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Abstract Automatic pattern classification is a very 
important field of artificial intelligence. For these kind of 
tasks different techniques have been used. In this work a 
combination of decision trees and self-organizing neural 
networks is presented as an alternative to attack the prob-
lem. For the construction of these trees growth processes 
are applied. In these processes, the evaluation of  classifi-
cation efficiency of one or several nodes in different con-
figurations is necessary in order to take decisions to opti-
mize the structure and performance of the self-organizing 
neural tree net. In order to perform this task a group of 
coefficients that quantify the efficiency is defined and a 
growth algorithm based on these coefficients is developed. 
In the tests, a comparison with other classification meth-
ods, using cross-validation methods with real and artifi-
cial databases, is carried out. 

Index Terms Decision Trees, Self-Organizing Neural 
Networks, Automatic Classification, Neural Tree Net-
works. 

 
I. INTRODUCTION 

ATTERN classification is an important tool used in ex-
perimental data analysis, automatic recognition, computer 

vision and other engineering and scientific disciplines. Ma-
chine-learning algorithms constitute a part of what is called 
automatic classification and their purpose is to extract rele-
vant information from a set of patterns to achieve their classi-
fication. These algorithms can be either supervised or unsu-
pervised. From another point of view they can be grouped in 
simple and hierarchical [1]. 

Decision Trees (DTs) and Artificial Neural Networks 
(ANNs) are two techniques widely used in the implementa-
tion of classifiers. DTs generate a set of data partitions based 
in a hierarchical node-structure in which comparisons upon a 
characteristics vector component’s are carried out. DTs can 
be either binary or n-ary, depending on the quantity of parti-
tions made at each node. The characteristics of the node func-
tion and the size of the tree state the complexity of the final 
decision boundary. One of the most commonly used func-
tions consists of a test using a threshold for each attribute, 
obtaining as a result the partition of the attributes space 
through hyper-planes parallel or orthogonal to the coordinate 

axes of the space of attributes. ID3 and CART are two of the 
most commonly used algorithms [2, 3, 4]. 

ANNs [5] are formed by a set of non-linear processing 
units highly interconnected, that process in parallel a set of 
data to extract information. In 1982 T. Kohonen [1, 6] intro-
duced a self-organizing algorithm that produced organized 
maps in order to solve practical classification and pattern 
recognition problems. These maps were named as self-
organizing maps (SOMs). 

An alternative to overcome some limitations of DTs, con-
sists of hybrid implementations of DTs and ANNs. In 1991 
Sankar and Mammone [7] presented what they called neural 
tree nets (NTNs). This kind of approach allows to take 
advantage of hierarchical classification properties and to 
create more complex decision boundaries with a smaller 
number of nodes. The problem with the partitions generated 
through hyper-planes parallel or orthogonal to the coordinate 
axes is that a great quantity of nodes or rules is required in 
order to approximate the boundaries when they are complex. 
NTNs are DTs that use a ANN at each node to implement the 
decision tasks. In this way the decision taken at each node is 
based on more complex rules, what permits a better boundary 
approximation. Several ANNs have been used at the nodes, 
for example: simple perceptrons (SP) [7], multi-layer percep-
trons (MLP) [8, 9] and SOMs [10]. The quantity of partitions 
produced at each node can be fixed [7, 8] or variable [9]. The 
NTN has the possibility of adopting a most adequate configu-
ration for each problem when the quantity of generated 
classes may vary for each node. 

In this work, a SOM classifiers based self-organizing neu-
ral tree network (SONTN) growth algorithm is presented. 
This combination allows unsupervised nets to separate the 
patterns according to their natural distribution and the trees 
hierarchic characteristics are thus exploited. 

The SONTN algorithm permits to classify in the initial 
levels the groups of patterns that are more separated from 
each other (more easily separable) and to classify patterns in 
the final layers in a more accurate way (patterns that are more 
difficult to separate). One of the main problems is the deci-
sion about the number of partitions to be made at each node 
in the case of n-ary trees. To solve this problem, criteria 
based on classification coefficients were applied. 

This paper was organized as follows. The Methods sec-
tion describes the classification coefficients and the training 
algorithm for the SONTN, following with the database used 
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for training. Finally results are presented for all the experi-
ments and are discussed in the next section.  
 
 

II. METHODS 

Classification Coefficients 

Given a general classifier, let { }PX xxx ,...,, 21= ,  

where D
i ℜ∈x , be the set of input patterns. These input 

patterns correspond to M classes denominated input classes 
{ }I

M
III CCCC ,...,, 21= .  

Input patterns can be grouped according to the classes to 
which they actually belong, but they can also be grouped 
according to the classes O

jC  in which they are separated by 
the classifier. These latter classes form the set of output 
classes { }O

N
OOO CCCC ,...,, 21= .  

An important element for the subsequent development is 
the input-output intersection matrix defined as: 

 
( ) NjMiCCN O

j
I
i

IO
ji ≤≤≤≤∩= 1  and  1    wheren,  (1) 

 
where n is the cardinality operator. This matrix contains in its 
i,j-th cell the number of patterns belonging to the input class 

I
iC  that were classified as belonging to the output class O

jC . 
To measure the degree in which a classifier groups pat-

terns belonging to one input class in one output class, the 
inter-class concentration coefficient for the input class I

iC in 

the N output classes O
jC  is defined as: 
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The inter-class concentration coefficient for a classifier is 

defined as the average of the cci  weighted by the number of 
patterns belonging to the corresponding input class: 
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To measure the capacity of a classifier to spread patterns 

from different input classes in different output classes, the 
intra-class dispersion coefficient for the output class O

jC in the 

M input classes I
iC is defined as: 
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In a similar way, the intra-class dispersion coefficient for 

a classifier is defined as the average of the cd j  weighted by 
the number of patterns in each output class: 
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Training algorithm for the SONTN 

The whole set of training patterns is initially presented to 
the root node. A subset of patterns hierarchically derived 
from the nodes of each level of the tree arrives to the nodes 
of the subsequent level. 

Considering a particular node, it has to be decided 
whether a classification task should be or not carried out. 
Thus, two types of nodes are distinguished: classifier nodes 
and terminal nodes. To decide if a node should be a classifier 
node or a terminal node, two characteristics of input patterns 
set are taken into account: the degree of classes homogeneity 
and the total number of input patterns. For the former reason 
the concentration coefficient for input patterns is defined as: 

( )
)n()1(

)n()n(max
1

XM

XCM
pc

i

M

i

−

−
= =  (6) 

 
To decide the type of node in relation to the mentioned 

characteristics, they are compared to two thresholds: the 
minimal input patterns concentration threshold (upc) and the 
minimal input patterns quantity threshold (unX). In this way, 
a node is said to be terminal either when its input patterns 
concentration exceeds the upc threshold or when its input 
patterns quantity is lower than the unX threshold. 

If a classifier node is found then it must be trained. The 
ANN that must be trained to implement the classification task 
at the node is a SOM. The input dimension of this ANN is 
determined by the dimension of the patterns and it is the 
same for the whole tree. The number of output classes and 
the terminal nodes define the tree final topology that should 
be optimized. 

To determine the appropriate quantity of output classes a 
node growth process is used, based on the cc and cd coeffi-
cients and two minimal classification capacity thresholds, ucc 
and ucd respectively. Initially, a configuration with two out-
put classes (N=2) is adopted, then the net is trained and its 
classification performance is evaluated. In the case in which 
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any threshold is not exceeded, N is increased in one and the 
training and test tasks are repeated. This process finishes 
either when both coefficients exceed their corresponding 
thresholds or when N reaches the maximum permitted maxN. 
In the latter case the best of all configurations between 2 and 
maxN is chosen and the training of that node is considered 
concluded. This algorithm of node growth is repeated for all 
the nodes of each tree level and it can be seen in Fig. 1. 

 
For each Level of the tree
 For each Node of the level
   Terminal Node = (pc>upc) OR (N(X)<unX)
   If not(Terminal Node) then
     N = minN
     While not(Trained Node) do
       Create Node
       Train Node
       Test Node

       If N = maxN then
         Trained Node = true
         Look for Best N
         If Best N <> maxN then
           Destroy Node
           N = Best N
           Create Node
           Train Node
         Else
           Trained Node = (cc>ucc) AND (cd>ucd)

       If not(Trained Node) then
         Destroy node
         N=N+1
 Update thresholds  

Fig. 1. Algorithm for the growth of the SONTN. 
 
The requirements concerning concentration and disper-

sion vary in relation to the depth level in the classification 
process. In the first stages of the classification a greater exi-
gency concerning the concentration is proposed,  while the 
separation based on finer details is accomplished progres-
sively in subsequent levels, where a better dispersion in the 
classification is required. Thus, unsupervision turns gradually 
into supervision and the conformity between output and input 
classes is progressively achieved. 

Once the tree has been trained, the following step is the 
labeling of terminal nodes. The assigned-label choice to each 
node is accomplished according to the following equation: 

{ }



 ∈=

=
)(maxarg

1 i
O
ji

N

ji xCxPJ  
 

(7) 

 
Terminal nodes are joined together, according to their la-

bels, in another artificial level of nodes that possess the labels 
of all the classes and in this way in the SONTN as a whole  
M = N is accomplished. 
 
Training databases 

The databases used to test the algorithm were taken 
mostly from [11]. In the mentioned work a comparison be-
tween several paradigms is presented. These results are used 
to make a comparison with that obtained in the present work. 

Artificial and real databases were used. CLOUDS was se-
lected among artificial databases.  From real databases, IRIS 

(because it is widely known [12]) and two phoneme recogni-
tion databases (PETERSON [13] and PHONEME) were used. 
 
 

III. RESULTS 

In this section the final results of the validation tests for a 
number of well known classification problems are presented. 
The validation method used is averaged hold out [11]. To 
establish a point of comparison with the results obtained with 
the SONTN, results obtained with other classification tech-
niques applied to the same problem and the Bayes maximum 
performance estimated with the k-nearest-neighbor [11] 
method are shown. Tables I through III show a comparison 
between recognition coefficients (cr) obtained with the 
SONTN; and cr from MLP, learning vector quantization 
(LVQ) and simple perceptron trees (SPT), extracted from the 
comparative work [11]. Table IV shows a comparison be-
tween results obtained with SONTN, MLP and LVQ using 
the PETERSON database. 

An MLP and an SONTN were also trained with the PE-
TERSON database to have a training speed reference. The 
final result shows that, for a similar performance, the 
SONTN is more than 8 times faster than the MLP. 
 

TABLE I 
COMPARATIVE RESULTS FOR THE IRIS DATABASE. 

cr % µ Min Max 
MLP 95.78 93.33 98.61 
LVQ 93.83 89.44 98.67 
SPT 93.33 86.61 98.61 
SONTN 97.78 96.67 98.33 
Bayes 96.66 94.72 97.27 

 
TABLE II 

COMPARATIVE RESULTS FOR THE CLOUDS DATABASE. 

cr % µ Min Max 
MLP 87.66 86.77 88.33 
LVQ 87.66 85.66 88.55 
SPT 85.66 85.00 86.33 
SONTN 83.93 82.20 87.20 
Bayes 88.11 87.44 88.77 

 
TABLE III 

COMPARATIVE RESULTS FOR THE PHONEME DATABASE. 

cr % µ Min Max 
MLP 83.63 82.36 84.69 
LVQ 83.00 82.20 83.76 
SPT 83.47 82.04 85.06 
SONTN 84.94 84.20 85.86 
Bayes 87.7 86.81 88.02 

 
TABLE IV 

COMPARATIVE RESULTS FOR THE PETERSON DATABASE. 

cr % µ Min Max 
MLP 83.08 79.55 84.85 
LVQ 84.36 74.81 87.57 
SONTN 86.36 84.85 87.88 
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IV. DISCUSSION 

If results obtained with the SONTN are compared to other 
classifiers, it is observed that the comparative performance is 
good for all databases. The SONTN achieved the best per-
formance with the IRIS, PHONEME and PETERSON databases 
when compared to all other architectures. For the CLOUDS 
database the efficiency of the SONTN was 3.72% inferior to 
that obtained with MLP, which was the classifier that ob-
tained the best result. It should be noticed that CLOUDS is the 
only artificial database. 

A very important consideration to take into account when 
making comparisons between different architectures is the 
fact that the SONTN adapts its topology to the particular 
problem, while other methods like LVQ or MLP need an 
initial configuration to be specified, generally based on user 
experience and adjusted through trial and error. In fact, the 
results for LVQ, MLP and SPT shown in Tables I through III 
correspond to the best configuration found after several trials. 

Since calculations required for the generation of an 
SONTN are simple, this architecture is considerably faster 
than other architectures with more complex algorithms. 
However, to solve the same problem, it may require more 
operations than the classic tree-generation methods like ID3. 
The main advantage of the SONTN compared to these meth-
ods is the ability to generate much more complex boundaries. 
 
 

V. CONCLUSIONS 

In this work a growth algorithm for self organizing neural 
tree networks is presented and its performance is compared to 
other classification methods using several databases. The 
main source of advantages of this method is based in the 
combination of different classification paradigms, what per-
mits to take advantage of the properties of each of them. The 
algorithm outlined here combines advantages of supervised 
and unsupervised learning. For the definition and growth of 
the tree topology information concerning patterns identity is 
used. On the other hand, for the classification task at each 
node a SOM-based characteristics extractor, which has no 
patterns identity information, is used. 

Another combination of classification paradigms found in 
this algorithm is that of simple an hierarchical classifiers. The 
general structure responds to hierarchical classification meth-
ods, while a typical simple classifier, such as a neural net, is 
used at each node. The SONTN is a very flexible classifier 
that does not need the a priori definition of the topology (as 
is required in the case of MLP). The speed of the method 
makes the SONTN to be an adequate configuration for the 
implementation of classification tasks. Hardware implemen-
tation simplicity is another interesting characteristic of this 
algorithm. 

At this time new classifiers are being developed to rein-
force nodes with poor classification performance. The time 
dependence of decision in a dynamic NTN is also being stud-
ied. 
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