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Model predictive control with amplitude
and rate actuator saturation
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Av. Universidad 450, 5900 Villa Marı´a, Argentina
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Abstract

In this work we show that the anti-wind-up-bumpless-transfer controller emerges from the structure of
predictive control~MPC! with quadratic objective and input constrains. The key to establish that relationship
application of optimality conditions to the equivalent optimal control problem. The proposed framework emp
model of physical constraints as part of the controller architecture to ensure that the commands sent to the ac
not exceed their specific limits and the internal states of the controller are well updated. Numerical examp
presented for illustrating the proposed control design methodology. © 2003 ISA—The Instrumentation, System
Automation Society.
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1. Introduction

Controller design for linear process with actu
tor saturation nonlinearities has long been stud
within various contexts. In general, there are tw
different classes of structures that handle inp
saturations:

1. On-line optimization based control structure
such usmodel predictive control~MPC! which
modifies its structure every time that the optimiz
tion problem is solved in the way of obtaining th
best possible performance@1#, and

2. Variable structure controllersthat have a
closed form and do not perform on-line optimiz
tion. They change their structure with a predet
mined logic, avoiding the solving of an optimiza
tion problem@2–4#. If they are correctly designed
they can provide an optimal and robust perfo
mance of the closed-loop system.

*Tel.: 54-353-4537500; fax: 54-353-4535498.E-mail
address: lgiovani@fich1.unl.edu.ar
0019-0578/2003/$ - see front matter © 2003 ISA—The Instru
Controllers in the first class rely on a proce
model and on-line solution of a constrained op
mization problem that minimizes an objectiv
function over a future horizon@1,5#. If properly
designed, such controllers can provide optimal
robustness, and other desirable properties@6#.
However, because of the time needed to perfo
the on-line optimization, these controllers are us
ally implemented on relatively slow processes. F
fast processes the implementation of MPC do
not use on-line optimization, tunable paramete
such as prediction and control horizon length a
weighting factors in the objective function can b
adjusted to achieve desirable closed-loop prop
ties in the presence of constrains@7–9#.

Controllers in the second class completely b
pass on-line optimization, therefore they are inh
ently faster and can be used on faster proces
The anti-wind-up bumpless transfer~AWBT! con-
troller design approach is based on the followi
two-step design paradigm@2#: First, a linear con-
troller is designed ignoring input constraints.
mentation, Systems, and Automation Society.
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the next step, an anti-wind-up scheme is added
compensate the adverse effects of the constr
on the closed-loop performance. There are ma
heuristic techniques for designing AWBT contro
lers, which can be summarized into a structure t
includes a saturation nonlinearity in the forwa
path and a linear transfer function in the feedba
path. Kothareet al. @4# unified all the existing
AWBT schemes and developed a general fram
work for studying stability and robustness issu
The importance of that work lies in that the mod
uncertainties can be taken into account system
cally.

Although MPC and AWBT control methods ca
be applied to the same problem, no connectio
between these control techniques has appeare
literature. In this work we show that there is
relationship between MPC and AWBT control.
fact, we show that the general structure of AWB
controller emerges naturally from the structure
MPC controller with quadratic objective, inpu
constraints, and plant model structure affine in
put variables. Closed-loop stability, regulatory pe
formance, and sensitivity analysis to model m
match issues will be considered in a future wo
The outline of this paper is as follow. In Section
we show the relationship between MPC and op
mal control. The general structure of optimal co
trol problems emerges naturally from the structu
of MPC. In particular, we rigorously show that th
linear quadratic regulatoris derived from MPC
with quadratic objective function. From this poin
of view, we analyze the effect of the tuning param
eters on the closed-loop behavior. Section 3 c
centrates on providing an analytical solution to t
optimal-constrained control problem, equivalent
MPC controller. The key tools use for obtainin
such solution are the optimality conditions an
Pontryagin’s minimum principle. Then, the ge
eral solution is applied to free final state and t
closed-form structures are obtained. The propo
framework employs the model of saturations
part of the controller architecture to ensure that
rate and no amplitude commands are sent to
actuators that exceed their specific limits and
internal states of the controller are correctly
dated. In Section 4, we illustrate the application
this framework by showing two simulation ex
amples on SISO linear systems. Finally, w
present the conclusions and discuss future wo
on the topics in Section 5.
s

-

n

2. Relationship between MPC and optimal
control

Given a linear system, a MPC controller solv
at each sample time step the following optimiz
tion problem:

min
Du~k1 j ! j 50,1,...,U21

(
i 50

V

wyê
2~k1 i !

1 (
j 50

U21

wuDu2~k1 j !,

st. ~1!

x~k1 i 11!5Ax~k1 i !1Bu~k1 i ! x~k!,

r ~k1 i !5Arxr~k1 i !1Brur~k1 i ! xr~k!,

whereV is the prediction horizon andU<V is the
control horizon along with the output weigthin
matrix wy and the input weighting matrixwu are
the user specified tuning parameters. The sta
measured at the present time@x(k) andxr(k)# are
the initial conditions of the optimization problem
Employing the extended space-state model~37!
~see Appendix A! and defining the weights as

Q5CX
TwyCX , ~2a!

R5wu , ~2b!

where

CX5@2C 0 Cr #,

we can write the MPC controller~1! like the fol-
lowing optimal control problem:

min
U(k1 j ) j 50,1,...,U21

(
i 50

V

X T~k1 i !QX~k1 i !

1 (
j 50

U21

U T~k1 j !RU~k1 j !, ~3a!

st.

X~k1 i 11!5AXX~k1 i !1BUU~k1 i !

1BRR~k1 i ! X~k!. ~3b!
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Due to the receding horizon control philosoph
using in the MPC controllers, the problem~3! is
solved at each sample with the initial conditio
X(k) given by

X~k!5@x~k! u~k21! r ~k!#T.

Splitting the predicted errors that are inside t
control horizon from those that are outside t
control horizon, the objective function~3a! can be
written as

(
i 5U

V

X T~k1 i !QX~k1 i !

1 (
i 50

U21

@X T~k1 i !QX~k1 i !

1U T~k1 i !RU~k1 i !#. ~4!

The first term of this equation measures the s
tem performance outside of the control horizon.
can be written as function of the system states
time k1U and the control action computed by th
control problemU(k1 i ), i 50,1,...,U21 ~Ap-
pendix B!. The result is

(
i 5U

V

X T~k1 i !QX~k1 i !

5X T~k1U !SXX~k1U !

1 (
i 50

U21

U T~k1 i !SUU~k1 i !, ~5!

where

SX5 (
i 50

V2U

AX
i TQAX

i , ~6a!

SU5 (
i 50

V2U

BU
TF (

j 50

i

AX
j TGQF (

j 50

i

AX
j GBU . ~6b!

Before we continue our analysis, a remark ab
these expressions must be made. Note that Eq~5!
measures the cost of the uncontrolled portion
state trajectory(U< i<V). So it acts like a Ly-
punov function of the closed-loop system th
could ensure the system stability if the controll
parameters are properly selected. From Eqs.~6!
we can see that the controller parameters wh
can be manipulated to guarantee the closed-l
stability, for a givenU, are the prediction horizon
V and the state weightwy . Now, defining the ma-
trix

RU5R1SU , ~7!

the MPC controller~1! can be written as the fol-
lowing optimal control problem:

min
U(k1 i ) i 50,1,...,U21

X T~k1U !SXX~k1U !

1 (
i 50

U21

@X T~k1 i !QX~k1 i !

1U T~k1 i !RUU~k1 i !#,

st. ~8!

X~k1 i 11!5AXX~k1 i !1BUU~k1 i !

1BRR~k1 i !X~k!.

Observe that the resultant optimal control proble
has fixed initial condition, the states measured
present timeX(k), and does not specify fina
state. Notice that the control law computed by t
predictive controller~1! is the same as that de
signed by the optimal control problem~8!. The
only difference is the tools used to solve them
dynamic programing for the optimal control prob
lem ~8! and a parametric optimization program fo
the predictive controller~1!.

2.1. Effect of tuning parameters on closed-loop
behavior

Many authors show that the choice of MPC tu
ing parameters have a significant effect on t
closed-loop stability and performance. Now bas
on the results of the previous section we want
analyze the effect of each parameter over the s
tem response. The parameters that must be
lected are: prediction horizonV, control horizon
U, and penalty weight matriceswu andwy . Eqs.
~4!–~7! show a strong relationship between the
which is shown by a couple effect on the close
loop behavior@1,11#.

• Prediction horizon: It is well known that
longer prediction horizon produces a mo
robust controller, which result in a poo
closed-loop performance@11#. These facts
can be easily seen from Eqs.~4!–~7!, where
an increment of V increases the num
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ber of terms employed to computedSX and
SU penalizing both:~i! the behavior outside
the control horizon and~ii ! the control ac-
tions employed to control the system. S
the controller tends to control the syste
smoothly and improve the closed-loop st
bility.

• Control horizon : Linear systems results in
dicate that longer control horizon relative
prediction horizon produces more aggress
controllers that achieve better closed-lo
performance, employing more control e
ergy. This effect is the same of reduce t
prediction horizon V. Numerical results
show that control horizon greater than fiv
samples has a similar performance than c
trollers designed with this control horizo
value @11#.

• Penalty weights: For the choice of weight-
ing matrices there are few rules; it is an a
tive research area yet. Rahul and Coop
@12# derive an analytical expression for co
trol weight wu . This expression depends o
the control horizon, sampling time, and th
condition number of the controller.

The effect of the trajectory weightwy on the
closed-loop response is clear from Eqs.~6!: it has
a direct effect on the performance and stability
the closed-loop system. It influences both the st
trajectory inside and outside the control horizo
On the other hand, the control weightwu only acts
on the performance. In practice, it is common
use only one value ofwy for the whole predicted
trajectory and define the performance using
control weight wu @11#, due to its direct effect.
However, it can be used different weights for t
predictions inside(0< i<U21) and outside(U
< i<V) the control horizon calledwyu and wyy ,
respectively. Under this design condition we c
usewyy to guarantee the closed-loop stability@see
Eqs.~4!–~6!# of all plants of the family employed
to describe the system@13#.

3. MPC anti-wind-up scheme

Most practical control problems are dominat
by inequality constrains. In general, there are t
types of constrains:

• output constraints, imposed by the opera
tive conditions, and
• input bounding constraints, imposed by
physical limitations of actuators.

The last ones cannot be ignored under any con
tion, since they may lead to significant deterior
tion in the closed-loop performance and ev
closed-loop instability.

In the case of MPC, as well as in optimal co
trol, constrains are explicitly accounted for, an
the controller action is a solution to a constrain
optimization problem. So, the optimal contro
problem derived in the previous section@Eq. ~8!#
should be written as

min
U(k1 i ) i 50,1,...,U21

X T~k1U !SXX~k1U !

1 (
i 50

U21

@X~k1 i !TQX~k1 i !

1U~k1 i !TRU U~k1 i !#,

st.

X~k1 i 11!5AXX~k1 i !1BU U~k1 i !

1BRR~k1 i !X~k!,

f „X~k1 i !,U~k1 i !…<0, ~9!

where f „X(k),U(k)… is a function that describe
the constraints present in the manipulated variab
The solution of this problem must satisfy themini-
mum principleor the optimality conditions@14#,

X~k1 i 11!

5
]H@X~k1 i !,U~k1 i !,l~k1 i 11!#

]l~k1 i !
X~k!,

~10a!

l~k1 i !5
]H@X~k1 i !,U~k1 i !,l~k1 i 11!#

]X~k1 i !

l~k1U !, ~10b!

05
]H@X~k1 i !,U~k1 i !,l~k1 i 11!#

]U~k1 i !
,

~10c!

whereH(:) is the Hamiltonian function of the sys
tem,l~:! is the Lagrange multiplier or system co
states, andX(k) and l(k1U) are the boundary
conditions. These conditions are certainly not
tuitively obvious, so we should discuss them
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little. Writing Eq. ~10! explicitly in terms of its
components we can see that Eq.~10a! is the con-
strain that describes the dynamic behavior of
system. Eq.~10b!, known as theadjoint system,
describes the dynamic behavior of the costa
l(k). The system~10a! and the adjoint system
~10b! are coupled difference equations that d
scribe the dynamical behavior of states as funct
of costates. They define a two-point bounda
problem, since the boundary conditions requir
for the solution are the initial stateX(k) and the
final costatel(k1U). Finally, Eq.~10c! is called
thestationary condition, it allows us to express th
control U(k) as function of costates and guara
tees the optimality of control sequence.

To solve this dynamical recursion we have
specify the split boundary conditions. They a
given by

F]H@X~k!,U~k!,l~k11!#

]X~k! GdX~k!50,

~11a!

F]f@X~k1U !,U#

]X~k1U !
2l~k1U !GdX~k1U !50.

~11b!

Eq. ~11a! holds only at initial timek and it de-
pends on the initial states. In our application t
system starts at known initial value: the measu
stateX(k). ThusdX(k)50 and Eq.~11a! is held
regardless of the value ofH(k). On the other
hand, Eq.~11b! holds at the final timek1U and it
depends on the behavior of the system outside
control horizon.

Applying these expressions to problem~9! gives

X~k1 i 11!5AXX~k1 i !1BUU~k1 i !X~k!,
~12a!

l~k1 i !5QX~k1 i !1AX
Tl~k1 i 11!

l~k1U !, ~12b!

U~k1 i !52RU
21BUl~k1 i 11!. ~12c!

The control actions are given by

u~k1 i !5PUX~k!1(
l 50

i

U~k1 l !,

i 50,1,...,U21, ~13!

wherePU is the matrix,
PU5@0 1 0#.

The actual control actionu(k) will be given by

u~k!5PU~k!, ~14!

whereU(k) is the vector of future control action

U~k!5@u~k! u~k11! ¯ u~k1U21!#T

andP is projection matrix

P5@1 0 ¯ 0#.

The presence of constrains in the actuators for
us to modify Eq. ~12c!, applying Pontryagin’s
minimum principle over the admissible solutio
set @15#. Since MPC computes the changes
control action instead of control actions, w
should translate the amplitude saturation into
rate saturation. So, we can define the upper
lower admissible instantaneous changesU(k1 i )
and Ū(k1 i ) as

U~k1 i !5umin2PUX~k1 i !, ~15a!

Ū~k1 i !5umax2PUX~k1 i !. ~15b!

These constraints are time varying and will be a
tive when the computed control actionu(k1 i )
overcomes the amplitude saturation limits. Th
are the maximum change in the control signal
lowed at timek1 i by the amplitude saturation
When amplitude and rate saturation are simul
neously presenting the controlU(k1 i ) action
should be written as follows:

U~k1 i !5max̂ Umin ,U~k1 i !,

min$Umax,Ū~k1 i !,2RU
21BUl~k1 i 11!%‰.

~16!

Replacing the costatesl(k1 i 11) and the admis-
sible instantaneous changesU and Ū by their ex-
pressions@Eqs.~12c! and~15!#, the constraint~16!
is equivalent to~Fig. 1!

u~k1 i !5 f u$u~k1 i 21!

2 f D@RU
21BUl~k1 i 11!#%,

i 50,1,2,...,U21, ~17!

5 f u$u~k1 i 21!2 f D@Du~k1 i !#%.
~18!
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Fig. 1. Structure of the actuator’s constraints.
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Notice that Eqs.~16! and ~17! mean that we have
to apply all the control action allowed by the a
tuator such that the information employed by t
controller to compute the next control actio
would be well updated.

At this point, we must note that Eqs.~12!–~16!
correspond to a static system, where the kno
edge of the actual stateX(k) and the behavior
outside the control horizon are sufficient to com
pute everything else. Fig. 2 shows a block diagr
interpretation of Eqs.~12!–~16!, where blockM
is the set of algebraic equations corresponding
the system dynamic

X~k1 i !5AX
i X~k!1(

l 50

i 21

U~k1 l !,

i 51,2,...,U,

block L is the set of algebraic equations corr
sponding to costates behavior

l~k1 i 21!5QX~k1 i 21!1AX
Tl~k1 i !,

i 51,2,...,U,

f~:! is the function~16!, DU(k) is the vector of
future changes in control actions,
DU~k!5U~k!2U~k21!

5@U~k! U~k11! ¯ U~k1U21!#T,

andS is the following matrix:

S5F 1 0 0 0

1 1 0 0

] � ]

1 1 1 1

G .

In the following section we will apply the expres
sions derived in this section to a MPC controll
and we will derive the expressions and the close
form structure.

3.1. The controller

When we consider the standard MPC, the b
havior of the system outside the control horizon
free @1#. So, the equivalent optimal control prob
lem ~9! has a free final state. In this casedX(k
1U)Þ0 and the boundary condition~11b! is only
held if

l~k1U !5
]f@X~k1U !,U#

]X~k1U !
.

Fig. 2. Structure of the generic MPC controller.
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Under this design condition, the final costatel(k
1U) is given by

l~k1U !5SXX~k1U !. ~19!

To solve the optimal control problem we emplo
the swapping method, such that we can write th
costates as the boundary condition~19!,

l~k!5SXX~k!. ~20!

Employing the extended system model, the c
states can be expressed in the following form:

l~k1 i !5AXSXX~k1 i 11!1QX~k1 i !,

i 50,1,...,U21,

5~AXSXAX1Q!X~k1 i !

1AXSXBU U~k1 i !.

Since the predicted states are given by

X~k1 i !5AX
i X~k!1 (

j 50

i 21

AX
j BU U~k1 i 2 j !,

the costates can be written in the following form

l~k1 i !5~AXSXAX1Q!FAX
i X~k!

1 (
j 50

i 21

AX
j BU U~k1 i 2 j !G

1AXSXBU U~k1 i !. ~21!

Replacing these expression in Eqs.~12c! and~13!
we obtain the unconstrained control actions vec

U~k!5I U3UPUX~k!1SRU
21BU

T@L1L2X~k!

1~L31L4!BUDU~k!#, ~22!

where

L15F ~AXSXAX1Q! 0

] � ]

0 ~AXSXAX1Q!
G ,

L25F AX
1

]

AX
U21

G , ~23a!
L35F I 0 ¯ 0

AX I 0

] � ]

AX
U21 AX

U22
¯ I

G ,

L45FAXSX ¯ 0

¯ � ]

0 ¯ AXSX
G . ~23b!

Note thatPUX(k) is just u(k21), which can be
also obtained fromU(k) by multiplying byP and
applying a time delay,

PUX~k!5PU~k!z21. ~24!

Taking into account this idea and working wit
Eq. ~22! we can write it as

U~k!5I U3UPU~k!z211SRU
21BU

TL1L2X~k!

1SRU
21BU

T~L1L31L4!BUS21

3~ I 2I U3UPz21!U~k!.

Observe that any control actionu(k1 i ) is given
in terms of the actual state, the past control acti
and the system and weighting matrices. Theref
the gains of the controller does not depend on
state trajectory and they can be computed bef
the control is ever applied to the plant.

Because MPC controllers employ a recedi
control philosophy, a sequence of control actio
@U(k)# is computed at each sample time, but on
the first is applied and the procedure is repea
again in the next sample, the actual control act
is given by Eq.~14!. Therefore we can define th
gainsKe andKu as

Ke5PSRU
21BU

TL1L2 , ~25!

Ku5PSRU
21BU

T~L1L31L4!BUS21

3~ I 2I U3UPz21!. ~26!

If there are amplitude and rate constraints we ha
to apply the condition~17!. In this case the struc
ture of the controller is shown in Fig. 3. The ma
characteristic of this structure is the presence o
feedback path around the constraints. As se
from comparison of Figs. 3 and 4, the resultin
controller structure of MPC shows strong rese
blance to the classical anti-wind-up feedba
structure@4#.
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Fig. 3. Structure of the standard MPC controller.
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4. Simulations and results

We present two examples that illustrate the
fectiveness of the proposed anti-wind-up a
proach. Furthermore, we will illustrate the cap
bilities in comparison to the solution that hav
appeared in the literature.

Example 1. Consider the following exampl
studied by Doyle et al.@16#, which is somewha
artificial and it was constructed to expose the lim
tations of existing anti-wind-up schemes. T
plant model comprises two second-order Butt
wort filter in series

Gp~s!50.2
s212§1v1s1v1

2

s212§1v2s1v2
2

s212§2v1s1v1
2

s212§2v2s1v2
2 ,

~27!

where v150.2115, v250.0473, §150.3827, and
§250.9239.In addition, this problem still requires
the following definitions: (i) The adopted samplin
time is TS51.0 sec,and assuming a zero-orde
holder for converting the transfer function (27) t
Z domain, (ii) the convolution length was fixe
N5150 (this quantity guarantees a 98% of the t
tal response), (iii) the prediction horizon V was s
equal to the convolution length (V5N). Finally,
the predictive horizon (U) was chosen using t
principal component analysis [17] such that th
condition number of matrix gain has a conditio
number c51500 withwu50, obtaining V510. The
closed-loop response and the associated (unc
strained) control action are given in Figs. 5 and 6
respectively. In Doyle et al.@16#, the effect the in-
put signal is bounded within the interval61 with
an amplitude saturation

f „u~k!…5H 1, u~k!>1

u~k!, 21,u~k!,1

21, u~k!<21.

The resulting closed-loop response is shown
Fig. 5. With no anti-wind-up compensation, th
closed-loop response degenerates to a limit cy
of large amplitude. Using a conventional ant
wind-up approach [16], the response exhibits
large overshoot and large settling time. That i
Fig. 4. Classical feedback structure with anti-wind-up.



and

235Leonardo L. Giovanini / ISA Transactions 42 (2003) 227–240

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
; "

M
od

el
 P

re
di

ct
iv

e 
C

on
tr

ol
 W

ith
 A

m
pl

itu
de

 a
nd

 R
at

e 
A

ct
ua

to
r 

Sa
tu

ra
tio

n"
IS

A
 T

ra
ns

ac
tio

ns
 J

ou
rn

al
. V

ol
. 4

2,
 N

o.
 2

, p
p.

 2
27

--
24

4,
 2

00
3.
Fig. 5. Closed-loop responses of the linear system~27! for a setpoint change showing the effects of amplitude saturation
anti-wind-up schemes.
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the closed-loop performance exhibits a significa
deterioration, in comparison with the uncon
strained response, due to the poor compensat
The closed-loop response obtained using
structure proposed earlier has a better perfo
mance than the others. It only exhibits a sm
overshoot due to the fact that the closed-loop s
tem becomes temporarily uncontrollable.
.

Example 2. Now, let us consider a heat ex
changer, whose hot outlet temperature is co
trolled by manipulating the cold stream flow rat
modeled by [10]

Gp~s!52
35.41

~4.5s11!5 . ~28!
Fig. 6. Control variables corresponding to closed-loop responses shown in Fig. 5.
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Fig. 7. Closed-loop responses of the linear system heat exchanger for a setpoint change, showing the effect of the
saturation and the anti-wind-up scheme.
on
e-
ed
n
a

65
The system includes an amplitude

f u„u~k!…5H 1, u~k!>1

u~k!, 0,u~k!,1

0, u~k!<0,
~29!

and a rate saturation

f D„Du~k!…5H 10.2, Du~k!>10.2

Du~k!, 20.2,Du~k!,10.2

20.2, Du~k!<20.2,
~30!
due to the bounded amplitude and rate actuati
of the valve. The predictive controller was d
signed following the tuning procedure develop
by Rahul and Cooper [12]. The transfer functio
(28) was approximated through a first order plus
time delay model,

G̃p~s!5235.41
e210 s

12.04 s11
, ~31!

which was discretized with a sampling timeTS51
sec, and the convolution length was fixed in
Fig. 8. Control variable corresponding to the closed-loop responses shown in Fig. 7.
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terms. The prediction horizon V has the length
the convolution model (V5N) and the control ho-
rizon was fixed in five samples. Finally, the cont
weightswu was computed using the following fo
mula [12], assuming a condition number c5500:

wu5
M

c S 3.5
t

TS
122

M21

2 DKp514.92.

~32!

The unconstrained closed-loop response is sho
in Fig. 7. We can see the response of the clos
loop system. However, when the manipulated va
able has a rate and amplitude saturation (due
physical actuator’s limitations), the closed-loo
response shows a significant overshoot and an
crease in its settling time. When the anti-wind-
compensation is added, the closed-loop perf
mance is improved and it recovers its origin
characteristic. The difference in the closed-lo

Table 1
Computational load vs performance costs.

Controller Performance MFLOPS Simulation
times

DMC 175.32 1.92 5 sec
QDMC 154.87 574.7 300 sec

Proposed
approach

155.14 1.92 5 sec
-

performance between both system (with and w
out anti-wind-up scheme) is due to the use of
amplitude and rate constraints for the correct u
dating of the past control actions. Fig. 8 shows t
control actions computed by all the systems.

Table 1 compares the computational effort a
control performance for different MPC controller
considered in the specialized literature. In th
work we consider the QDMC [1], which perform
an on-line optimization. While we have include
representative simulations time for relative com
parison, the experiments were performed with s
eral programs developed in Matlab. The cod
were not optimized for efficient implementatio
Clearly, a substantial speed up in time can
achieved by the proposed approach with a sm
deterioration of the closed-loop performance.

In a future work we will address the robustne
problem and the effect of uncertainties on the p
formance. However, in this example we inclu
two simulations where a gain mismatch is cons
ered. We assume that the process gain varies 2
(228.3<Kp<242.5). In Fig. 9 we show the re
sponse obtained for the constrained system w
this variation in the gain. We can clearly see th
the proposed approach provided a good perfo
mance in spite of the important deviation in th
gain process. Fig. 10 summarizes the results o
tained during the simulations of system (28) w
and without uncertainty by showing the ISE ind
obtained in each case.
ti-
Fig. 9. ISE indices obtained in the simulations of system~28! with and without uncertainty, including the proposed an
wind-up scheme.
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Fig. 10. Closed-loop responses of the linear system~28! with uncertain in the process gain.
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5. Conclusions

In this work we solve the simultaneous actua
amplitude and rate saturation MPC problem
formulating it as an equivalent optimal contr
problem. Furthermore, we established a direct
lationship between AWBT schemes and MPC w
quadratic objective, input constrains and pla
model structure that are affine in the input va
ables. The key to solving the problem and to e
tablishing that relationship was the application
optimality conditions and Pontryagin’s minimum
principle to the optimization problem solved b
MPC. The proposed framework employs satu
tion models as part of the controller architecture
ensure that no rate and amplitude commands
sent to the actuators that exceed their specific l
its. The effectiveness of the proposed approa
was illustrated by two numerical examples.

In spite of the results obtained in this work, se
eral questions about stability and robustness iss
still remain open as future research topics. A
ture work must include a stability analysis of th
constrained closed-loop system, which leads
stability criterion to tune the controller paramete
and a sensitivity analysis of the control structu
presented in this work.

Appendix A: Extended system model

Given a linear discrete system,

x~k11!5Ax~k!1Bu~k!, x~0!5x0,
s

y~k!5Cx~k!, ~33!

and the setpoint is described by the following li
ear dynamic system:

xr~k11!5Arxr~k!1Brur~k!, xr~0!5xr
0 ,

r ~k!5Crxr~k!, ~34!

the system errore(k) is given by

x~k11!5Ax~k!1Bu~k!, x~0!5x0,

xr~k11!5Arxr~k!1Brur~k!, xr~0!5xr
0 ,
~35!

e~k!5r ~k!2y~k!.

Expressing the manipulated variable in increme
tal way and defining the extended states,

X~k!5@x~k! u~k21! xr~k!#T,

the system’s manipulated variables,

U~k!5Du~k!, R~k!5ur~k!,

and the system’s matrices,
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AX5FA B 0

0 1 0

0 0 Ar

G , BU5FB
1
0
G ,

BR5F 0
0
Br

G , CX5@2C 0 Cr #, ~36!

the extended system~35! can be written as the
following:

X~k11!5AXX~k!1BU U~k!1BRR~k!,

e~k!5CX X~k!. ~37!

For system~37!, the following well-known results
hold.

Lemma 1. If the pair (A,B) and(Ar ,Br) are
reachable, then the pair(AX ,BU) is stabilizable
with nonreachable eigenvalues only at the orig.

Lemma 2. If the pair (A,C) and(Ar ,Cr) are
observable and system (33) does not poss
transmission zeros at one, then the pair(AX ,CX)
is observable.

Appendix B: Weighting matrix

The first term of objective function~4!,

(
i 5U

V

X T~k1 i !QX~k1 i !, ~38!

measures the system behavior outside the con
horizon. It acts like a Lyapunov function, such th
if it guarantees a reduction in the changes of s
tem states@DX(k1 i ),0, U< i<V#, the closed
loop will be stable. Since there are no control a
tions for i>U, the behavior of the system state
outside the control horizon can be described a
function of X(k1U), andU(k1U),

X~k1 i !5AX
i 2UX~k1U !

1 (
l 50

i 2U21

AX
l BU U~k1 i 2 l !,

i 5U11,U12,...,V. ~39!

Replacing these states in Eq.~38! we have
s

l

(
i 5U

V

X T~k1 i !QX~k1 i !

5X T~k1U ! (
i 5U

V

AX
i 2UT

QAX
i 2UX~k1U !

1U T~k1U ! (
i 5U

V

BU
TF (

l 50

i 2U-1

AX
l TG

3QF (
l 50

i 2U-1

AX
l GBU U~k1U !. ~40!

Defining the following matrices:

SX5F (
i 50

V2U

AX
i TGQF (

i 50

V2U

AX
i G , ~41a!

SU5 (
i 5U

V

BU
TF (

l 50

i 2U21

AX
l TGQF (

l 50

i 2U21

AX
l GBU ,

~41b!

we can write Eq.~40! as the following:

(
i 5U

V

X T~k1 i !QX~k1 i !

5X T~k1U !SXX~k1U !

1U T~k1U !SU U~k1U !. ~42!

Because of the control actionU(k1U) is given,

U~k1U !5 (
i 50

U21

U~k1 i !,

the last expression becomes

(
i 5U

V

X T~k1 i !QX~k1 i !

5X T~k1U !SXX~k1U !

1 (
i 50

U21

U T~k1 i !SU U~k1 i !. ~43!

Observe that Eq.~43! not only affects the behavio
of the states, but also influences the control actio
employed to control the system. So, modifying t
prediction horizonV, or the control horizonU,
we modifySX @penalizing, or not,DX(k1U)# and
SU ~penalizing, or not, the energy employed
control the system!. Furthermore, we must not



o-

l
u-

d

e
-
n-

A
-

-
ar

O

ar

-
m.

ri-
tive

-
00.
ic-
t

n-
g.

vex
of

.

s,

ts

is,

p,
-

-

n

-
h-
ear

240 Leonardo L. Giovanini / ISA Transactions 42 (2003) 227–240

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
L

. G
io

va
ni

ni
; "

M
od

el
 P

re
di

ct
iv

e 
C

on
tr

ol
 W

ith
 A

m
pl

itu
de

 a
nd

 R
at

e 
A

ct
ua

to
r 

Sa
tu

ra
tio

n"
IS

A
 T

ra
ns

ac
tio

ns
 J

ou
rn

al
. V

ol
. 4

2,
 N

o.
 2

, p
p.

 2
27

--
24

4,
 2

00
3.
that the matricesSX has the same form as the s
lution of the algebraic Ricatti equation@15#. The
matrix SU is related withSX through the following
expression:

SU5BU
T (

j 5U

V

SX~ j !BU ,

whereSX( j ) is given by Eq.~41a! with the upper
limit of sumatory given byj instead ofV2U.
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