
SELF-ORGANIZING NEURAL TREE NETWORKS

Diego H. Milone, José C. Sáez, Gonzalo Simón, Hugo L. Rufiner.
Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad

Nacional de Entre Ríos, Ruta 11 Km. 10, Oro Verde (CP: 3101), Entre Ríos, Argentina.
E-mail: cyberlab@fi.uner.edu.ar

Abstract Automatic pattern classification is a very
important field of artificial intelligence. For these kind of
tasks different techniques have been used. In this work a
combination of decision trees and self-organizing neural
networks is presented as an alternative to attack the prob-
lem. For the construction of these trees growth processes
are applied. In these processes, the evaluation of classifi-
cation efficiency of one or several nodes in different con-
figurations is necessary in order to take decisions to opti-
mize the structure and performance of the self-organizing
neural tree net. In order to perform this task a group of
coefficients that quantify the efficiency is defined and a
growth algorithm based on these coefficients is developed.
In the tests, a comparison with other classification meth-
ods, using cross-validation methods with real and artifi-
cial databases, is carried out.

Index Terms Decision Trees, Self-Organizing Neural
Networks, Automatic Classification, Neural Tree Net-
works.

I. INTRODUCTION

ATTERN classification is an important tool used in ex-
perimental data analysis, automatic recognition, computer

vision and other engineering and scientific disciplines. Ma-
chine-learning algorithms constitute a part of what is called
automatic classification and their purpose is to extract rele-
vant information from a set of patterns to achieve their classi-
fication. These algorithms can be either supervised or unsu-
pervised. From another point of view they can be grouped in
simple and hierarchical [1].

Decision Trees (DTs) and Artificial Neural Networks
(ANNs) are two techniques widely used in the implementa-
tion of classifiers. DTs generate a set of data partitions based
in a hierarchical node-structure in which comparisons upon a
characteristics vector component’s are carried out. DTs can
be either binary or n-ary, depending on the quantity of parti-
tions made at each node. The characteristics of the node func-
tion and the size of the tree state the complexity of the final
decision boundary. One of the most commonly used func-
tions consists of a test using a threshold for each attribute,
obtaining as a result the partition of the attributes space
through hyper-planes parallel or orthogonal to the coordinate

axes of the space of attributes. ID3 and CART are two of the
most commonly used algorithms [2, 3, 4].

ANNs [5] are formed by a set of non-linear processing
units highly interconnected, that process in parallel a set of
data to extract information. In 1982 T. Kohonen [1, 6] intro-
duced a self-organizing algorithm that produced organized
maps in order to solve practical classification and pattern
recognition problems. These maps were named as self-
organizing maps (SOMs).

An alternative to overcome some limitations of DTs, con-
sists of hybrid implementations of DTs and ANNs. In 1991
Sankar and Mammone [7] presented what they called neural
tree nets (NTNs). This kind of approach allows to take
advantage of hierarchical classification properties and to
create more complex decision boundaries with a smaller
number of nodes. The problem with the partitions generated
through hyper-planes parallel or orthogonal to the coordinate
axes is that a great quantity of nodes or rules is required in
order to approximate the boundaries when they are complex.
NTNs are DTs that use a ANN at each node to implement the
decision tasks. In this way the decision taken at each node is
based on more complex rules, what permits a better boundary
approximation. Several ANNs have been used at the nodes,
for example: simple perceptrons (SP) [7], multi-layer percep-
trons (MLP) [8, 9] and SOMs [10]. The quantity of partitions
produced at each node can be fixed [7, 8] or variable [9]. The
NTN has the possibility of adopting a most adequate configu-
ration for each problem when the quantity of generated
classes may vary for each node.

In this work, a SOM classifiers based self-organizing neu-
ral tree network (SONTN) growth algorithm is presented.
This combination allows unsupervised nets to separate the
patterns according to their natural distribution and the trees
hierarchic characteristics are thus exploited.

The SONTN algorithm permits to classify in the initial
levels the groups of patterns that are more separated from
each other (more easily separable) and to classify patterns in
the final layers in a more accurate way (patterns that are more
difficult to separate). One of the main problems is the deci-
sion about the number of partitions to be made at each node
in the case of n-ary trees. To solve this problem, criteria
based on classification coefficients were applied.

This paper was organized as follows. The Methods sec-
tion describes the classification coefficients and the training
algorithm for the SONTN, following with the database used

P

si
nc

(i
)

L
ab

or
at

or
y

fo
r

Si
gn

al
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
D

. H
. M

ilo
ne

, J
. C

. S
áe

z,
 G

. S
im

ón
 &

 H
. L

. R
uf

in
er

; "
Se

lf
-O

rg
an

iz
in

g
N

eu
ra

l T
re

e
N

et
w

or
ks

"
Pr

oc
ee

di
ng

s
of

 th
e

20
th

 A
nn

ua
l I

nt
er

na
tio

na
l C

on
fe

re
nc

e
of

 th
e

IE
E

E
 E

ng
in

ee
ri

ng
 in

 M
ed

ic
in

e
an

d
B

io
lo

gy
 S

oc
ie

ty
. V

ol
. 3

, p
p.

 1
34

8-
-1

35
1,

 O
ct

, 1
99

8.

for training. Finally results are presented for all the experi-
ments and are discussed in the next section.

II. METHODS

Classification Coefficients

Given a general classifier, let { }PX xxx ,...,, 21= ,

where D
i ℜ∈x , be the set of input patterns. These input

patterns correspond to M classes denominated input classes
{ }I

M
III CCCC ,...,, 21= .

Input patterns can be grouped according to the classes to
which they actually belong, but they can also be grouped
according to the classes O

jC in which they are separated by
the classifier. These latter classes form the set of output
classes { }O

N
OOO CCCC ,...,, 21= .

An important element for the subsequent development is
the input-output intersection matrix defined as:

() NjMiCCN O

j
I
i

IO
ji ≤≤≤≤∩= 1 and 1 wheren, (1)

where n is the cardinality operator. This matrix contains in its
i,j-th cell the number of patterns belonging to the input class

I
iC that were classified as belonging to the output class O

jC .
To measure the degree in which a classifier groups pat-

terns belonging to one input class in one output class, the
inter-class concentration coefficient for the input class I

iC in

the N output classes O
jC is defined as:

()

∑

∑

=

=
=

−

−

= N

j

IO
ji

N

j

IO
ji

IO
ji

N

j

i

NN

NNN
cc

1
,

1
,,1

)1(

max
 (2)

The inter-class concentration coefficient for a classifier is

defined as the average of the cci weighted by the number of
patterns belonging to the corresponding input class:

()

∑

∑∑
==

=

==

==
=

−

−

= NjMi

ji

IO
ji

NjMi

ji

IO
ji

M

i

IO
ji

N

j

NN

NNN
cc ,

1,
,

,

1,
,

1
,1

)1(

max
 (3)

To measure the capacity of a classifier to spread patterns

from different input classes in different output classes, the
intra-class dispersion coefficient for the output class O

jC in the

M input classes I
iC is defined as:

()
()

()

=

≠
−

−

= ∑

∑

=

==

0n if 0

0n if
)1(

max

1
,

1
,,1

O
j

O
jM

i

IO
ji

M

i

IO
ji

IO
ji

M

i

j

C

C
NM

NNM

cd

(4)

In a similar way, the intra-class dispersion coefficient for

a classifier is defined as the average of the cd j weighted by
the number of patterns in each output class:

()

∑

∑∑
==

=

==

==
=

−

−

= MiNj

ij

IO
ji

MiNj

ij

IO
ji

N

j

IO
ji

M

i

NM

NNM
cd ,

1,
,

 ,

1,
,

1
,1

)1(

max
 (5)

Training algorithm for the SONTN

The whole set of training patterns is initially presented to
the root node. A subset of patterns hierarchically derived
from the nodes of each level of the tree arrives to the nodes
of the subsequent level.

Considering a particular node, it has to be decided
whether a classification task should be or not carried out.
Thus, two types of nodes are distinguished: classifier nodes
and terminal nodes. To decide if a node should be a classifier
node or a terminal node, two characteristics of input patterns
set are taken into account: the degree of classes homogeneity
and the total number of input patterns. For the former reason
the concentration coefficient for input patterns is defined as:

()
)n()1(

)n()n(max
1

XM

XCM
pc

i

M

i

−

−
= = (6)

To decide the type of node in relation to the mentioned

characteristics, they are compared to two thresholds: the
minimal input patterns concentration threshold (upc) and the
minimal input patterns quantity threshold (unX). In this way,
a node is said to be terminal either when its input patterns
concentration exceeds the upc threshold or when its input
patterns quantity is lower than the unX threshold.

If a classifier node is found then it must be trained. The
ANN that must be trained to implement the classification task
at the node is a SOM. The input dimension of this ANN is
determined by the dimension of the patterns and it is the
same for the whole tree. The number of output classes and
the terminal nodes define the tree final topology that should
be optimized.

To determine the appropriate quantity of output classes a
node growth process is used, based on the cc and cd coeffi-
cients and two minimal classification capacity thresholds, ucc
and ucd respectively. Initially, a configuration with two out-
put classes (N=2) is adopted, then the net is trained and its
classification performance is evaluated. In the case in which

si
nc

(i
)

L
ab

or
at

or
y

fo
r

Si
gn

al
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
D

. H
. M

ilo
ne

, J
. C

. S
áe

z,
 G

. S
im

ón
 &

 H
. L

. R
uf

in
er

; "
Se

lf
-O

rg
an

iz
in

g
N

eu
ra

l T
re

e
N

et
w

or
ks

"
Pr

oc
ee

di
ng

s
of

 th
e

20
th

 A
nn

ua
l I

nt
er

na
tio

na
l C

on
fe

re
nc

e
of

 th
e

IE
E

E
 E

ng
in

ee
ri

ng
 in

 M
ed

ic
in

e
an

d
B

io
lo

gy
 S

oc
ie

ty
. V

ol
. 3

, p
p.

 1
34

8-
-1

35
1,

 O
ct

, 1
99

8.

any threshold is not exceeded, N is increased in one and the
training and test tasks are repeated. This process finishes
either when both coefficients exceed their corresponding
thresholds or when N reaches the maximum permitted maxN.
In the latter case the best of all configurations between 2 and
maxN is chosen and the training of that node is considered
concluded. This algorithm of node growth is repeated for all
the nodes of each tree level and it can be seen in Fig. 1.

For each Level of the tree
 For each Node of the level
 Terminal Node = (pc>upc) OR (N(X)<unX)
 If not(Terminal Node) then
 N = minN
 While not(Trained Node) do
 Create Node
 Train Node
 Test Node

 If N = maxN then
 Trained Node = true
 Look for Best N
 If Best N <> maxN then
 Destroy Node
 N = Best N
 Create Node
 Train Node
 Else
 Trained Node = (cc>ucc) AND (cd>ucd)

 If not(Trained Node) then
 Destroy node
 N=N+1
 Update thresholds

Fig. 1. Algorithm for the growth of the SONTN.

The requirements concerning concentration and disper-

sion vary in relation to the depth level in the classification
process. In the first stages of the classification a greater exi-
gency concerning the concentration is proposed, while the
separation based on finer details is accomplished progres-
sively in subsequent levels, where a better dispersion in the
classification is required. Thus, unsupervision turns gradually
into supervision and the conformity between output and input
classes is progressively achieved.

Once the tree has been trained, the following step is the
labeling of terminal nodes. The assigned-label choice to each
node is accomplished according to the following equation:

{ }

 ∈=

=
)(maxarg

1 i
O
ji

N

ji xCxPJ

(7)

Terminal nodes are joined together, according to their la-

bels, in another artificial level of nodes that possess the labels
of all the classes and in this way in the SONTN as a whole
M = N is accomplished.

Training databases

The databases used to test the algorithm were taken
mostly from [11]. In the mentioned work a comparison be-
tween several paradigms is presented. These results are used
to make a comparison with that obtained in the present work.

Artificial and real databases were used. CLOUDS was se-
lected among artificial databases. From real databases, IRIS

(because it is widely known [12]) and two phoneme recogni-
tion databases (PETERSON [13] and PHONEME) were used.

III. RESULTS

In this section the final results of the validation tests for a
number of well known classification problems are presented.
The validation method used is averaged hold out [11]. To
establish a point of comparison with the results obtained with
the SONTN, results obtained with other classification tech-
niques applied to the same problem and the Bayes maximum
performance estimated with the k-nearest-neighbor [11]
method are shown. Tables I through III show a comparison
between recognition coefficients (cr) obtained with the
SONTN; and cr from MLP, learning vector quantization
(LVQ) and simple perceptron trees (SPT), extracted from the
comparative work [11]. Table IV shows a comparison be-
tween results obtained with SONTN, MLP and LVQ using
the PETERSON database.

An MLP and an SONTN were also trained with the PE-
TERSON database to have a training speed reference. The
final result shows that, for a similar performance, the
SONTN is more than 8 times faster than the MLP.

TABLE I
COMPARATIVE RESULTS FOR THE IRIS DATABASE.

cr % µ Min Max
MLP 95.78 93.33 98.61
LVQ 93.83 89.44 98.67
SPT 93.33 86.61 98.61
SONTN 97.78 96.67 98.33
Bayes 96.66 94.72 97.27

TABLE II

COMPARATIVE RESULTS FOR THE CLOUDS DATABASE.

cr % µ Min Max
MLP 87.66 86.77 88.33
LVQ 87.66 85.66 88.55
SPT 85.66 85.00 86.33
SONTN 83.93 82.20 87.20
Bayes 88.11 87.44 88.77

TABLE III

COMPARATIVE RESULTS FOR THE PHONEME DATABASE.

cr % µ Min Max
MLP 83.63 82.36 84.69
LVQ 83.00 82.20 83.76
SPT 83.47 82.04 85.06
SONTN 84.94 84.20 85.86
Bayes 87.7 86.81 88.02

TABLE IV

COMPARATIVE RESULTS FOR THE PETERSON DATABASE.

cr % µ Min Max
MLP 83.08 79.55 84.85
LVQ 84.36 74.81 87.57
SONTN 86.36 84.85 87.88

 si
nc

(i
)

L
ab

or
at

or
y

fo
r

Si
gn

al
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
D

. H
. M

ilo
ne

, J
. C

. S
áe

z,
 G

. S
im

ón
 &

 H
. L

. R
uf

in
er

; "
Se

lf
-O

rg
an

iz
in

g
N

eu
ra

l T
re

e
N

et
w

or
ks

"
Pr

oc
ee

di
ng

s
of

 th
e

20
th

 A
nn

ua
l I

nt
er

na
tio

na
l C

on
fe

re
nc

e
of

 th
e

IE
E

E
 E

ng
in

ee
ri

ng
 in

 M
ed

ic
in

e
an

d
B

io
lo

gy
 S

oc
ie

ty
. V

ol
. 3

, p
p.

 1
34

8-
-1

35
1,

 O
ct

, 1
99

8.

IV. DISCUSSION

If results obtained with the SONTN are compared to other
classifiers, it is observed that the comparative performance is
good for all databases. The SONTN achieved the best per-
formance with the IRIS, PHONEME and PETERSON databases
when compared to all other architectures. For the CLOUDS
database the efficiency of the SONTN was 3.72% inferior to
that obtained with MLP, which was the classifier that ob-
tained the best result. It should be noticed that CLOUDS is the
only artificial database.

A very important consideration to take into account when
making comparisons between different architectures is the
fact that the SONTN adapts its topology to the particular
problem, while other methods like LVQ or MLP need an
initial configuration to be specified, generally based on user
experience and adjusted through trial and error. In fact, the
results for LVQ, MLP and SPT shown in Tables I through III
correspond to the best configuration found after several trials.

Since calculations required for the generation of an
SONTN are simple, this architecture is considerably faster
than other architectures with more complex algorithms.
However, to solve the same problem, it may require more
operations than the classic tree-generation methods like ID3.
The main advantage of the SONTN compared to these meth-
ods is the ability to generate much more complex boundaries.

V. CONCLUSIONS

In this work a growth algorithm for self organizing neural
tree networks is presented and its performance is compared to
other classification methods using several databases. The
main source of advantages of this method is based in the
combination of different classification paradigms, what per-
mits to take advantage of the properties of each of them. The
algorithm outlined here combines advantages of supervised
and unsupervised learning. For the definition and growth of
the tree topology information concerning patterns identity is
used. On the other hand, for the classification task at each
node a SOM-based characteristics extractor, which has no
patterns identity information, is used.

Another combination of classification paradigms found in
this algorithm is that of simple an hierarchical classifiers. The
general structure responds to hierarchical classification meth-
ods, while a typical simple classifier, such as a neural net, is
used at each node. The SONTN is a very flexible classifier
that does not need the a priori definition of the topology (as
is required in the case of MLP). The speed of the method
makes the SONTN to be an adequate configuration for the
implementation of classification tasks. Hardware implemen-
tation simplicity is another interesting characteristic of this
algorithm.

At this time new classifiers are being developed to rein-
force nodes with poor classification performance. The time
dependence of decision in a dynamic NTN is also being stud-
ied.

ACKNOWLEDGMENT

The authors would like to thank D. Zapata for many help-
ful discussions. The authors are also grateful to A. Sigura and
D. Tochetto for their programming collaborations.

This work is supported by Universidad Nacional de Entre
Ríos.

REFERENCES

[1] T. Kohonen, “The Self-Organizing Map”, New York:
Springer-Verlag, 1995.

[2] L. Breiman, J.H.Friedman, R. A. Olshen, C. J. Stone,
“Classification and Regression Trees”, Wadsworth. Int.
1984.

[3] Sestito, Dillon, “Automated Knowledge Acquisition”,
Prentice Hall 1994.

[4] J.C. Goddard, F.M. Martínez, A.E. Martínez, J.M.
Cornejo, H.L. Rufiner, R.C. Acevedo, “Aprendizaje Ma-
quinal en Medicina: Diabetes, un caso de Estudio”; Re-
vista Mexicana de Ingeniería Biomédica vol.16, no.2, Oc-
tubre de 1995.

[5] R. P. Lippmann, “An introduction to computing with
neural nets”, IEEE ASSP Mag., vol.4, no.2, 1987, pp 4-
22.

[6] T. Kohonen, “The Self-Organizing Map”, Proc.IEEE,
vol.78, no.9, Sept.1990, pp 1464-1480

[7] A. Sankar, R. J. Mammone, “Neural Tree Networks”, en
“Neural Networks: Theory and Applications”, R. Mam-
mone and Y. Zeevi Eds., New York: Academic Press,
1991, pp 281-302.

[8] I. K. Sethi, “Decision tree performance enhancement
using an artificial neural network implementation”, Arti-
ficial Neural Networks and Statitical Patter Recognition.
Old and New Conecctions, Ed. I.K.Sethi, A.K.Jain, El-
sevier Science Publishers B.V., 1991.

[9] M. G. Rahim, “A self-learning neural tree network for
phone recognition”, Artificial Neural Networks for
Speech and Vision, Ed.R. J. Mammone, Chapman & Hall,
1993.

[10] C. Ke, Y. Xiang, CH. Huisheng, Y. Liping, “Modular-
Tree: A Self-Architecture Neural Network Architecture”,
Report, Vol. 32, Nº 1 pp 110-119.

[11] Guerin-Dugue, A. and others, Deliverable R3-B4-P -
Task B4: Benchmarks, Technical report, Elena-Nerves II
“Enhanced Learning for Evolutive Neural Architecture”,
ESPRIT-Basic Research Project Number 6891, June
1995.

[12] UCI Repository of Machine Learning Databases and
Domain Theories (ics.uci.edu: pub/machine-learning -
databases).

[13] G. E. Peterson, H. L. Barney, “Control Methods used in
a study of the vowels”. J. Acoustic. Soc. Am. 24, 175-
184, 1952.

si
nc

(i
)

L
ab

or
at

or
y

fo
r

Si
gn

al
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
D

. H
. M

ilo
ne

, J
. C

. S
áe

z,
 G

. S
im

ón
 &

 H
. L

. R
uf

in
er

; "
Se

lf
-O

rg
an

iz
in

g
N

eu
ra

l T
re

e
N

et
w

or
ks

"
Pr

oc
ee

di
ng

s
of

 th
e

20
th

 A
nn

ua
l I

nt
er

na
tio

na
l C

on
fe

re
nc

e
of

 th
e

IE
E

E
 E

ng
in

ee
ri

ng
 in

 M
ed

ic
in

e
an

d
B

io
lo

gy
 S

oc
ie

ty
. V

ol
. 3

, p
p.

 1
34

8-
-1

35
1,

 O
ct

, 1
99

8.

