically close 
languages”, Proc. of 5th European Conference on Speech 

Communication and Technology, Vol. 1, pp. 231-234, 1997. 
[7] Brindöpke C., Fink G. A. and Kummert F., “A comparative study of 

HMM-based approaches for the automatic recognition of perceptually 
relevant aspects of spontaneous German speech melody”, Proc. of 7th 
European Conference on Speech Communication and Technology, 
Vol. 2, pp. 699-702, 1999. 

[8] Brindöpke C., Fink G. A., Kummert F. and Sagerer G., “A HMM-based 
recognition system for perceptive relevant pitch movements of 
spontaneous German speech”, 5th International Conference on Spoken 
Language Processing, Prosody and Emotion 6, 1998. 

[9] Busdhtein D., “Robust Parametric Modeling of Durations in Hidden 
Markov Models”, IEEE Trans. On Speech and Audio Processing, Vol. 
4, No. 3, 1996. 

[10] Cahn J. E., “A Computational Memory and Processing Model for 
Prosody”, Proc. of 5th International Conference on Spoken Language 
Processing, Prosody and Emotion 2, 1998. 

[11] Campione E. and Véronis J., “A Statistical Study of Pitch Target Points 
in Five Languages”, Proc. of 5th International Conference on Spoken 
Language Processing, Prosody and Emotion 5, 1998.  

[12] Casacuberta F., García R., Llisterri J. Nadeu C., Prado J. M. and Rubio 
A., “Development of a Spanish Corpora for the Speech Research”, 
Workshop on International Co-operation and Standardisation of 

Speech Databases and Speech I/O Assessment Methods, CEC DGXIII, 
ESCA and ESPRIT PROJECT 2589 “SAM”, Chiavari, 26-28 
September 1991. 

[13] Caspers J., “Testing The Meaning of Four Dutch Pitch Accent Types”, 
Proc. of 5th European Conference on Speech Communication and 

Technology, Vol. 2, pp. 863-866, 1997. 
[14] Chen S-H, Hwang S-H and Wang Y-R, “An RNN-Based Prosodic 

Information Synthesizer for Mandarin Text-to-Speech”, IEEE Trans. 
On Speech and Audio Processing, Vol. 6, No. 3, 1998. 

[15] Chiang T-H, Lin Y-C and Su K-Y, “On Jointly Learning the Parameters 
in a Character Synchronous Integrated Speech and Language Model”, 
IEEE Trans. On Speech and Audio Processing, Vol. 4, No. 3, 1996. 

[16] Chih-Heng L., Chien-Hsing W., Pei-Yih T. and Hsin-Min W., 
“Frameworks for recognition of Mandarin syllables with tones using 
sub-syllabic units”, Speech Communication, Vol. 18, pp. 175-190, 
1996. 

[17] Chung G. and Seneff S., “Improvements in Speech Understanding 
Accuracy Through the Integration of Hierarchical Linguistic, Prosodic, 
and Phonological Constraints in the Jupiter Domain”, Proc. of 5th 
International Conference on Spoken Language Processing, Spoken 
Language Understanding Systems 1, 1998.  

[18] Deller. J. R., Proakis J. G., Hansen J. H., Discrete-Time Processing of 
Speech Signals, Prentice Hall, 1987. 

[19] Garrido Almiñana J. M., Modelización de patrones melódicos del 

español para la síntesis y el reconocimiento del habla, Edited by 
Departament de Filologia Espanyola, Facultad de Filosofia i Lletres, 
Universitat Autònoma de Barcelona, 1991. 

[20] Hirose K. and Iwano K., “Detection of prosodic word boundaries by 
statistical modeling of mora transitions of fundamental frequency 
contours and its use for continuous speech recognition,” Proc. of IEEE 
25rd International Conference on Acoustics, Speech and Signal 

Processing, Vol. 3, pp. 1763-1766, 2000. 
[21] Hoskins S., “The Prosody of Broad and Narrow Focus in English: Two 

Experiments”, Proc. of 5th European Conference on Speech 

Communication and Technology, Vol. 2, pp. 791-794, 1997. 
[22] Humphries J. J., and Woodland P. C., “The Use of Accent-Specific 

Pronunciation Dictionaries in Acoustic Model Training”, Proc. of IEEE 
23rd International Conference on Acoustics, Speech and Signal 

Processing, Vol. 1, pp. 317-320, 1998. 
[23] Iyer R. M. and Ostendorf M., “Modeling Long Distance Dependence in 

Language: Topic Mixtures Versus Dynamic Cache Models”, IEEE 
Trans. On Speech and Audio Processing, Vol. 7, No. 1, 1999. 

[24] Jelinek F., Statistical Methods for Speech Recognition, MA: MIT Press, 
1999. 

[25] Junqua J. C. and Haton J. P., Robustness In Automatic Speech 
Recognition: Fundamentals and Applications, Kluwer Academic 
Publishers, 1996. 

[26] Kohonen T., The Self-Organizing Map, NY: Springer-Verlag, 1995. 
[27] Laan G.P.M., “The contribution of intonation, segmental durations, and 

spectral features to the perception of a spontaneous and a read speaking 
style”, Speech Communication, Vol. 22, pp. 43-65, 1997. 

[28] Lee S-W. and Hirose K. “Dynamic beam-search strategy using 
prosodic-syntactic information,” Workshop on Automatic Speech 

Recognition and Understanding, pp. 189-192, 1999. 
[29] Lee T. and Ching C., “Cantonese Syllable Recognition Using Neural 

Networks”, IEEE Trans. On Speech and Audio Processing, Vol. 7, No. 
4, 1999. 

[30] Lieske C., Bos J., Emele M., Gambäck B. and Rupp C. J., “Giving 
Prosody a Meaning”, Proc. of 5th European Conference on Speech 
Communication and Technology, Vol. 3, pp. 1431-1434, 1997. 

[31] Liporace L. A., “Maximum likelihood estimation for multivariate 
stochastic observations of Markov chains”, IEEE Trans. Information 
Theory, IT-28 (5), 1982. 

[32] Lippmann R. P., “Speech recognition by machines and humans”, 
Speech Communication, Vol. 22, pp. 1-15, 1997. 

[33] López E., Caminero J., Cortázar I. and Hernández L., “Improvement on 
Connected Numbers Recognition Using Prosodic Information”, Proc. 
of 5th International Conference on Spoken Language Processing, 
Prosody and Emotion 2, 1998. 

[34] López-Gonzalo E., Rodríguez-García J. M., Hernández-Gómez L. and 
Villar J. M., “Automatic corpus-based training of rules for prosodic 
generation in text-to-speech”, Proc. of 5th European Conference on 
Speech Communication and Technology, Vol. 5, pp. 2515-2518, 1997. 

[35] Lublinskaja V. and Sappok C., “Speaker attribution of successive 
utterances: The role of discontinuities in voice characteristics and 
prosody”, Speech Communication, Vol. 19, pp. 145-159, 1996. 

[36] Michie D., Spiegelhalter D.J., Taylor C.C., Machine Learning, Neural 

and Statistical Classification, Ellis Horwood, University College, 
London, 1994. 

[37] Milone D. H., Sáez J. C., Simón G., Rufiner H. L., “Self-Organizing 
Neural Tree Networks,” Proc. of 20th Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 
3, 1998. 

[38] Milone D. H., Sáez J. C., Simón G., Rufiner H. L., “Árboles de redes 
neuronales autoorganizativas,” Revista Mexicana de Ingeniería 

Biomédica, Vol. 29, No. 4, 1998. 
[39] Milone D. H., Merelo J. J., and Rufiner H. L., “Evolutionary algorithm 

for speech segmentation,” Proc. of 2002 IEEE World Congress on 

Evolutionary Computation, Hawaii, May. 2002. 
[40] Molloy L. and Isard S., “Suprasegmental Duration Modeling with 

Elastic Contraints in Automatic Speech Recognition”, Proc. of 5th 
International Conference on Spoken Language Processing, Hidden 
Markov Model Techniques 3, 1998. 

[41] Noll A. M., “Cepstrum Pitch Determination,” J. Acoust. Soc. Am., Vol. 
41, pp. 293-309, 1967. 

[42] Nöth E., Batliner A, Kieβling A., Kompe R. and Niemann H., 
“Verbmobil: The use of prosody in the Linguistic components of a 
speech understanding system”, IEEE Trans. On Speech and Audio 
Processing, Vol. 8, No. 5, 2000. 

[43] Olaszy Gábor and Németh Géza, “Prosody generation for German 
CTS/TTS systems (from theoretical intonation patterns to practical 
realisation)”, Speech Communication, Vol. 21, pp. 37-60, 1997. 

[44] Pallier C., Cutler A. and Sebastián-Gallés N., “Prosodic Structure and 
Phonetic Processing: A Cross-Linguistic Study”, Proc. of 5th European 
Conference on Speech Communication and Technology, Vol. 4, pp. 
2131-2134, 1997. 

[45] Pols L. C. W., Wang X. and Bosch L. F. M., “Modeling of phone 
duration (using the TIMIT database) and its potential benefit for ASR”, 
Speech Communication, Vol. 19, pp. 161-176, 1996. 

[46] Portele T. and Heuft B., “Towards a prominence-based synthesis 
system”, Speech Communication, Vol. 21, pp. 61-72, 1997. 

[47] Potamianos G. and Jelinek F., “A study of n-gram and decision tree 
letter language modeling methods”, Speech Communication, Vol. 24, 
pp. 171-192, 1998. 

[48] Potisuk S., Harper M. P. and Gandour J., “Classification of Thai Tone 
Sequences in Syllable-Segmented Speech Using the Analysis-by-
Synthesis Method”, IEEE Trans. On Speech and Audio Processing, 
Vol. 7, No. 1, 1999. 

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. H

. M
ilo

ne
 &

 A
. J

. R
ub

io
; "

Pr
os

od
ic

 a
nd

 a
cc

en
tu

al
 in

fo
rm

at
io

n 
fo

r 
au

to
m

at
ic

 s
pe

ec
h 

re
co

gn
iti

on
"

IE
E

E
 T

ra
ns

ac
tio

ns
 o

n 
Sp

ee
ch

 a
nd

 A
ud

io
 P

ro
ce

ss
in

g,
 V

ol
. 1

1,
 N

o.
 4

, p
p.

 3
21

-3
33

, 2
00

3.



PAPER IDENTIFICATION NUMBER SAP1143 11 

[49] Quilis A., Tratado de fonología y fonética españolas, Madrid: Editorial 
Gredos, 1993. 

[50] Rabiner L. R. and Gold B., Theory and Application of Digital Signal 
Processing, Prentice Hall, 1975. 

[51] Rabiner L. R. and Juang B. H., “An Introduction to Hidden Markov 
Models”, IEEE ASSP Magazine, Jan. 1986. 

[52] Rabiner L. R. and Juang B. H., Fundamentals of Speech Recognition, 
Prentice-Hall, 1993. 

[53] Rajendran S. and Yenanarayana B., “Word boundary hypothesization 
for continuous speech in Hindi based on F0 patterns”, Speech 

Communication, Vol. 18, pp. 21-46, 1996. 
[54] Ross N. K. and Ostendorf M., “A Dynamical System Model for 

Generating Fundamental Frequency for Speech Synthesis”, IEEE 

Trans. On Speech and Audio Processing, Vol. 7, No. 3, 1999. 
[55] Rossi M., “Is Syntactic Structure Prosodically Retrievable?”, Proc. of 

5th European Conference on Speech Communication and Technology, 
Keynote Speech, 1997. 

[56] Sönmez M. K., Heck L., Weintraub M., Shriberg E., “A Lognormal 
Tied Mixture Model of Pitch for Prosody Based Speaker Recognition,” 
Proc. of 5th European Conference on Speech Communication and 

Technology, Vol. 3, pp. 1391-1394, 1997. 
[57] Stolcke A., Shriberg E., Hakkani-Tür D. and Tür G., “Modeling the 

prosody of hidden events for improved word recognition,” Proc. of 7th 
European Conference on Speech Communication and Technology, 
Vol. 1, pp. 311-314, 1999. 

[58] Swerts M. and Ostendorf M., “Prosodic and lexical indications of 
discourse structure in human-machine interactions”, Speech 

Communication, Vol. 22, pp. 25-41, 1997. 
[59] Torres M.I. and Iparraguirre P., “Acoustic parameters for place of 

articulation identification and classification of Spanish unvoiced 
stops”, Speech Communication, Vol. 18, pp. 369-379, 1996. 

[60] Van Kuijk and Boves L., “Acoustic characteristics of lexical stress in 
continuous telephone speech”, Speech Communication, Vol. 27, pp. 
95-111, 1999. 

[61] Van Santen J. P. H., “Prosodic Modeling in Text-to-Speech Synthesis”, 
Proc. of 5th European Conference on Speech Communication and 

Technology, Keynote Speech, 1997.  
[62] Vereecken H., Vorstermans A., Martens J. P. and Van Coile B., 

“Improving the Phonetic Annotation by Means of Prosodic Phrasing”, 
Proc. of 5th European Conference on Speech Communication and 

Technology, Vol. 1, pp. 179-182, 1997. 
[63] Véronis J., Di Cristo P., Courtois F. and Chaumette C., “A stochastic 

model of intonation for text-to-speech synthesis”, Speech 

Communication, Vol. 26, pp. 233-244, 1998. 
[64] Wang C. and Seneff S., “A Study of Tones and Tempo in Continuous 

Mandarin Digit Strings and Their Application in Telephone Quality 
Speech Recognition”, Proc. of 5th International Conference on Spoken 
Language Processing, Prosody and Emotion 2, 1998. 

[65] Warnke V., Gallwitz F., Batliner A., Buckow J., Huber R., Nöth E. and 
Höthker A., “Integrating Multiple Knowledge Sources for Word 
Hypotheses Graph Interpretation”, Proc. of 7th European Conference 
on Speech Communication and Technology, Vol. 1, pp. 235-238, 1999. 

[66] Waibel A., Hanazawa T. Hinton G., Shikano K. And Lang K., 
“Phoneme recognition using time-delay neural networks”, IEEE Trans. 
ASSP, Vol. 37, No. 3, 1989. 

[67] Wu S-L., Kingsbury B. E. D., Morgan N., Greenberg S., “Incorporating 
Information from Syllable-length Time Scales into Automatic Speech 
Recognition”, Proc. of IEEE 23rd International Conference on 

Acoustics, Speech and Signal Processing, Vol. 2, pp. 721-724, 1998. 
[68] Yaeger-Dror M., “Register as a variable in prosodic analysis: The case 

of the English negative”, Speech Communication, Vol. 19, pp. 39-60, 
1996. 

 
 

Diego H. Milone (S’95) received the degree in Bioengineering (Hons.) from 
National University of Entre Ríos, Argentine, in 1998. He is currently 
finishing his thesis to obtain the Ph.D. degree from Granada University, 
Spain. 
 He is with Cybernetics Laboratory, Department of Mathematics and 
Informatics and Department of Bioengineering, National University of Entre 
Ríos, Argentine, from 1993, 1995 and 1996, respectively. He is Associate 
Professor with Department of Informatics, National University of Litoral, 
Argentine, from 2002.  
 His current interests research is on signal processing, speech recognition, 
computational intelligence, bioengineering and auditory prostheses. 
 
 
Antonio J. Rubio studied physics at the University of Seville, with a 
specialty in electronics in 1972. He received the Ph.D. degree in 1978. 

In 1972 he joined the University of Granada as an Assistant Professor. 
Since then he has been dedicated to the speech recognition and coding 
research. He spend a one-year working as a consultant in the Speech Research 
Department, AT&T Bell Labs, Murray Hill, N. Currently, he is Full Professor 
in the Department of Electronics and Computer Technology of the University 
of Granada, Spain and he is the coordinator of the Spanish Network on 
Speech Technologies. 
 
 

TABLE I 
NUMBER OF DIFFERENT ACCENTUAL STRUCTURES 

 IN ANALYZED DATABASE. 
 

LH 247   LLHL 197 
HL 1434   LHLL 220 
LLH 186   LLLHL 144 
LHL 202   LL 41 
HLL 46   LLL 29 
LLLH 171   LLLL 12 
      

 
TABLE  II 

NUMBER OF DIFFERENT POSITIONS  OF THE ORTHOGRAPHIC ACCENT. 

      
Beginning with    Ending with  
      
H 1480   H 604 
LH 671   HL 1977 
LLH 383   HLL 266 
LLLH 317   HLLL - 
      

 
TABLE  III  

SYLLABLES PER WORD IN ANALYZED DATABASE. 

  
2 syllables 1722 
3 syllables 463 
4 syllables 600 
5 syllables 144 
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TABLE IV  
MATCHING FOR ENERGY (E), FUNDAMENTAL FREQUENCY (F0) AND 

DURATION (D) MAXIMA AND ORTHOGRAPHIC ACCENT. 
�=MATCH BETWEEN PARAMETER AND ACCENTUATION;  

�=NO MATCH BETWEEN PARAMETER AND ACCENTUATION. 

  
Maxima % of possible  

E F0 D combinations 
     
� � � 17.71  
� � � 18.03  
� � � 4.60  
� � � 8.19  
� � � 13.14  
� � � 17.26  
� � � 6.34  
� � � 14.68  
     

 
TABLE V 

MATCHING FOR MAXIMA ACCORDING TO ACCENTED SYLLABLE.  
(% OF TOTAL ACCENTED SYLLABLES IN A GIVEN POSITION). 
      

Accented syllable Average Parameter 
1 2 3 4  

Energy 56.55 44.94 25.84 71.38 49.68 
Fund. Freq. 42.23 25.44 27.41 20.78 28.97 
Duration 70.94 30.35 62.14 53.01 54.11 

      
 

TABLE VI 
MATCHING OF ENERGY (E) AND DURATION (D) MAXIMA, FUNDAMENTAL 

FREQUENCY (F0) MINIMA AND ACCENTUATION. 
�=MATCH BETWEEN PARAMETER AND ACCENTUATION; 

�=NO MATCH BETWEEN PARAMETER AND ACCENTUATION. 

    
Max Min Max % of possible 

E F0 D combinations 
     
� � � 11.61  
� � � 11.82  
� � � 10.71  
� � � 14.40  
� � � 12.07  
� � � 16.56  
� � � 7.43  
� � � 15.38  
     

 

TABLE VII 
CONFUSION MATRIX FOR ORTHOGRAPHIC ACCENT AND ENERGY (E), 
DURATION (D) AND  FUNDAMENTAL FREQUENCY (F0) MAXIMA. (ANY 

MATCHING BEYOND THE 4TH SYLLABLE HAS BEEN REMOVED TO SIMPLIFY THE 

TABLE) 

  
Orthographic accent Number  

of words 1 2 3 4 
1 837 265 184 39 
2 618 302 32 29 
3 25 75 99 14 

Max. E 

4 0 30 68 237 

1 625 292 157 146 

2 840 171 25 44 
3 15 111 105 4 

Max. F0 

4 0 98 96 69 
1 1050 270 69 3 
2 422 204 14 21 
3 8 114 238 97 

Max. D 

4 0 84 62 176 
 

TABLE VIII 
CONFUSION MATRIX FOR ORTHOGRAPHIC ACCENT AND FUNDAMENTAL 

REQUENCY (F0) MINIMA, RISING PITCH AND FALLING PITCH. (ANY MATCHING 

BEYOND THE 4TH SYLLABLE HAS BEEN REMOVED TO SIMPLIFY THE TABLE) 

  
Orthographic accent Number 

of words 1 2 3 4 
1 988 283 92 94 
2 478 211 154 39 
3 14 111 96 75 

Min. F0 

4 0 67 41 79 

1 849 160 66 88 
2 621 304 74 22 
3 10 141 177 20 

Rising 
Pitch 

4 0 67 66 150 

1 620 360 157 76 
2 836 176 116 118 

3 24 78 59 79 

Falling 
Pitch 

4 0 57 51 16 
 

TABLE XI 
RECOGNITION ERRORS RATES USING F0 IN PARAMETERIZATION AND 

PENALIZATIONS WITHOUT PROSODIC-ACCENTUAL INFORMATION (AVERAGE 

OVER 10 TRAIN/TEST PARTITIONS). 

   
Recognition 
Error Rates 

SER 
% 

WER 
% 

   
Base-line ref. 38.30 7.54 
MFCC+E+F0+∆ 39.14 8.08 
Random ξ 48.15 10.91 
Fixed γs 37.79 7.38 
Fixed γn 31.67 6.29 
Fixed γw 49.10 12.05 
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TABLE XII 
OVERALL RESULTS FOR PROSODIC-ACCENTUAL AIDED SPEECH RECOGNIZER. 
BASE-LINE REFERENCE  SYSTEM CONSIST OF A SCHMM RECOGNIZER WITH 

BIGRAM LANGUAGE MODEL. (AVERAGE OVER 10 TRAIN/TEST PARTITIONS). 

     
Recognition 
Error Rates 

SER 
% 

WER 
% 

WAER 
% 

%WER 
Reduction 

     
Base-line ref. 38.30 7.54 8.53 – 
HMM-PASS 30.55 5.36 6.67 28.91 
T-PASS 25.50 4.76 5.70 36.87 
Overall max. 24.37 3.16 3.79   46.98* 
     

* Error reduction of the best T-PASS partition, relative to the corresponding 
reference partition. 
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Fig. 1: Duration average per vowel and according to accentuation. Grey bars 
for accented vowels. Line bars indicate standard deviation. 
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Fig. 2: Fundamental frequency (F0) average per vowel and according to 
accentuation. Grey bars for accented vowels. Line bars indicate standard 
deviation. 
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Fig. 3: Energy average per vowel and according to accentuation. Grey bars for 
accented vowels. Line bars indicate standard deviation. (Values on energy 
axis are divided by 1E7)  
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Fig. 4: Word normalised energy average per vowel and according to 
accentuation. Grey bars for accented vowels. Line bars indicate standard 
deviation. 
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Fig. 5: Intonation cadences average per vowel and according to accentuation. 
Grey bars for accented vowels. 
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Fig. 6: Standard grammar net. In this case, modifying link probabilities while 
words are pronounced is not possible. 
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Fig. 8: Influence of different penalization constants. 
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TABLE  IX 
BEST RATES FOR ACCENTUAL STRUCTURE ESTIMATION. E = ENERGY; F0 = FUNDAMENTAL FREQUENCY; D = DURATION; ∆ = DELTA COEF.; ∆∆ = ACCELERATION 

COEF.; DIFF (·) = APPLYING DIFFERENCE BY FIT TECHNIQUE; MFCC= MEL-FREQ. CEPSTRAL COEF.; LPC=LINEAR PREDICTION COEF.; W(·) = NORMALIZING WITH 

MAXIMA ON EACH WORD; S=STATES PER MODEL; MG=GAUSSIANS PER MIXTURE. 

   
Signal Processing Rate Classifier and details 

   
E+ F0+∆+∆∆ 45.56% HMM, 5 S 
E+ F0+∆+∆∆ 53.31% HMM, 7 S 
E+ F0+∆+∆∆ 55.16% HMM, 7 S, 4 MG 

E+diff(F0) 56.82% HMM, 7 S, obtained with polynomial degree 11 
E+diff(F0)+∆ 50.56% HMM, 7 S, obtained with polynomial degree 11 

E+diff(F0)+∆+∆∆ 50.49% HMM, 7 S, obtained with polynomial degree 11 
diff(E)+diff(F0) 44.59% HMM, 7 S, obtained with polynomial degree 13 

E+∆+∆∆+MFCC 53.08% HMM, 7 S 
E+∆+∆∆+MFCC 54.88% HMM, 4 S, 4 MG 
E+∆+∆∆+MFCC 43.39% HMM, 15 S, 4 MG 
E+∆+∆∆+MFCC 53.09% HMM, 5 S, 4 MG, FS 50ms, FW 100ms 
E+∆+∆∆+MFCC 56.94% HMM, 7 S, 4 MG, FS 25ms, FW 100ms 
E+∆+∆∆+MFCC 50.69% HMM, 5 S, 4 MG, L and H models each vowel 

E+LPC 50.74% HMM, 7 S, 4 MG, L and H models each vowel 
w(E)+w(F0) 85.65% NTN + HMM for syllable segmentation 

w(E)+w(F0)+w(D) 89.98% NTN + HMM for syllable segmentation 
   

 
TABLE X 

EXAMPLE OF HMM ESTIMATED ACCENTUAL STRUCTURE SEQUENCES 

   
Spanish sentence Ríos de la Comunidad Autónoma Gallega 

Correct (from orthographic rules) /HL L L LLLH LHLL LHL/ 
Estimated with HMM /H HL L LLLH LHLL L L/ 
English translation  Rivers of the Galician Self-Governing Territory 
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Fig. 7: Expanded grammar net. In this case, alignment between accentual structures of the estimated PASS and layers to perform penalizations 
is possible.  
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