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ABSTRACT

Recently methods for obtaining sparse representations of a
signal using overcomplete dictionaries of waveforms have
been studied, often motivated by the way the brain seems to
process certain sensory signals. Algorithms have been de-
veloped using either a specific criterion to choose the wave-
forms occurring in the representation from a fixed dictio-
nary, or to construct them as part of the method. In the case
of speech signals, most approaches do not take into consid-
eration the important temporal correlations that exist; these
are known to be well approximated using linear models. In-
corporating this type of a priori knowledge of the signal can
facilitate the search for a suitable solution and also help with
the interpretation of the representation found. In the present
paper a method is proposed for obtaining a sparse represen-
tation using a generative parametric model. An example,
using speech signals, is given reporting the method’s effi-
cacy for different coding costs and sparsity measures.

1. INTRODUCTION

Speech signals are amongst the most studied natural signals,
however there are several problems relating to their analy-
sis and recognition which still have not been satisfactorily
solved. In the last few years several researchers have taken a
different approach to traditional signal processing, where it
is assumed that the signals derive from linear time invariant
systems with second order statistics. The new approaches
give rise to techniques based on higher order statistics and
includeIndependent Component Analysis(ICA) and meth-
ods to obtain sparse representations of a signal. These ap-
proaches provide a new way of phrasing the solution to
these problems.

Generally speaking a sparse coding of information is
one in which only a small number of descriptors are used
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from a large set [1], that is, only a fraction of the elements
are actively used to describe a typical pattern. In the case
of a signals, a representation in terms of a dictionaryΦ,
or collection of parameterized waveforms(φγ)γ∈Γ , usually
signifies a decomposition of the form:

s =
∑
γ∈Γ

φγaγ = Φa (1)

wherea is the vector of coefficients. Sparseness, in this con-
text, often refers to the criterion of choosing a representation
with as few non-zero coefficients as possible (typically us-
ing the`0 norm), although several other criteria have been
introduced (c.f. [2]). Commonly used dictionaries are the
traditional Fourier sinusoids (frequency dictionaries), Dirac
functions, Wavelets (time-scale dictionaries), Gabor func-
tions (time-frequency dictionaries), Polynomials or combi-
nations of these.

An overcomplete dictionary implies many possible rep-
resentations, and the following methods have been proposed
for attaining a sparse representation from a fixed dictionary:
Basis Pursuit[3], Matching Pursuit[4] andBest Orthogo-
nal Basis[5]. A first attempt to apply this type of analysis
to speech signals using a fixed dictionary of wavelet packets
appeared in [6], giving promising results.

Further there are methods (c.f. [1]), often of a statisti-
cal nature, which also construct the waveforms appearing in
(1). In this case the coefficients are usually assumed to be
statistically independent, and while this does not necessar-
ily imply sparsity of the representation, it can be achieved
using a proper choice for the prior probability of the coef-
ficients e.g. Laplacian. With this approach there are im-
portant connections to ICA [7]. In fact, it is interesting to
note that whilst sparsity and independence are different cri-
teria, they can often produce similar solutions (c.f. [8]).
There are many applications of these techniques to such
fields as: “natural” image analysis [9], audio and music sig-
nals [10], general biomedical signals [11] and Automatic
Speech Recognition [12].

The majority of the available techniques for finding the
bases do not include restrictions related to the temporal struc-
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ture of speech signals [13, 14, 15]. In the present paper an
algorithm is proposed which includes these restrictions by
assuming that the elements of the dictionary are represented
by anautoregressive(AR) filter. This type of representation
has been applied extensively, and successfully, in the past to
speech signals.

The paper is organized as follows: in section 2 the wave-
forms and algorithm used are briefly explained. In section
3 the tests employed for judging the representational effi-
ciency of this framework are discussed and the results ob-
tained using an example involving speech signals are given
in section 4. Finally section 5 provides some conclusions
concerning the paper.

2. REPRESENTATION BASED ON PARAMETRIC
MODELS

In this section a more general framework is assumed where
(1) is rewritten to include an additive Gaussian noise termε
as follows:

s = Φa + ε (2)

Following terminology used in ICA, (2) is referred to
as thegenerative model, to signify that one generates the
signals ∈ RN from a set of hidden sourcesaj , arranged as
a state vectora ∈ RM , using a mixing matrix or baseΦ of
sizeN ×M , with M ≥ L.

One problem with modeling speech signals using this
framework is that in the time domain (2) represents an in-
stantaneous mixture, whereas the phenomenon is better de-
scribed by a convolutive mixture. As a simple analogy, the
φj can be imagined to be the characteristic states of a linear
model of the vocal tract for different phonemes; a particu-
lar speech signal can then be obtained by “adding” the most
important characteristics together. To try to implement this
idea, the present paper restricts the waveforms used in the
dictionary to those of the form:

φi,j =
P∑

p=1

φi−p,jcp,j + δiaj (3)

This restriction allows the explicit inclusion of the temporal
correlation of the samples of each atom using the coeffi-
cientscp,j . This means that the problem can be phrased as
overcomplete ICA with noise and with certain restrictions
on the mixing matrix. These restrictions represent a partic-
ular case of convolutive mixtures in the time domain, or can
be formulated in thez domain of the original variables. In
this case the convolution becomes a product and theφj ’s
can be expressed as:

Φj(z) =
1

Cj(z)
(4)

Σ.
.
.

a 1

1
C 1(z )Φ1(z )  =

a 2

1
C 2(z )Φ2(z )  =

a M

1
C M (z )ΦM (z )  =

S (z )

ε(z)

.

.

.

Fig. 1. Generative model for the speech signals. This is a
particular case of convolutive mixtures.

whereCj(z) correspond to a polynomial inz of orderP
with coefficientscp,j . The corresponding generative model
is shown in Figure 1.

The approach taken in the present paper for finding the
coefficientsaj and parametric waveformsφi,j is to use the
techniques described in Lewicki and Olshausen [16] and
Lewicki and Sejnowski [17]. This involves assuming that
the coefficients are statistically independent, each with a
Laplacian prior probability. Gradient ascent is applied to
both the coefficients and waveforms using suitable updating
rules given in [16, 17]. Finally, as the matrixΦ should sat-
isfy the restrictions placed on the columns by (3), the prob-
lem arises as to how to estimate the coefficientscp,j . The
approach adopted here used:

∂MSE(φj , φ̂j)
∂cp,j

= 0 (5)

where MSE is the mean square error between theφj and the
φ̂j approximated using (3). For the solution, the method of
autocorrelation is used, and thenΦ is replaced by its para-
metric versionΦ̂. To make sure that this change is not too
disruptive in the first steps of the algorithm, the complex-
ity of the model is gradually diminished using the orderP
whilst log P (s|Φ) is increased. Further, the datas can also
be approximated by a parametric model to help the conver-
gence (which is the same as replacing them by the impulse
responses of equivalent AR systems).
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3. TESTS TO ESTIMATE SPARSITY AND CODING
COSTS

There are several tests to estimate sparsity and coding costs
of the representation, and in the present paper six of the
most common are employed to judge the representational
efficiency of the proposed method. The tests can be divided
into two groups: those related to sparsity with respect to a
norm, and those related to the statistics of the coefficients.
In the first category arè0, minvol and`1 (using the nota-
tion given in the tables). The first,`0, counts the number of
nonzero coefficients.minvol [2] is an approximation tò0

when a small threshold is used to decide if a coefficient is
considered nonzero.̀1 is often used as a practical approx-
imation to thè 0-norm in optimization problems (c.f. [3]).
Minimizing with respect to this norm is the same as requir-
ing that the coefficients have a Laplacian prior probability
(which is the case here). In the second category areK, H
and# bits. K is the kurtosis and is often used for symmet-
ric unimodal distributions (c.f. [18]). Generally its value
increases when the entropy decreases, and so it is often re-
lated to statistical independence. The entropyH is often
used to measure coding efficiency. It has more to do with
statistical independence (c.f. [18]) than sparsity although it
is desirable thatH have a low value in this case. Finally
# bits represents the coding cost in terms of the number of
bits, and is calculated usingH.

Finally, the value ofMSE, the averaged mean squared
error over the patterns, is included as a measure of the re-
construction capability of the method.

4. RESULTS

A subset of the Albayzin speech corpus [19] was used for
the experiments. This subset consisted in 600 sentences
concerning Spanish geography, with a vocabulary size of
200 words. The corpus was recorded in a studio using 6
male and 6 female speakers from the central area of Spain
with an average age of 31.8 years. The average sentence
lasted 3.55 secs and the data was digitalized at 8 KHz using
16 bits and aµ-law sampling. From the segmentation infor-
mation, frames with a size of 128 samples were extracted for
5 Spanish vowels, giving approximately 2000 frames each.
The proposed parametric method and the standard version
[16] (using Lewicki’s nocica code) were applied to the data,
and the tests described in section 3 were calculated for the
128x128 case. The results obtained for the two methods are
shown in Tables 1 and 2. The last rows of the tables show
the mean values obtained for the corresponding columns av-
eraged over all vowels. The power spectral density plots
from some of the waveforms found are also shown in Figs.
2 and 3.

Table 1. Sparsity and coding costs obtained from the pro-
posed parametric method after 150 iterations

`0 minvol `1 K H # bits MSE

/a/ 0.06 0.04 0.05 75.15 0.11 1.34 6.6E-05
/e/ 0.17 0.17 0.20 28.49 0.41 1.67 1.4E-04
/i/ 0.11 0.11 0.12 58.01 0.28 1.27 9.6E-05
/o/ 0.11 0.11 0.13 43.78 0.28 1.45 9.7E-05
/u/ 0.12 0.07 0.05 67.22 0.12 1.29 6.0E-05

0.11 0.10 0.11 54.53 0.24 1.40 9.2E-05

Table 2. Sparsity and coding costs obtained from the stan-
dard method after 2500 iterations.

`0 minvol `1 K H # bits MSE

/a/ 0.16 0.24 0.50 34.24 1.01 1.55 6.1E-04
/e/ 0.14 0.22 0.47 36.29 0.96 1.69 6.9E-04
/i/ 0.13 0.19 0.36 47.47 0.78 1.38 6.7E-04
/o/ 0.08 0.15 0.37 71.49 0.79 1.25 6.9E-04
/u/ 0.09 0.12 0.22 74.04 0.47 0.90 6.4E-04

0.12 0.18 0.38 52.71 0.80 1.35 6.6E-04

11 54 65 67

46 77 39 90

48 59 9 122

Fig. 2. Power Spectral Density plots from some of the wave-
forms obtained for the vowel /a/ using the proposed para-
metric method.

123 64 49 60

117 77 110 7

83 17 65 52

Fig. 3. Power Spectral Density plots from some of the wave-
forms obtained for the vowel /a/ using the standard method.
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5. CONCLUSIONS

The present paper has introduced a method to obtain an in-
dependent and sparse representation based on solving an
overcomplete ICA problem with noise for a specific para-
metric dictionary. The method was applied and compared
to a standard version by calculating different sparsity mea-
sures and coding costs using a speech signal example.

As can be seen from the Tables the results obtained are,
with one exception, better for the proposed method and use
a significantly smaller number of iterations. This suggests
that the proposed method is able to take advantage of the
temporal correlations in the data to find a suitable solution
quicker.

Figs. 2 and 3 of the power spectral density plots from
some of the waveforms found by the two methods also ex-
hibit important differences. Those from the proposed me-
thod, in Fig. 2, are smoother and more “complex” than those
obtained by the standard method, suggesting that higher or-
der characteristics are better captured.

An interesting property of the proposed method is that it
allows for an easier way of dealing with the complexity of
the waveforms given the “additive” nature of their poles.
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