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Abstract. Partial recurrent connectionist models can be used for clas-
sification of objects of variable length. In this work, an Elman network
has been used for chromosome classification. Experiments were carried
out using the Copenhagen data set. Local features over normal slides to
the axis of the chromosomes were calculated, which produced a type of
time-varying input pattern. Results showed an overall error rate of 5.7%,
which is a good perfomance in a task which does not take into account
cell context (isolated chromosome classification).

1 Introduction

The genetic constitution of individuals at cell level is the focus of cytogenet-
ics, where genetic material can be viewed as a number of distinct bodies –the
chromosomes–. In computer-aided imaging systems, which are now widely used
in cytogenetic laboratories, the automatic chromosome classification is an es-
sential component of such systems, since it helps to reduce the tedium and
labour-intensiveness of traditional methods of chromosome analysis.

In a normal, nucleated human cell, there are 46 chromosomes represented in
the clinical routine by a structure called the karyotype, which shows the com-
plete set of chromosomes organized into 22 classes (each of which consists of a
matching pair of two homologous chromosomes) and two sex chromosomes, XX
in females or XY in males.

Producing a karyotype of a cell is of practical importance since it greatly
facilitates the detection of abnormalities in the chromosome structure. Suitable
chromosome staining techniques produce dark bands which are perpendicular
to the longitudinal axis and are characteristic of the biological class thereby
allowing its recognition. Automatic classification is based on this band pattern
and other kinds of information (e.g., width) along the chromosomes. This work
presents a pattern recognition application to the classification of microscopic
greyscale images of chromosomes by connectionist systems, the Recurrent Neural
Networks (RNN).
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2 Background

2.1 Introduction to the Pattern Recognition Problem

In the early days, chromosomes were stained uniformly and as a result they could
be distinguished only on the basis of size and shape, the so-called Denver groups.
However, nowadays most routine karyotyping is carried out on Giemsa-stained
chromosomes. The chromosomes appear as dark images on a light background
and have a characteristic pattern of light and dark bands which is unique to each
class, and which is referred to as G-banding. Fig. 1 shows the karyogram of a
normal metaphase cell, where the characteristic band pattern can be observed.
It serves as a basis for the image processing and pattern recognition algorithms.

Fig. 1. Normal metaphase cell karyogram (images extracted from the Copenhagen data
set).

2.2 Parameter Estimation

In 1989, Piper and Granum established a set of 30 features that were imple-
mented in the chromosome analysis system MRC Edinburgh [1]. The features
were classified according to how much a priori information is needed to measure
them. Four feature levels were distinguished:

1. Direct measures on the image: area, density and convex hull perimeter.
2. Requirement of the axis: length, profiles of density, gradient and shape.
3. Requirement of axis plus polarity: asymetrical weight features.
4. Requirement of axis, polarity and centromere location: centromeric indices.

In this work, the parameters obtained from the images require the calculation
of the longitudinal axis. The input patterns are built from measures over normal
slices at unitary distance over the axis (details of the preprocessing methods are
given in Section 3).
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2.3 Recurrent Neural Networks

In many applications, time is inextricably bound up with many behaviors (such
as language) and object representations. The question of how to represent time in
connectionist models is very important, since it might seem to arise as a special
problem which is unique to parallel processing models. This is because as the
parallel nature of computation appears to be at odds with the serial nature of
temporal events.

This work deals with the use of recurrent links in order to provide networks
with a dynamic memory. In this approach, hidden unit patterns are fed back to
themselves, acting as the context of prior internal states. Among the different
networks proposed in the literature, the Elman network (EN) presents some
advantages because of its internal time representation: the hidden units have the
task of mapping both external input and the previous internal state (by means of
the context units) to some desired output. This develops internal representations
which are useful encodings of the temporal properties of the sequential input [7].

Fig. 2 shows an EN, where trainable connections are represented with dotted
lines. Connections from the output of hidden units to the context layer are usu-
ally fixed to 1.0, and activations of hidden units are copied on a one-to-one basis.
Basically, the training method involves activating the hidden units by means of
input sequence segments plus prior activation of context units. Then, the out-
put produced is compared with the teaching ouput and the backpropagation of
the error algorithm is used to incrementally adjust connection strengths, where
recurrent connections are not subject to adjustment [7].

OUTPUT UNITS

HIDDEN UNITS

INPUT UNITS CONTEXT UNITS

Fig. 2. A Recurrent Neural Network [7].

3 Materials and Methods

3.1 Corpus and Feature Extraction
The corpus used in the experiments was the Cpa, a corrected version of the large
Copenhagen image data set Cpr. It consists of 2,804 karyotyped metaphase cells,
1,344 of which are female and 1,460 are male [4].

As a first step in the preprocessing stage, the histograms of the images are
normalized and the holes are filled by means of contour chains to avoid problems
in the axis calculation. Afterwards, mathematic morphology algorithms are ap-
plied (dilation-erosion) to smooth the chromosome outlines, which prevents the
algorithm from producing an axis with more than two terminals.
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568 C. Mart́ınez, A. Juan, and F. Casacuberta

Two skeleton techniques, the González-Woods algorithm [5] and the Hilditch
algorithm [6], are successively applied to find the longitudinal medial axis. Fi-
nally, the transverse lines (slices), which are perpendicular to the axis are ob-
tained.

A set of local features over the slices was calculated. The parameter set con-
sisted of 9 bidimensional gaussian filtering points along the slices, all having an
equidistant location between the slice bounds. At each point, a 5x5 pixel filter
with the following weights was applied: 16 in the center, 2 at a in 1-pixel distance
and 1 at a 2-pixel distance. Fig. 3 shows a chromosome along with an example of
an input pattern resulting from 3 gaussian filtering points per frame (left, center
and right points).

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

"left point"
"central point"

"right point"

Fig. 3. Chromosome and 3-points gaussian profiles (chromosome image extracted from
the Copenhagen data set).

3.2 Partial RNN

The SNNS toolkit provides the methods to implement different configurations
of partial recurrent networks (Jordan and Elman networks) [2]. The EN imple-
mented in this work had the following topology:

– 1 input layer of 45 units, in order to fit a 5-frame, moving window of 9 points
each.

– 1 hidden layer, together with its context layer (variable number of units).
The link weights from hidden units to context units were set to 1.0. There
were no self-recurrent links for the context units.

– 1 output layer of 24 units, without context layer.

There is a special issue about testing the networks which should be high-
lighted. After the input frame presentation, the network produces a classification
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in one of the 24 classes, so individual frames are classified based only on trained
network knowledge. In order to test the EN perfomance, a special method was
applied: a minimum number MIN of correct classified frames (in %) is established
a priori. A chromosome is said to be correctly classified if more than MIN percent
of frames are well-classified according to the desired output. For all the experi-
ments, the value of MIN was fixed at 70%. This minimum was always surpassed
in the slice voting scheme.

4 Experiments and Results

The same partition of Cpa corpus was used in all the experiments: the training
set consisted of 33,000 chromosomes (It was not possible to use the full Cpa
corpus size due to the high memory requirements of the feature set file). The
validation set and the test set each consisted of 2,000 chromosomes. The number
of units in the hidden layer was shifted from 50 to 250 (the same number of units
was used in the context layer). The obtained error rate values are shown in Table
1.

Table 1. Test-set errors for different configurations of the hidden layer

Number of units Classification error

50 22.8%
100 15.3%
150 9.5%
200 5.7%
250 6.7%

The best perfomance was achieved with 200 units in the hidden layer, which
obtained a mean error rate for the 24 classes of 5.7%. The lowest individual error
rate was 3.1% (for class 3), whereas the highest error rate was 40.0% (for class
24, which corresponds to sex chromosome Y).

5 Discussion and Conclusions

This work presents the application of partial recurrent neural networks (specif-
ically Elman networks) to automatic chromosome classification. Local informa-
tion from the length of the chromosome was extracted from the greyscale images.
This information (gaussian filtering points sampled at equidistant distance over
normal lines to the axis) constitute the local feature frame.

The best result achieved was a minimum error rate of 5.7% in isolated chro-
mosome classification, using a test-set of 2,000 input patterns. This was achieved
by means of a standard and well-known Neural Network technique. The use of
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recurrent neural networks is supported given the fact that feedforward netowks,
in the same conditions, achieved a minimum error rate of 12.88%.

This preliminary technique could be improved in further research studies.
For example, a natural step for improving the error rate would be to restrict the
system to doing classification by cell, exploiting the fact that a normal cell has
only 46 chromosomes ordered in 24 classes. Ritter et al use this information and
other improvements such as an enhanced profile extraction method to obtain
an error rate of 0.61% using a Bayesian classifier [8]. The human error rate of
an experienced cytogenetist lies between 0.1% (using good quality images) and
0.3% (clinical applications).

The higher individual error rate obtained for class 24 (sex chromosome Y,
only present in normal male cells) was expected because of its lower a-priori
probability: 1/92 compared to 3/92 for class 23 (sex chromosome X, present in
both male and female cells) and 4/92 for classes 1 to 22.

The same partition of training-validation-test was used for all the experi-
ments in this work due to high computational requirements. However, the ap-
plication of a m-fold cross-validation method would be better to obtain statisti-
cally representative results. Experiments using the complete Cpa corpus should
be done to improve the results.

Acknowledgments. The authors wish to thank Dr. Gunter Ritter (Fakultät
für Mathematik und Informatik, Universität Passau, Passau, Germany) for
kindly providing the Cpa chromosome-image database used in this work.
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