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Abstract

Farmers must continuously improve their livestock production systems to
remain competitive in the growing dairy market. Precision livestock farm-
ing technologies provide individualized monitoring of animals on commercial
farms, optimizing livestock production. Continuous acoustic monitoring is a
widely accepted sensing technique used to estimate the daily rumination and
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grazing time budget of free-ranging cattle. However, typical environmental
and natural noises on pastures noticeably affect the performance limiting the
practical application of current acoustic methods. In this study, we present
the operating principle and generalization capability of an acoustic method
called Noise-Robust Foraging Activity Recognizer (NRFAR). The proposed
method determines foraging activity bouts by analyzing fixed-length seg-
ments of identified jaw movement events produced during grazing and rumi-
nation. The additive noise robustness of the NRFAR was evaluated for sev-
eral signal-to-noise ratios using stationary Gaussian white noise and four dif-
ferent nonstationary natural noise sources. In noiseless conditions, NRFAR
reached an average balanced accuracy of 86.4%, outperforming two previous
acoustic methods by more than 7.5%. Furthermore, NRFAR performed bet-
ter than previous acoustic methods in 77 of 80 evaluated noisy scenarios (53
cases with p<0.05). NRFAR has been shown to be effective in harsh free-
ranging environments and could be used as a reliable solution to improve
pasture management and monitor the health and welfare of dairy cows. The
instrumentation and computational algorithms presented in this publication
are protected by a pending patent application: AR P20220100910.
Web demo available at: https://sinc.unl.edu.ar/web-demo/nrfar

Keywords: Acoustic monitoring, foraging behavior, machine learning, noise
robustness, pattern recognition, precision livestock farming.

1. Introduction1

The new and diverse precision livestock farming tools and applications2

significantly reduce farm labor (Lovarelli et al., 2020; Tzanidakis et al., 2023).3

Precision livestock farming solutions allow individualized monitoring of an-4

imals to optimize herd management in most production systems (Michie5

et al., 2020). Monitoring the feeding behavior of livestock can provide valu-6

able insights into animal welfare, including their nutrition, health, and per-7

formance (Banhazi et al., 2012; Garcia et al., 2020). Changes in grazing8

patterns, periodicity, and duration can be used to inform the management9

of pasture allocation (Connor, 2015), while changes in ruminant diets signal10

anxiety (Bristow and Holmes, 2007) or stress (Abeni and Galli, 2017; Schir-11

mann et al., 2009), as well as an early indicator of diseases (Osei-Amponsah12

et al., 2020; Paudyal et al., 2018), rumen health (Beauchemin, 2018, 1991),13

and the onset of parturition (Kovács et al., 2017; Pahl et al., 2014) and14
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estrus (Dolecheck et al., 2015; Pahl et al., 2015).15

Free-ranging cattle spend 40-80% of their daily time budget on grazing16

and rumination activities (Kilgour, 2012; Phillips, 2002). A grazing bout17

involves the process of searching, apprehending, chewing, and swallowing18

herbage and is characterized by a sequence of ingestive jaw movement (JM)19

events associated with chews, bites, and composite chew-bites, without a20

fixed or predefined order. A bite event involves the apprehending and severing21

of the herbage, a chew event involves crushing, grinding, and processing22

previously gathered herbage, and a chew-bite event occurs when herbage is23

apprehended, severed, and comminuted in the same JM (Ungar and Rutter,24

2006). Rumination is defined as the period of time during which an animal25

repeatedly regurgitates previously ingested food (cud) from its rumen, then26

chews the cud for 40-60 s, and re-swallows it. Rumination bouts begin with27

the first regurgitation and end with the last swallow (Beauchemin, 2018; Galli28

et al., 2020). Grazing and rumination involve JM-events taken at rates of29

0.75-1.20 JM per second. Changes in the type and sequence of distinctive JM-30

events can be aggregated over time to determine the sequence and duration31

of foraging activities (Andriamandroso et al., 2016).32

Feeding activity monitoring of cattle has primarily been approached through33

the use of noninvasive wearable sensors, including nose-band pressure, iner-34

tial measurement units, and microphone systems (Benos et al., 2021; Stygar35

et al., 2021). Each sensing technique has its advantages and disadvantages36

depending on the environment and application. Current nose-band pressure37

sensors are combined with accelerometers to log data from JMs. Raw data are38

analyzed by software to determine foraging behaviors and provide specific in-39

formation associated with them (Steinmetz et al., 2020; Werner et al., 2018).40

Human intervention is required to process the data recorded on a computer,41

making it not scalable for use on commercial farms (Riaboff et al., 2022). Sen-42

sors based on inertial measurement units are widely used to recognize multi-43

ple behaviors such as grazing, rumination, posture, and locomotion (Aquilani44

et al., 2022; Chapa et al., 2020). Although accelerometer-based sensors are45

typically used in indoor environments (Balasso et al., 2021; Lovarelli et al.,46

2022; Wu et al., 2022), their use in outdoor environments has increased in the47

last years (Arablouei et al., 2023; Cabezas et al., 2022; Wang et al., 2023).48

One major drawback of inertial measurement units is their limited ability to49

estimate herbage intake in grazing (Wilkinson et al., 2020). Furthermore,50

the reliability of these sensors is highly dependent on their precise location,51

orientation, and secure clamping, making reproducing results difficult (Kam-52
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minga et al., 2018; Li et al., 2021a). For this reason, acoustic sensors are53

preferred over former sensors for monitoring the foraging and rumination be-54

haviors of cattle outdoors. Head-placed microphones allow to collect detailed55

information on ingestive behaviors (Laca et al., 1992). Acoustic sensors are56

used to automatically recognize JM-events (Ferrero et al., 2023; Li et al.,57

2021b), estimate rumination and grazing bouts (Vanrell et al., 2018), distin-58

guish between plants and feedstuffs eaten (Galli et al., 2020; Milone et al.,59

2012), and estimate differences in dry matter intake (Galli et al., 2018). De-60

spite progress, the evaluation of the generalization capabilities of motion-61

and acoustic-based monitoring solutions are limited due to the scarcity of62

public and standardized datasets (Martinez-Rau et al., 2023b; Vanrell et al.,63

2020). As a result, there is room for improving the confidence in the acoustic64

monitoring of free-grazing cattle.65

In recent years, acoustic methods have been developed for recognizing66

foraging activities. Vanrell et al. (2018) developed a method based on the67

analysis of the autocorrelation of the acoustic signal for the recognition of68

foraging activities. This method operates offline because it requires storing69

several hours of acoustic recording to discover the regularity patterns in the70

signal. Offline operation introduces considerable delays in making inferences71

about foraging activities, which could be critical for the early detection of72

estrus (Allrich, 1993; Reith and Hoy, 2012). The Bottom-Up Foraging Activ-73

ity Recognizer (BUFAR) developed by Chelotti et al. (2020) operates online,74

meaning that the incoming digital acoustic signal is processed as it is gener-75

ated. BUFAR analyzes 5-min segments of identified JM-events to determine76

grazing and rumination bouts, outperforming the method of Vanrell et al.77

(2018) with significantly lower computational costs. More recently, Chelotti78

et al. (2023) proposed an online Jaw Movement segment-based Foraging Ac-79

tivity Recognizer (JMFAR) that outperforms BUFAR. This is achieved by80

analyzing information from JMs that have been detected but not yet clas-81

sified, enabling the recognition of grazing and rumination bouts. However,82

BUFAR and JMFAR exhibited an average confusion of approximately 10%83

between grazing and rumination, indicating a need for improvement in the84

recognition of these activities. Another significant drawback of these meth-85

ods is their limited capability to recognize foraging activities in diverse op-86

erational conditions or in the presence of noise (Chelotti et al., 2023). To be87

useful in practical applications, acoustic foraging recognizers must work prop-88

erly even under adverse noise and mismatch conditions, where variations in89

recording settings and environmental conditions are common. Additionally,90
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low computation demands make them feasible for embedding in an acoustic91

monitoring sensor (Rehman et al., 2014). Motivated by this need, this paper92

describes in detail the operation, noise robustness and generalization capa-93

bility of an alternative acoustic method for the recognition of grazing and94

rumination activities in free-range cattle. The proposed method involves a95

noise-robust methodology for detecting and classifying JM-events used to96

recognize foraging activities. In a recent proof-of-concept study, the imple-97

mentation of the proposed method was assessed for real-time operation on a98

low-power microcontroller (Martinez-Rau et al., 2023a). The main contribu-99

tions of this work are: (i) present an online acoustic method for estimating100

grazing and rumination bouts in cattle, characterized by a low computa-101

tional cost. It classifies four classes of JM-events, which are analyzed in102

fixed-length segments to delimit activity bouts. (ii) The proposed method103

recognizes foraging activities in free-range environments under different and104

adverse acoustic conditions, using a robust JM event recognizer that is ca-105

pable of identifying JM events under quiet and noisy operating conditions.106

(iii) Artificial noise sounds of different natures are used to simulate multiple107

adverse acoustic scenarios in controlled experiments (Skowronski and Harris,108

2004).109

The rest of this paper is organized as follows: Section 2 briefly describes110

a system for recognizing foraging activities and analyzes the operation and111

limitations of BUFAR and JMFAR. Section 3 introduces the proposed algo-112

rithm. This section also outlines the acquisition of the datasets, the exper-113

imental setup, and the performance metric used to validate the algorithms.114

The comparative results for the proposed and former algorithms are shown in115

Section 4. Section 5 explains and discusses the results of this work. Finally,116

the main conclusions follow in Section 6.117

2. Current acoustic method analysis118

In this section, a brief description and limitations of two current acous-119

tic foraging activity recognizers, called BUFAR and JMFAR, are presented.120

Both methods follow the general structure of a typical pattern recognition121

system (Bishop, 2006; Martínez Rau et al., 2020) and can be represented by122

the common block diagram shown in Figure 1. A foraging activity recognizer123

can be analyzed at three temporal levels: bottom, middle, and top. These124

levels operate on the millisecond, second, and minute scales, respectively. A125

JM-event recognizer operates at both the bottom and middle levels to detect126
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and classify different types of JM-events. The input digitized sound is con-127

ditioned, processed, and down-sampled using signal processing techniques to128

reduce the computational cost of the middle and top levels. The processed129

signals are used at the middle level for a JM detector based on adaptive130

thresholds. When a JM is detected, a set of distinctive JM features are com-131

puted over a time window centered on the JM. Finally, a machine learning132

model uses the extracted set of JM features to classify the JM-event with133

a corresponding timestamp. The middle level provides JM information to134

the top level. The top level buffers the JM information in nonoverlapping135

segments of 5-min duration. For each segment, a set of activity features136

is computed to serve as input to a classifier that determines the activity137

performed by the animal. Segments of 5-min duration store sufficient JM in-138

formation data in the buffer to generate a confidence set of activity features,139

without significantly affecting the correct delimitation of foraging activity.140

Five-min duration agrees with the optimal segment duration value found in141

two previous studies (Chelotti et al., 2020; Rook and Huckle, 1997).142

As previously mentioned, the type and sequence of distinctive JM-events143

can be analyzed to recognize foraging activities. Inspired by this, the BUFAR144

method uses a real-time JM-event recognizer developed by Chelotti et al.145

(2018) to detect and classify JM-events into three different classes: chews,146

bites, and chew-bites. The JM information comprises the timestamps and147

classes of the JM-events (see the top level of Figure 1). The JM information148

is analyzed in nonoverlapping 5-min segments. For each segment, a set of149

four statistical activity features is extracted, including (i) the rate of JM-150

events, and the proportion of the JM-events corresponding to the classes151

(ii) chew, (iii) bite, and (iv) chew-bite. These features are then used for152

a multilayer perceptron (MLP) classifier (Bishop, 2006) to determine the153

activities performed. However, inherent detection and classification errors of154

JM-events may cause misclassification of foraging activities. A more detailed155

description of BUFAR is provided by Chelotti et al. (2020).156

The JMFAR method partially overcomes the limitation of BUFAR be-157

cause it does not compute information about the JM-events classes. Instead,158

JMFAR analyses nonoverlapping 5-min segments from the detected JM. The159

same JM-event recognizer used in BUFAR is also used in JMFAR to compute160

the JM information. JM information consists of the signal used to detect the161

JM, the timestamps of the detected JM, and the extracted set of JM fea-162

tures. JM information, analyzed in segments, is employed to compute a set163

of activity features. The set of twenty-one statistical, temporal, and spectral164
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features serves as input to an MLP classifier that determines the correspond-165

ing activity performed. A more detailed description of JMFAR is provided166

by Chelotti et al. (2023).167

3. Material and Methods168

3.1. Proposed foraging activity recognizer169

The high sensitivity to noise of the JM-event recognizer used in BUFAR170

and JMFAR could lead to the misclassification of foraging activities. When171

the input audio signal is contaminated by noise, the accurate detection of172

JM, the computation of JM features, and the classification of JM-events are173

significantly impacted (Martinez-Rau et al., 2022). As a result, the noise174

directly impacts the JM information and consequently affects the compu-175

tation of the set of activity features, leading to possible misclassification of176

activity. The activity recognition in quiet and noise conditions can be im-177

proved by using a better JM-event recognizer. This work proposes an online178

method called Noise-Robust Foraging Activity Recognizer (NRFAR). NRFAR179

introduces the use of the Chew-Bite Energy Based Algorithm (CBEBA) for180

the recognition of JM-events in diverse acoustic environments (Martinez-Rau181

et al., 2022). Similar to BUFAR, NRFAR analyses nonoverlapping segments182

of 5-min duration of recognized JM-events classes for the subsequent classi-183

fication of foraging activities.184

The CBEBA is a real-time pattern recognition method, able to distinguish185

individualized JM-events in terms of four different classes: rumination-chews,186

grazing-chews, bites, and chew-bites. It outperforms previously published187

methods in both the detection and classification of JM-events in both noise-188

less and noisy environments. Briefly, the implementation of CBEBA can be189

divided into four successive stages (Figure 1):190

• Signal processor: the digitized input audio signal undergoes a second-191

order Butterworth band-pass filter to isolate the JM frequency range.192

The filtered signal is then squared to obtain the instantaneous power193

signal. To reduce computation, the former signal is used to compute194

two additional down-sampled signals: a decimated envelope signal and195

an energy signal calculated by frames.196

• JM detector: the presence of a peak in the envelope signal above a197

time-varying threshold indicates the detection of a candidate JM-event.198
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When this indication occurs, the energy signal is compared with an-199

other adaptive threshold to delimit the boundaries of the candidate JM-200

event. The time-varying threshold considers short-timescale anatomical201

and behavioral characteristics of the animal, as well as, long-timescale202

variable feeding patterns. The adaptive threshold changes according to203

the background noise floor level on the acoustic signals.204

• JM feature extractor: both delimited signals are used to extract a set205

of five robust JM features. These heuristic features are the duration,206

energy, symmetry of the envelope, zero-cross derivative of the envelope,207

and accumulated absolute value of the derivative of the envelope. To208

avoid the detection of a false-positive JM-event, it is classified only if209

the duration and energy are in a predefined range.210

• JM classifier: A multilayer perceptron (MLP) classifier determines the211

class of the JM-event. The structure of the MLP classifier is 5-6-4212

neurons in the input, hidden, and output layers. Furthermore, the213

adaptive thresholds are tuned based on the signal-to-noise ratio (SNR)214

estimated over the envelope and energy signals.215

A more detailed description of CBEBA is provided by Martinez-Rau et al.216

(2022).217

The top level of the proposed NRFAR processes the JM information pro-218

vided by the JM-event recognizer CBEBA in nonoverlapping 5-min segments219

to establish the corresponding foraging activity. The JM information is the220

recognized JM-events, along with their respective timestamps. Each seg-221

ment of JM information is used to generate a set of five activity features:222

(i) the rate of JM-events, and the proportion of the JM-events correspond-223

ing to the classes (ii) rumination-chew, (iii) grazing-chew, (iv) bite, and224

(v) chew-bite). The set of extracted activity features feeds an MLP activity225

classifier to label the foraging activity in terms of grazing, rumination and226

other . The classified label outputs are smoothed using a third-order median227

filter to reduce the possible misclassifications of the recognized activity along228

consecutive segments. Figure 2 shows an example of the proper operation of229

the smoothing filter.230

3.2. Datasets description231

This study uses two datasets to evaluate the algorithms under matched232

and mismatched conditions. The first one (referred to as DS1) is a public233
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Digitized
sound

Acoustic signal 
processing

JM feature
extractor

JM
classifier

Recognized
JM-event

JM detector

MIDDLE LEVEL

Activity feature
extractor

Activity
classifier

Recognized
ActivityBuffering

SECOND LAYER
Activity recognition

BOTTOM LEVEL

Activity feature
extractor

Activity
classifierBuffering

TOP LEVEL

Smoothing
filter

JM information

Signals

JM-event recognition

Figure 1: General block diagram of the BUFAR, JMFAR, and the proposed NRFAR
methods divided into temporal scales. The JM information transferred to the top level is
different in each method.

dataset collected at the Michigan State University’s Pasture Dairy Research234

Center (W.K. Kellogg Biological Station, Hickory Corners, MI, USA) from235

July 31 to August 19, 2014 (Martinez-Rau et al., 2023b). In this dataset,236

the cows were handled using a pasture-based robotic milking system with237

unrestricted cow traffic, as described by Watt et al. (2015). Cows were vol-238

untarily milked 3.0 ± 1.0 times per day using two Lely A3-Robotic milking239

units (Lely Industries NV, Maassluis, The Netherlands). Inside the dairy240

barn, the dairy cows were fed a grain-based concentrate. Cows had 24-h241

access to grazing paddocks with a predominance of either tall fescue (Lolium242

arundinacea), orchardgrass (Dactylis glomerata) and white clover (Trifolium243

repens), or perennial ryegrass (Lolium perenne) and white clover. From a244

herd of 146 lactating high-producing multiparous Holstein cows, 5 animals245

were selected to record acoustic signals and to monitor their foraging behavior246

in a noninvasive manner continuously. Specific information on grain-based247
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grazing other rumination

grazing other grazing grazing other rumination rumination

grazing grazing grazing grazing other rumination rumination

Ground truth labels

Smoothing filter

Output Labels

Activity classifier outputs

Acoustic signal

Figure 2: Example of recognized 5-min segments (blue color) compared to the ground
truth reference labels (yellow color). The classified activity label assigned to every segment
enters the smoothing filter to generate the output label of NRFAR.

concentrate, pasture on paddocks, and individualized characteristics of the248

5 dairy cows are given in Martinez-Rau et al. (2023b).249

Individualized 24-h of continuous acoustic recordings were obtained on250

6 nonconsecutive days. The foraging behavior of the 5 dairy cows was251

recorded by 5 independent recording systems that were rotated daily, ac-252

cording to a 5 x 5 Latin-square design. This setup was allowed to verify253

differences in sound signals associated with a particular recording system,254

cow, or experimental day. The recording systems were randomly assigned255

to the cows on the first day. On the sixth day, the same order was used to256
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reassign the recording systems to the cows. No prior training was considered257

necessary for the use of the recording systems before the start of the study.258

Each recording system comprised two directional electret microphones259

connected to a digital recorder (Sony Digital ICD-PX312, Sony, San Diego,260

CA, USA). The digital recorder was protected in a weatherproof case (1015261

Micron Case Series, Pelican Products, Torrance, CA, USA) and mounted262

on the top side of a halter neck strap (Figure 3). One microphone was263

positioned facing outwards in a noninvasive manner and pressed against the264

forehead of the cow to collect the sounds produced by the animal. The other265

microphone was placed facing inwards to capture the vibrations transmitted266

through the bones. The microphones kept the intended location using rubber267

foam and an elastic headband attached to the halter. This design prevents268

microphone movements, reduces wind noise, and protects microphones from269

friction and scratches (Milone et al., 2012). The digital recorders saved the270

audio recordings in MP3 format (Brandenburg and Stoll, 1994) with a 16-271

bit resolution at a sampling rate of 44.1 kHz. Each channel of the stereo272

MP3 files corresponds to the microphone facing inwards and outwards. In273

this study, the stereo MP3 files were converted to mono WAV files, and only274

those mono WAV files corresponding to the microphones facing inwards were275

used because they provide a better sound quality of the foraging activities276

with less presence of external noise sounds.277

The second dataset (referred to as DS2) was collected at the Campo278

Experimental J.F. Villarino (Facultad de Ciencias Agrarias, Universidad Na-279

cional de Rosario, Zavalla, Argentina) on August 1, 2022. The protocol280

used for the experiment has been evaluated and approved by the Commit-281

tee on Ethical Use of Animals for Research of the Universidad Nacional de282

Rosario. This intensified pastoral-based dairy farm has a herd of 140-165283

milking cows, with an individual production of 24-27 l of milk daily. Three284

4-year-old lactating Holstein cows weighing 570-600 kg were selected for this285

experiment. The experimental cows were allowed to graze freely within a286

fully enclosed paddock measuring approximately 60 by 20 m, and they had287

continuous access to a watering trough. The paddock area was covered with288

naturalized perennial grasses (with a dominance of Cynodon sp., Lolium sp.,289

and Festuca sp.). All cows were tamed and trained in the experimental rou-290

tine before the experiment. Each animal was equipped with an acquisition291

data device consisting of an external microphone (IP57 100 mm, -42 ± 3 dB,292

SNR 57 dB) plugged via a 3.5 mm jack to a Moto G6 smartphone (Moto G6293

smartphone specification, 2018). The smartphones were fixed inside plastic294
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Figure 3: Recording system used to record the acoustic signals composed of microphones
(a) that are covered by rubber foam and an elastic headband (b), which are wired and
plugged (c) to a digital recorder placed inside a waterproof case (d) attached to a neck
halter. Figure extracted from Martinez-Rau et al. (2023b)

boxes secured to prevent unintended internal movements. As in DS1, micro-295

phones were located on the cow’s forehead and boxes were mounted to the296

top sides of halter neck straps (Figure 3). Audio recordings were stored in297

the Moto G6 using high-efficiency advanced audio coding (Bosi et al., 1997)298

with a bit rate of 128 kbps and a sampling rate of 44.1 kHz, single channel299

(mono).300

Each fieldwork employed an experienced animal handler who had exten-301

sive knowledge of data collection on animal behavior. The handler observed302

the animals for blocks of approximately 5 min per h during daylight hours303

to ensure the proper placement and positioning of recording systems on the304

cows. The observations were conducted from a distance to minimize potential305

disruptions in animal behavior. The handler registered the observed forag-306

ing activities and other relevant parameters in a logbook. The ground truth307

identification of foraging activities was carried out by two experts with long308

experience in foraging behavior scouting and in the digital analysis of acous-309

tic signals. An expert listened to the audio recordings to identify, delimit,310

and label the activities guided by the logbook. The results were double-311
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inspected and verified by the other expert. Although the experts agreed on312

all label assignments, there were some small differences in the start or end313

times of certain labels. In these cases, the experts collaborated to reach a314

mutual agreement on the labels. Activity blocks were labeled as grazing,315

rumination, or other (see Figure 2).316

Additionally, this study uses audio clips from two open acoustic datasets317

to evaluate the algorithms under adverse conditions. The selection process318

for the useful audio clips is shown in Figure 4. The first dataset is a labeled319

collection of 2000 environmental audio clips of 5 s duration, organized into320

50 categories with 40 audio clips per category (Piczak, 2015). The second321

dataset is a multilabeled collection of 51,197 audio clips, with a mean dura-322

tion of 7.6 s, unequally distributed into 200 categories (Fonseca et al., 2022).323

To represent environmental and natural noises commonly found in field pas-324

tures, the categories “aeroplane”, “chirping birds”, “cow”, “crickets”, “engine”,325

“insects”, “rain”, “thunderstorm”, and “wind” from the first dataset and “air-326

craft”, “animal”, “bird vocalisation and birds call and bird song”, “car passing327

by”, “cowbell”, “cricket”, “engine”, “fixed-wing aircraft and aeroplane”, “frog”,328

“insect”, “livestock and farm animals and working animals”, “rain”, “rain-329

drop”, “thunder”, and “wind” from the second dataset were selected. These330

categories were grouped into four exclusive sets according to their nature as331

follows:332

1. Animals = {animal, bird vocalisation and birds call and bird song, chirp-333

ing birds, cow, cowbell, cricket, crickets, frog, insect, insects, livestock334

and farm animals and working animals}335

2. Vehicles = {aeroplane, aircraft, car passing by, engine, fixed-wing air-336

craft and aeroplane}337

3. Weather = {rain, raindrop, thunder, thunderstorm, wind}338

4. Mixture = {Animals, Vehicles, Weather}339

The audio clips of the sets were listened to by the experts, and those that340

did not correspond with possible field pasture conditions were discarded.341

Overall, 3042 useful audio clips lasting 13.1 h were identified. For repro-342

ducibility, a list of selected audio clips is available as Supplementary Mate-343

rial.344
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Datasets with 
multiples categories

Selected 
categories

Grouped categories 
into four sets

Useful audio clips 

Filter undesirable 
audio clips

Figure 4: Top-down scheme for selecting useful audio clips.

3.3. Numerical experiments setup345

3.3.1. Experiment 1: performance evaluation under matched conditions346

In the initial experiment, the NRFAR performance was evaluated using347

DS1. This experiment assessed NRFAR effectiveness under consistent con-348

ditions, including the same animals, recording devices, and field conditions.349

NRFAR was coded, trained, and tested in Matlab R2019b (MathWorks, Nat-350

ick, MA, USA), following a stratified 5-fold cross-validation scheme. A set351

of 349.4 h of outdoor audio recordings of DS1, composed of 50.5% grazing,352

34.9% rumination, and 14.6% of other activities was used. The imbalanced353

distribution of classes is consistent with typical cattle behavior (Kilgour,354
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2012). Therefore, the test data were not balanced by class. From all available355

training data in each fold, 30% of the majority class (grazing) was randomly356

undersampled and 100% of the minority class (other) was synthetically over-357

sampled (He et al., 2008), to generate a balanced dataset for training (35.6%358

grazing, 35.1% rumination, and 29.3% of other activities). The activity clas-359

sifier is an MLP neural network formed by five input neurons (number of in-360

put features), one hidden layer, and three output neurons (number of output361

labels corresponding to the activity class). The activation functions used by362

the hidden and output layers are the hyperbolic tangent sigmoid and softmax363

transfer functions, respectively. During the MLP training phase, the scaled364

conjugate gradient backpropagation algorithm was used to find the optimal365

weight and bias of the network and optimize the MLP classifier’s hyperpa-366

rameters. The two hyper-parameters’ learning rate and number of neurons367

in the hidden layer were fitted using a grid-search method. The learning rate368

was evaluated at values of 0.1, 0.01, 0.001, and 0.0001, whereas the number369

of neurons was evaluated within a range of 4 to 10.370

3.3.2. Experiment 2: Generalization capability under clean mismatched con-371

ditions372

The NRFAR generalization capability was evaluated by processing acous-373

tic signals from different animals located in another field and recorded with374

different devices. NRFAR was trained on DS1 and tested on DS2. The375

training set was balanced using the same under- and over-sampling tech-376

niques applied in the first experiment. DS2 is composed of 13.2 h of audio377

recordings, corresponding to 51.8% grazing, 24.6% rumination, and 23.6% of378

other activities.379

3.3.3. Experiment 3: Noise robustness evaluation380

External noise may reduce the operability of acoustic foraging activity381

recognizers operating under free-range conditions. The particular properties382

of these noise sources, including their finite duration and limited bandwidth,383

make them difficult to distinguish and quantify in the context of this study,384

which analyzed almost 350 h of audio recordings. Although audio record-385

ings captured in DS1 might occasionally contain some noise, the signals were386

assumed to be free of noise; that is, they had an infinite SNR. In this ex-387

periment, the robustness of the NRFAR to noise was evaluated in five trials388

for various levels of contamination with noise and measured in terms of the389

SNR in a range from 20 to -15 dB in steps of 5 dB. In each trial, NRFAR was390
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trained in the same way as in the first experiment but a different noise source391

was artificially added to the audio recording of DS1 used for testing and then392

normalized. A stationary Gaussian white noise source was used in a trial,393

which is one of the most accepted methods for testing the algorithm noise394

robustness (Sáez et al., 2016). White noise is an “infinite” bandwidth signal395

with constant power spectral density across all frequencies. Furthermore,396

the previously mentioned set of audio clips (Animals, Vehicles, Weather, and397

Mixture) was used in four trials to represent nonstationary environmental398

and natural noises present on the pasture. In each trial, the audio clips399

were randomly selected without replacement and concatenated to represent400

the artificial noise source that was used to contaminate the original audio401

recordings. Some examples of waveforms and spectrograms at several SNRs402

produced during grazing and rumination are shown in the Supplementary403

Material.404

3.4. Metrics405

State-of-the-art BUFAR and JMFAR methods were evaluated under the406

same conditions as NRFAR to establish a comparison between different meth-407

ods. Each audio recording has an associated ground-truth text file, specifying408

the start and end of the bouts, and the corresponding activity labels. The409

activity bouts, which last from several minutes to hours, were divided into410

nonoverlapping 1-s frames, following the approach described by Chelotti et al.411

(2023). This allowed a high-resolution activity recognition analysis to eval-412

uate the performance of the methods. This action was performed on both413

the algorithm output and the ground truth for a direct comparison. In total,414

1,257,759 frames and 47,606 frames were generated from the 349.4 h and415

13.2 h of audio recordings of DS1 and DS2, respectively. For each audio sig-416

nal, the balanced accuracy metric was calculated using the scikit-learn 1.2.2417

library in Python2 (Pedregosa et al., 2011). This metric provides a good in-418

dicator of the performance of multiclass imbalance problems (Mosley, 2013).419

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
balanced_accuracy_score.html
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4. Results420

4.1. Experiment 1421

The recognition performance of the different methods under matched con-422

ditions (i.e. trained and tested on DS1) reveals that NRFAR properly classi-423

fies ≥ 88.2% of the frames into grazing or rumination classes, thus showing a424

significant improvement compared with the average of 79.5% for BUFAR and425

84.3% for JMFAR (Figure 5). BUFAR exhibits the lowest recognition rate426

for the activities of interest but the highest recognition for other activities427

(88.1%). Moreover, confusion between grazing and rumination is lower for428

NRFAR (≤ 1.2%), than for BUFAR (≥ 11.2%) and JMFAR (≥ 5.1%).429

The computational cost of NRFAR, expressed in terms of operations per430

second (ops/s), is 13.4% higher than that of BUFAR (43,060 ops/s vs. 37,966431

ops/s) and 14.6% lower than that of JMFAR (43,060 ops/s vs. 50,445 ops/s),432

with marginal variations presented between them. A detailed analysis and433

assumption of the operations involved are available in Appendix A.434

4.2. Experiment 2435

The generalization capability of the different methods to recognize forag-436

ing activities is evaluated in the independent DS2 dataset. Figure 6 shows437

the confusion matrices for the three methods. Qualitative previous results438

on DS1 are extended to those on DS2: NRFAR achieves a higher recognition439

rate for both grazing and rumination classes than JMFAR and BUFAR, with440

lower confusion between these classes.441

The comparison of each method’s performance in each dataset shows that442

NRFAR presents similar average balanced accuracies, being 86.4% in DS1443

and 87.4% in DS2. Comparing Figure 6c versus Figure 5c, grazing is 5.9%444

higher in DS1 than in DS2, while rumination is 4.1% lower. On the other445

hand, JMFAR exhibits a 7.7% higher classification of grazing but 12.7% lower446

classification of rumination in DS1 than in DS2 (Figure 6b versus Figure 5b).447

The classification of other activity is similar in DS1 and DS2 for both NRFAR448

and JMFAR. BUFAR presents a similar capability for classifying rumination449

in DS1 and DS2. However, the classification of grazing decreases 26.1% from450

DS1 to DS2 (Figure 6a versus Figure 5a).451

4.3. Experiment 3452

The robustness to adverse conditions of the NRFAR method is evaluated453

and compared against the BUFAR and JMFAR methods using different noise454
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Figure 5: Confusion matrices for different foraging activities for the (a) BUFAR, (b)
JMFAR, and (c) NRFAR methods when evaluating on DS1.

sources at multiple SNR levels. Gaussian white noise is added to the audio455

signals of DS1 in appropriate proportions, to achieve the desired SNR. Fig-456

ure 7 shows the balanced accuracy, averaged over the audio signals, obtained457

with each method under different SNR conditions. NRFAR outperforms JM-458

FAR and BUFAR in all cases (p < 0.05; Wilcoxon signed-rank test computed459

over the balanced accuracy of each signal (Wilcoxon, 1945)). The overall per-460

formance (average ± standard deviation) of NRFAR remains approximately461

constant, ranging from 0.86 ± 0.10 to 0.83 ± 0.13 for SNR ≥ 5 dB. Fur-462

thermore, the performance of JMFAR is higher (ranging from 0.79 ± 0.16 to463

0.71 ± 0.16) than that of BUFAR (ranging from 0.76 ± 0.17 to 0.69 ± 0.17)464

under low noise conditions (SNR ≥ 10 dB). For moderate and high noise465
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(a) (b)

(c)

Figure 6: Confusion matrices for different foraging activities for the (a) BUFAR, (b)
JMFAR, and (c) NRFAR methods when evaluating on DS2.

conditions (SNR ≤ 5 dB), BUFAR (ranging from 0.66 ± 0.17 to 0.39 ± 0.06)466

outperformed JMFAR (ranging from 0.65 ± 0.16 to 0.32 ± 0.10).467

In a more challenging and realistic scenario, the original audio signals468

of DS1 are mixed with a nonstationary noise source in four independent469

trials. The noise source contains exclusively sounds of animals, vehicles,470

weather, or a mixture of these sounds. The balanced accuracy metrics re-471

ported by the methods using the four noise sources are shown in Figure 8.472

The performance of NRFAR decreases as the SNR decreases. However, the473

performance of BUFAR and JMFAR increases in general for SNR between474

20 dB and 10 dB. In general, NRFAR outperforms BUFAR and JMFAR,475

particularly for SNR ≥ 15 dB and for SNR ≤ 0 dB. NRFAR has a higher476

19

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. R
au

, J
. O

. C
he

lo
tti

, M
. F

er
re

ro
, J

. G
al

li,
 S

.A
 U

ts
um

i, 
A

. M
. P

la
ni

si
ch

, H
. L

. R
uf

in
er

 &
 L

. G
io

va
ni

ni
; "

A
 n

oi
se

-r
ob

us
t a

co
us

tic
 m

et
ho

d 
fo

r 
re

co
gn

iz
in

g 
fo

ra
gi

ng
 a

ct
iv

iti
es

 o
f 

gr
az

in
g 

ca
ttl

e"
C

om
pu

te
rs

 a
nd

 E
le

ct
ro

ni
cs

 in
 A

gr
ic

ul
tu

re
, V

ol
. 2

29
, 2

02
5.



∞ 20 15 10 5 0 -5 -10 -15

Signal-to-noise ratio (dB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al

an
ce

d
ac

cu
ra

cy

NRFAR

BUFAR

JMFAR

Figure 7: Performance rates (average ± standard deviation) for the NRFAR, BUFAR, and
JMFAR methods using additive Gaussian white noise at several SNR levels.

balanced accuracy than BUFAR in the 32 evaluated cases (p < 0.05 in 25477

cases). Additionally, NRFAR outperforms JMFAR for SNR ≥ 20 dB and478

SNR ≤ 0 dB (p < 0.05 in 14 of 16 cases). The results of comparing NRFAR479

with JMFAR for SNR between 15 dB and 5 dB are not always statistically480

significant, although NRFAR presents higher performances than JMFAR in481

most cases (Figure 8). On the other hand, JMFAR presents higher average482

balanced accuracy than BUFAR for SNR ≥ 0 dB for the four noise sources,483

particularly for 10 ≥ SNR ≥ 0 dB (with p < 0.05 in 19 of 20 cases).484

Reported statistical significance test values obtained in the experiments are485

available in Appendix B.486

The previously reported results have been rearranged to provide a dif-487

ferent interpretation. Figure 9 shows the performance degradation of the488

NRFAR, JMFAR, and BUFAR methods for the different noise sources. In489

Fig 9.a, the average balanced accuracy of NRFAR ranges from [0.86 - 0.85]490

for SNR = 20 dB to [0.44 - 0.33] for -15 dB. NRFAR reaches higher per-491

formance when Gaussian white noise is used. For a particular SNR value,492

NRFAR performs similarly between the noise sources representing more re-493

alistic acoustic pasture conditions. This is also true for JMFAR (Figure 9.b)494

but not for BUFAR (Figure 9.c).495
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Figure 8: Performance rates (average ± standard deviation) for the NRFAR, BUFAR, and
JMFAR methods using noises commonly present on pasture at several SNR levels.

By comparing stationary and nonstationary noise sources, BUFAR and496

NRFAR exhibit higher performance when Gaussian white noise is added to497

the audio signals in moderate and high levels (SNR ≤ 5 dB). However, for498

low noise conditions, the recognition performance of JMFAR is more affected499

when Gaussian white noise is used.500

5. Discussion501

Accurately classifying the most important ruminant foraging behavior502

provides useful information to monitor their welfare and health, and to gain503

insight into their pasture dry matter intake and utilization (Liakos et al.,504
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Figure 9: Variation of the performance metric across different noise sources for (a) NRFAR,
(b) JMFAR, and (c) BUFAR. Marked points are the balanced accuracy, averaged over
signals at a particular SNR level.

2018). This is typically achieved using accelerometers, pressure, or acoustic505

sensors. Commercial nose-band pressure sensors require handlers to ana-506

lyze raw data recorded on a computer, which are not suitable for use in big507
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rodeos (Riaboff et al., 2022). Ensuring the proper location, orientation, and508

attachment of accelerometer sensors mounted on a collar can become a labo-509

rious task for handlers to prevent their motion. Meeting these requirements510

is even more challenging under free-ranging conditions. Therefore, acoustic511

sensors are preferable for practical use under such conditions (Shen et al.,512

2020). Existing state-of-the-art acoustic methods for estimating the foraging513

activities of cattle, called BUFAR and JMFAR, are based on the analysis514

of fixed-length segments of sound signals. However, the misclassification of515

foraging activities remains a challenge. This study proposes an improved on-516

line acoustic foraging activity recognizer (NRFAR) that analyzes identified517

JM-event classes in nonoverlapping segments of 5-min duration. Like BU-518

FAR, NRFAR computes statistical features of JM-events to identify foraging519

activities. NRFAR uses the CBEBA method to recognize JM-events into520

four classes: rumination-chews, grazing-chews, bites, and chew-bites. The521

NRFAR method represents a significant improvement over the previous BU-522

FAR method, which only distinguished between bites, chew-bites, and chews,523

without discriminating between rumination-chews and grazing-chews events.524

The JMFAR method uses a different approach that does not require the iden-525

tification of JM-events to delimit grazing and rumination bouts. Instead, it526

extracts information from the detected JM in the segment.527

The results showed that the average correct recognition rate of the ac-528

tivities of interest (grazing and rumination) for NRFAR was 91.5% when529

evaluating in DS1, exceeding BUFAR by 12.0% and JMFAR by 7.2% (Fig-530

ure 5). Importantly, this improvement in activity recognition was achieved531

without incurring substantial changes in computational cost. The remarkable532

performance improvement of NRFAR was due to the improved discrimination533

of JM-events produced during rumination and grazing by CBEBA. The good534

classification rate of JM-events allowed the computation of a confidence set of535

activity features with more specific discriminatory information than BUFAR536

and JMFAR to enhance activity classifications. NRFAR presented a mini-537

mal confusion of ≤ 1.2% between grazing and rumination, which was lower538

than the confusion reported by BUFAR (≥ 11.2%) and JMFAR (≥ 5.1%).539

The authors hypothesized that the misclassification of foraging activities was540

reduced because it depends mainly on the misrecognition of JM-events asso-541

ciated with rumination (rumination-chew) and grazing (grazing-chew, bite,542

and chew-bite), and not between all possible JM-event classes. Therefore,543

NRFAR was less sensitive to JM-events misclassification than BUFAR. Like-544

wise, discrimination between foraging activities and other activities presented545
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a greater error in the NRFAR (≥ 4.1%). This confusion was also observed in546

BUFAR and JMFAR and could be related to the great diversity of behavior547

represented by the other class. From a productivity standpoint, confusion of548

5% or more between grazing and rumination can significantly affect the diag-549

noses of feeding performance (e.g. low dry matter intake) (Watt et al., 2015)550

or metabolic imbalances of nutritional origin in ruminants (e.g., subacute551

ruminal acidosis) (Beauchemin, 2018).552

An acoustic method must be able to work effectively in different setups553

to have practical utility. NRFAR, JMFAR, and BUFAR, initially trained554

using DS1 signals, were tested on DS2 signals. Again, NRFAR exceeded555

the average recognition rate of grazing and rumination of JMFAR and BU-556

FAR by 4.0% and 24.7%, respectively, with higher average balanced accuracy557

(87.4% for NRFAR, 84.4% for JMFAR, and 73.2% for BUFAR). Moreover,558

the average balanced accuracy of NRFAR in DS2 was 1.0% higher than in559

DS1, with similar recognition rates of the three classes in both datasets (Fig-560

ure 5c and Figure 6c), demonstrating good generalization capability. JMFAR561

also exhibited good generalization performance (average balanced accuracy562

of 78.9% in DS1 and 84.4% in DS2) but an improvement in the recognition563

of rumination was compensated with a decrease in grazing (Figure 5b and564

Figure 6b). Noteworthy was the limited generalization ability of BUFAR to565

identify grazing, decreasing from 83.5% in DS1 to 57.4% in DS2 (Figure 5a566

and Figure 6a).567

Acoustic methods often have lower performance in confined environments568

such as barns because of the high levels and varying types of noise present569

there. Acoustic reverberation existing in confined environments is the cause570

that noise has to be considered convolutional. In free-ranging conditions,571

noise is still present but is less intense and frequent, and can be considered572

additive. To reduce the unwanted effects of acoustic noise, an appropriate mi-573

crophone setup (as shown in Figure 3) can be used. Hence, the proper opera-574

tion of acoustic methods in free-ranging is not necessarily compromised. The575

effectiveness of an acoustic foraging activity recognizer depends on its ability576

to work well in adverse field conditions, making it a useful and effective tool577

for farmers and handlers. In this study, the noise robustness of NRFAR was578

evaluated and compared with previous methods by adding artificial noises to579

the original audio signals of DS1 at different levels (20 ≤ SNR ≤ −15 dB),580

which were even higher than those produced by real noises in classical pas-581

ture environments (Bishop et al., 2019). The noise robustness of the methods582

using a stationary noise source with different properties was evaluated (Fig-583
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ure 7). Artificial random Gaussian white noise was used to contaminate584

the audio signals. The white noise signal has a theoretical “infinite” band-585

width and a constant power spectral density across all frequencies, which586

can degrade important acoustic cues over the entire frequency range. NR-587

FAR had great robustness to noise for SNR ≥ 10 dB, keeping their balanced588

accuracy almost constant. However, the performances of the JMFAR and589

BUFAR methods decreased with decreasing SNR. JMFAR performed better590

than BUFAR at low levels of noise (SNR ≥ 10 dB) since the noise had a591

similar impact on both methods in this SNR range. BUFAR outperformed592

JMFAR for moderate and high noise levels (SNR ≤ −5 dB) due to the higher593

robustness to noise of the JM information from recognized JM-events used594

by BUFAR. Furthermore, JMFAR exhibited the largest drop in performance595

in this experiment. The decreasing performance of JMFAR was due to the596

limited robustness to noise of the JM information, computed from detected597

JM-events, analyzed to recognize foraging activities (Figure 4). Additionally,598

NRFAR outperformed the other methods for the entire range considered in599

these numerical experiments (SNR ≥ -15 dB) (14 of 16 evaluated scenarios).600

The effects of different nonstationary noise sources commonly present601

on pastures, such as sounds produced by animals, vehicles, weather, and a602

mixture of these sounds, were also evaluated. Figure 8 showed that JMFAR603

outperformed BUFAR, which is consistent with the results of Chelotti et al.604

(2023). In addition, NRFAR outperformed the previous methods in 61 of 64605

evaluated scenarios, with 39 of those cases showing statistical significance606

(p < 0.05), as in the evaluations using Gaussian white noise (Figure 7). It607

should be noted that the largest differences in favor of NRFAR were observed608

for SNR ≥ 15 dB and SNR ≤ 0 dB, but NRFAR performed similarly to609

JMFAR for 10 ≤ SNR ≤ 5 dB. Under high noise conditions, the performance610

of NRFAR was due to the high noise robustness and discriminative power of611

the JM features used to classify the JM-events by CBEBA (middle level of612

Figure 1) (Martinez-Rau et al., 2022).613

The robustness of each method to different noise sources was analyzed.614

The performance of NRFAR using the four nonstationary noise sources was615

similar to each other for a particular SNR level (Figure 9.a), even though616

these noise sources have different spectral energy distributions (Özmen et al.,617

2022). A similar situation was observed for JMFAR (Figure 9b), but not for618

BUFAR (Figure 9c). It was noteworthy that NRFAR performed better when619

evaluated with stationary Gaussian white noise compared to the nonstation-620

ary noise sources (Figure 9a), particularly for moderate and high noise con-621
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ditions. This particular situation was also observed in BUFAR (Figure 9c).622

nonstationary noise sources have uncertain onset, offset, and duration, which623

can lead to false detection of JM, classifying noises as JM-events (middle624

level of Figure 1). Figure 9b showed that JMFAR performed similarly with625

all nonstationary noise sources for SNR ≥ -5 dB because it did not depend626

on the identification of JM-events. Remarkably, JMFAR was less robust to627

stationary Gaussian white noise than to stationary noise sources at low noise628

levels (SNR ≥ 5 dB).629

NRFAR has a low computational cost of 43,060 ops/s, which is of the same630

order of magnitude as BUFAR and JMFAR. It is important to note that631

most of the computational cost required by NRFAR (43,121 ops/s) comes632

from the computation of CBEBA (43,118 ops/s) (see Appendix A). This633

suggests that NRFAR could potentially be implemented in an application-634

specific ultra-low-power microprocessor, similar to the implementation of635

CBEBA (Martinez-Rau et al., 2023c). This computational cost value is the-636

oretical and considers only the arithmetic and logic operations required to637

execute NRFAR. It is useful to compare the computational requirements638

of different methods independently on the platform. However, the total pro-639

cessing time of a constrained electronic device depends on available hardware640

resources (Manor and Greenberg, 2022). The recent deployment of NRFAR641

in a low-power microcontroller (Martinez-Rau et al., 2023a), combined with642

its strong noise robustness, positions NRFAR as a reliable tool to be embed-643

ded in an acoustic sensor for recognizing grazing and rumination activities.644

6. Conclusion645

This study proposes an improvement over former acoustic methods to rec-646

ognize and delimit foraging activity bouts of grazing cattle. Inspired by the647

former BUFAR method, the proposed NRFAR method analyzes fixed-length648

segments of recognized JM-events. NRFAR uses a robust JM recognizer649

that discriminates JM-events produced during grazing and rumination un-650

der different operating conditions. This allows NRFAR to recognize foraging651

activities in free-range scenarios, even under adverse acoustic conditions. The652

method has shown a significant performance improvement over state-of-the-653

art acoustic methods in quiet and noisy conditions, and in different settings.654

The evaluation of noise robustness was performed by adding artificially differ-655

ent amounts of stationary Gaussian white noise, and nonstationary natural656

noise commonly present in free-range. Future work must include changes657
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in the analysis of fixed-length segments to variable-length segments using658

dynamic segmentation to facilitate more accurate estimation of the foraging659

bouts of interest. Likewise, NRFAR could be used as a reference for devel-660

oping new methods based on multi-modal data sensors to recognize feeding661

activities in more adverse environments, such as barns.662

Acknowledgment663

The authors wish to express their gratitude to the staff of the KBS664

Robotic Dairy Farm, who participated in the investigation. Additionally,665

we acknowledge the direct support from AgBioResearch-MSU. The authors666

would like to thank Constanza Quaglia (technical staff, CONICET) and J.667

Tomás Molas G. (technical staff, UNER-UNL) for their technical support668

in achieving the web demo. This work was supported by the Universi-669

dad Nacional del Litoral [CAID 50620190100080LI and 50620190100151LI];670

Universidad Nacional de Rosario [AGR216, 2013 - AGR266, 2016 - and671

80020180300053UR, 2019]; Agencia Santafesina de Ciencia, Tecnología e In-672

novación [IO-2018–00082], CONICET [PUE sinc(I), 2017]; and USDA-NIFA673

[MICL0222 and MICL0406].674

CRediT authorship contribution statement675

LSMR, JOC, MF, HLR, and LLG participated in conceptualization; LSMR676

participated in software stage; LSMR, JOC, JRG, and AMP participated in677

the data curation; LSMR, JOC, MF, HLR and LLG participated in the for-678

mal analysis; LSMR, JOC, MF, and HLR participated in the investigation679

stage; LSMR, JOC, MF, HLR, and LLG participated in methodology, vali-680

dation and visualization stages; JRG, LLG, SAU, and HLR participated in681

the funding acquisition; JRG, LLG, and HLR participated in project admin-682

istration; LSMR, JOC, MF, JRG, SAU, AMP, HLR and LLG contributed to683

the writing and reviewing of the original draft; All the authors reviewed and684

approved the manuscript.685

Data availability686

Data will be available on request.687

27

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. R
au

, J
. O

. C
he

lo
tti

, M
. F

er
re

ro
, J

. G
al

li,
 S

.A
 U

ts
um

i, 
A

. M
. P

la
ni

si
ch

, H
. L

. R
uf

in
er

 &
 L

. G
io

va
ni

ni
; "

A
 n

oi
se

-r
ob

us
t a

co
us

tic
 m

et
ho

d 
fo

r 
re

co
gn

iz
in

g 
fo

ra
gi

ng
 a

ct
iv

iti
es

 o
f 

gr
az

in
g 

ca
ttl

e"
C

om
pu

te
rs

 a
nd

 E
le

ct
ro

ni
cs

 in
 A

gr
ic

ul
tu

re
, V

ol
. 2

29
, 2

02
5.



Declaration of competing interest688

The authors declare that they have no known competing financial inter-689

ests or personal relationships that could have appeared to influence the work690

reported in this paper.691

Appendix A. Computational cost692

The computational cost of NRFAR depends on the input audio sampling693

frequency, the sub-sampling frequency used internally in CBEBA (fixed at694

fs = 150 Hz in this analysis, according to its optimal value), the configura-695

tion of the two MLP neural networks used to classify the JM-events and for-696

aging activities, and the duration of the segment lengths (fixed at 5 min). To697

obtain a valid comparison with other methods, an input sampling frequency698

of fi = 2 kHz and 2 JM-events per second was chosen. Furthermore, the699

worst-case computational cost scenario was selected for both MLP classifiers.700

In addition, any arithmetic operation, arithmetic shift, logic comparison, or701

activation function is counted as one operation. The required number of702

operations per second for the computation stages of each level of NRFAR is:703

Bottom level :704

1. Audio pre-processing: limiting the bandwidth with a second-order band-705

pass filter and computing the instantaneous power signal requires 7∗fi706

and fi ops/s per sample, respectively. Then, 16,000 ops/s are required.707

2. Signal computation: computing and decimating the envelope signal708

requires 11 ∗ fi + 150 ops/s. Computing the energy signal by frames709

requires fi + 300 ops/s. Altogether, this stage requires 24,450 ops/s.710

Middle level :711

1. JM-event detection: 4+0.925 ∗ fs and 12+ fs operations per JM-event712

are necessary to detect and delimit the boundaries of JM-events. Then,713

this stage takes 610 ops/s.714

2. Feature extraction: 3.5 ∗ fs operations per JM-event are necessary to715

compute the set of JM features. In total, 1050 ops/s are required.716

3. JM-event classification: deciding whether an event should be classified717

requires fs + 3 operations per JM event, whereas the MLP with 5-6-718

4 neurons requires 131 operations per JM-event, thus, 568 ops/s are719

required.720
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4. Tuning parameters: fs + 39 operations per JM-event are necessary to721

update the thresholds. Then, 378 ops/s are required.722

Middle level :723

1. Segment buffering: this stage requires 2 operations per JM-event equiv-724

alent to 4 ops/s.725

2. Feature extraction: computing the set of activity features requires726

608 ops/segment.727

3. Activity classification: considering the maximum number of neurons (10)728

in the hidden layer, the MLP requires 185 ops/segment.729

4. Smoothing process: this filtering stage takes 2 ops/segment.730

Finally, the total computational cost of NRFAR is 43,060 ops/s + 795 ops/segment731

≈ 43,063 ops/s. Similar to BUFAR, the overall computational cost almost732

exclusively depends on the bottom and middle levels of Figure 1 (i.e., the733

JM event recognizer) because the top level is only executed once every 5 min734

(segment length). Hence, the total computational cost of NRFAR can be735

expressed as 12,918,795 ops/segment.736

Appendix B. Statistical hypothesis test737

The statistically significant discrepancies in the balanced accuracy be-738

tween NRFAR and BUFAR, NRFAR and JMFAR, and JMFAR and BUFAR739

were evaluated using the Wilcoxon signed-rank test (Wilcoxon, 1945). Ta-740

bles B.1, B.2, and B.3 show the p-values obtained from the comparison of741

these methods. P-values with a green background indicate a significant dif-742

ference in performance with a confidence level of 5% (p = 0.05), and p-values743

with a pink background indicate a nonsignificant difference.744
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Table B.1: Statistically significant p-values were obtained by comparing the performance
of the NRFAR and BUFAR methods with different noise sources at several noise levels.

NRFAR vs BUFARSNR [dB] Animals Vehicles Weather Mixture White
20 3.88e-05 1.69e-08 8.75e-06 5.36e-06 1.02e-08
15 1.21e-04 7.79e-04 5.38e-04 8.33e-04 3.30e-11
10 1.58e-10 3.78e-01 9.34e-04 1.93e-06 7.36e-14
5 1.04e-15 1.92e-06 9.88e-15 1.34e-15 4.36e-13
0 1.43e-09 1.57e-09 1.71e-15 4.59e-10 1.16e-05
-5 7.39e-04 8.82e-06 5.20e-05 6.53e-04 1.98e-01
-10 6.23e-01 1.19e-02 9.68e-01 9.04e-01 2.16e-01
-15 5.63e-01 1.85e-01 9.44e-01 4.19e-01 6.01e-04

Table B.2: Statistically significant p-values were obtained by comparing the performance
of the NRFAR and JMFAR methods with different noise sources at several noise levels.

NRFAR vs JMFARSNR [dB] Animals Vehicles Weather Mixture White
20 8.45e-02 6.52e-04 1.80e-03 6.95e-03 5.45e-05
15 5.55e-01 2.30e-01 1.61e-01 9.76e-01 6.11e-10
10 3.66e-01 7.02e-01 3.28e-01 9.02e-01 2.61e-13
5 6.48e-01 5.98e-01 3.36e-01 2.69e-01 4.80e-15
0 3.12e-02 4.20e-04 3.77e-02 2.14e-01 8.13e-20
-5 3.29e-06 6.08e-07 8.82e-03 6.31e-03 2.83e-13
-10 4.04e-02 2.96e-03 1.20e-02 4.94e-03 6.17e-08
-15 5.95e-01 1.71e-01 7.00e-01 4.54e-01 3.15e-09
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Table B.3: Statistically significant p-values were obtained by comparing the performance
of the JMFAR and BUFAR methods with different noise sources at several noise levels.

JMFAR vs BUFARSNR [dB] Animals Vehicles Weather Mixture White
20 4.67e-02 2.95e-03 2.33e-02 2.09e-02 4.39e-02
15 1.79e-04 6.66e-03 3.74e-03 2.36e-03 1.73e-01
10 2.01e-14 7.01e-02 4.646e-09 1.49e-10 1.58e-01
5 6.94e-17 1.04e-12 8.32e-18 3.47e-17 6.68e-01
0 1.25e-06 5.57e-10 2.58e-11 1.50e-10 1.07e-14
-5 6.81e-02 1.38e-01 5.61e-01 8.14e-01 4.71e-16
-10 9.58e-09 1.53e-04 7.81e-06 4.03e-08 3.89e-09
-15 4.20e-04 5.00e-01 2.73e-02 1.05e-04 5.31e-06
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