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cmartinez@fi.uner.edu.ar
2 Instituto Valenciano de Investigaciones Económicas (IVIE)
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Abstract. Up-to-date results on the application of Markov models to
chromosome analysis are presented. On the one hand, this means using
continuous Hidden Markov Models (HMMs) instead of discrete models.
On the other hand, this also means to conduct empirical tests on the same
large chromosome datasets that are currently used to evaluate state-of-
the-art classifiers. It is shown that the use of continuous HMMs allows
to obtain error rates that are very close to those provided by the most
accurate classifiers.

1 Introduction

A common task in cytogenetics is the karyotye analysis of a cell. It consists of
labelling each chromosome of the cell with its class label, in order to have the
genetic constitution of individuals. This analysis provides important information
about number and shape of the chromosomes, which serves as a basis to study
the possible abnormalities the individual could have.

In a normal, nucleated human cell there are 46 chromosomes. The karyogram
is a standard format which shows the complete set organized into 22 classes (each
one consisting of a matching pair of two homologous chromosomes), ordered by
decreasing length, and two sex chromosomes, XX in females or XY in males.

The first attempts to automate this task were made in the early 1960s, moti-
vated by the fact that manual analysis is very tedious and labour-intensive. Since
then, many classification techniques have been tried, including both statistical
and structural approaches. Most of them, however, are conventional, statistical
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CTIDIA/2002/80, the Spanish “Ministerio de Ciencia y Tecnoloǵıa” under grant
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classification techniques in the sense that they reduce each chromosome image
to a point in some multi-dimensional feature space [6]. Instead, the use of struc-
turally richer approaches has been rare and focused mainly on discrete Markov
models [3, 7].

The aim of this paper is to provide up-to-date results on the application
of Markov models to chromosome analysis. On the one hand, this means us-
ing continuous Hidden Markov Models (HMMs) instead of discrete models. On
the other hand, this also means to conduct empirical tests on the same large
chromosome datasets that are currently used to evaluate state-of-the-art clas-
sifiers [6]. It is worth noting that this is a new application of standard Speech
Recognition technology and, in particular, a new application of the well-known
and widely available standard HMM Tool Kit (HTK) [8]. However, this is not
a straightforward application of HTK since we also have to take care of prepro-
cessing, feature extraction and HMM topology design. These aspects are covered
in the next section. Empirical results and the main conclusions drawn are given
in sections 3 and 4, respectively.

2 The Approach

The basic steps of our HTK-based approach are illustrated in Figure 1. They
are described in what follows.

Fig. 1. Basic steps of our HTK-based approach. From left to right: computation
of the longitudinal axis, unfolding, feature extraction and HMM modelling
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Computation of the Longitudinal Axis and Unfolding

The computation of the longitudinal axis of a chromosome is a standard pre-
processing step in chromosome analysis. However, no precise definition has been
widely accepted and, in fact, it is a matter of current research [6]. In our case,
we have used a rather standard procedure that includes the classical Hilditch’s
thinning algorithm for medial axis computation and some refinements [2].

Once the longitudinal axis has been computed, it is traversed at unit speed
and a perpendicular slice is cut at each sampled axis point to obtain an unfolded,
straight version of the chromosome. After this chromosome unfolding, feature
extraction reduces to compute an appropriate set of features from each image
row.

Feature Extraction

Feature extraction for local characterization of chromosomes is an interesting,
open problem. Based on our previous experience [5] and some informal tests, we
have considered the following four types of features:

– 9p: grey densities
– D: horizontal derivative
– A: horizontal acceleration
– V: vertical derivative

The set of features referred to as 9p corresponds to 9 equidistant Gaussian-
filtered points. Concretely, each point was filtered by convolution with a 5 × 5
filter mask with weights: 16 in the center, 2 at a 1-pixel distance and 1 at a 2-
pixel distance. Derivatives and acceleration were computed from successive 9p
vectors. As an example, the sequence of feature vectors shown Fig. 1 comprises
grey densities plus horizontal and vertical derivatives (9p+D+V).

It must be noted that these types of features come from previous work on
HTK-based handwriting recognition. Please see [1, 4] for more details on the
computation of these types of features.

HMM Chromosome Modeling

As illustrated in Fig. 1, chromosomes are modelled by continuous left-to-right
HMMs. Basically, an HMM for a chromosome class is a stochastic finite-state
device aimed at modelling the succession, along the longitudinal axis, of feature
vectors extracted from instances of the chromosome class. Each HMM state
generates feature vectors following an adequate parametric probabilistic law;
typically a mixture of Gaussian densities. The number of states and number of
densities per state that are appropriate to model each chromosome class depend
on the class variability and the amount of training data available. So, these
numbers need some empirical tuning. The training process is carried out with
the HTK toolkit, using conventional re-estimation formulas [8].
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3 Experiments

The data set used in the experiments was the Cpa, a corrected version of the
Cpr corpus (the complete Copenhagen data set) [6]. The corpus contains the
segmented chromosome images of 2804 human cells, 1344 of which are female
and 1460 are male.

3.1 Context-Free Classification

The usual method for classifying a test chromosome is to find the HMM with
the highest probability in the Viterbi decoding. This is the so-called context-
free classification, because each chromosome is classified with independence of
each other. The experiments reported in this subsection were done under this
context-free framework.

As discussed before, one of the two basic parameters characterising continu-
ous left-to-right HMMs is the number of states chosen for each class-conditional
HMM Mi. This number has been computed as si = fi

k , where fi is the average
length of the sequence of vectors used to train Mi, and k is a design parame-
ter measuring the average number of feature vectors modelled per state. This
rule of setting up si attempts to balance modelling effort across states and also
captures important discriminative information about the typical length of each
chromosome class. Following this rule, a first series of experiments was carried
out on a partition involving 2400 + 400 training and testing cells. We used the
9p feature set and the values of k: 1.5, 2, 2.5, 3 and 4. For each value of k, the
number of Gaussian densities per state was varied as 1, 2, 4, ldots until reaching
a minimum classification error rate. The results obtained, which are omitted here
for brevity, showed a degradation of the error rate as the value of k increases. So,
in accordance with these results, a value of k = 1.5 was fixed for the remaining
experiments.

After deciding on the value of k, a second series of experiments was conducted
on the same data partition to study the classifier performance as a function of
the number of Gaussian densities per state, and for several feature sets. The
results are shown in Fig. 2. From these results, it is clear that an appropriate
feature set consist of using grey densities plus horizontal and vertical derivatives
(9p+D+V). Also, 64 seems to be an adequate number of Gaussian densities
per state.

Although the results obtained up to this point were satisfactory, we decided
to do further experiments using windows of feature vectors instead of single
vectors. This was done as as an attempt to reproduce the behaviour of the input
layer of Recurrent Neural Networks, in which a small moving-window of feature
frames is processed at each time and this seems to be very effective in improving
classification results [5]. Fig. 3 shows the classification error rate (estimated as
before) for varying Gaussian densities per state and several window sizes. As
expected, the use of windows of feature vectors helps in improving classification
error and, in fact, the best result (5.6%) was obtained with a window of 3 feature
vectors (and 64 Gaussian densities per state).
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Fig. 2. Classification error rate as a function of the number of Gaussian densities
per state, and for several feature sets

All the experiments reported so far were carried out using a single partition
of the complete corpus. In order to obtain more precise results, the classification
error rate was also estimated using a 7-fold cross-validation procedure in which
the blocks were chosen to have 400 cells each. It is given in Table 3.1 as a function
of the number of Gaussian densities per state (the remaining parameters were
set to the values that provided a 5.6% of error). The best result for the cross-
validation method, again obtained with 64 Gaussian densities, is 7.5%.

3.2 Context-Dependent Classification

The classification error rate can be reduced by taking into account the fact that
the normal karyotype consists of 22 pairs of autosomes and a pair of sex chromo-
somes. This knowledge imposes a constraint that penalizes, e.g., the allocation
of more than two chromosomes to one class and less than two chromosomes to
other class. This is the called context-dependent classification.

An iterative algorithm was formulated to restrict the isolated chromosome
classification by including the contextual cell information. The algorithm receives
as input, for each chromosome of a cell, the output probabilities of each HMM.
Then, in successive iterations, the algorithm classifies pairs of chromosomes for
each class using solved classes; i.e., classes with only two chromosomes having
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Fig. 3. Classification error rate as a function of the number of Gaussian densities
per state, and for window widths

the highest probability for that class, and both probabilities greater than a lower
bound. After that, the probabilities of solved classes are crossed-out for the
remaining chromosomes, whose probabilities are renormalized and the process
is repeated until the complete cell is classified.

In order to complete the experiments reported in the preceding subsection,
the context-dependent classification algorithm discussed above was applied to
the best classifier found under the context-free framework. The classification
error rate was again estimated using the 7-fold cross-validation procedure and,
as expected, it was reduced from 7.5% up to 4.6%. This figure is close to those
provided by the most accurate classifiers [6].

4 Conclusions

We have provided up-to-date results on the application of Markov models to
chromosome analysis. It has been shown that the use of continuous Hidden
Markov Models (HMMs) allows to obtain error rates that are very close to those
provided by the most accurate classifiers. As in the case of handwriting recog-
nition, the main advantage of using HMMs is that they can be easily integrated
into systems based on finite-state technology [4].
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Table 1. Classification error rate estimated using a 7-fold cross-validation pro-
cedure

N◦ of G. D. error rate

1 15.7
2 12.5
4 10.4
8 9.3
16 8.4
32 7.9
64 7.5
128 7.7

A number of improvements can be applied to the entire system. The skeleton
technique used to obtain the longitudinal axis has the disadvantage of being non-
parametric, so approximations using eigenvectors have to be used to calculate
the slices. A parametric axis could help to reduce some errors introduced by the
current method due to morphological filtering and the skeletonization algorithm
(especially in short chromosomes). In this line, other methods are being studied:
polynomial curve-fitting, implicit polynomials, etc. The iterative algorithm that
implements the context-dependent classification could be improved by dynamic
programming, allowing a more detailed analysis for finding the solved classes.
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